Documentation Verification Report

Subgroupoid

πŸ“ Source: Mathlib/CategoryTheory/Groupoid/Subgroupoid.lean

Statistics

MetricCount
DefinitionsSubgroupoid, Arrows, IsThin, IsTotallyDisconnected, IsWide, Arrows, arrows, asWideQuiver, comap, disconnect, discrete, full, generated, generatedNormal, hom, im, inclusion, instBot, instCompleteLattice, instInfSet, instInhabited, instMin, instPartialOrder, instSetLikeSigmaHom, instTop, ker, map, objs, toSet, vertexSubgroup
30
Theoremsconj, conj', conjugation_bij, generatedNormal_le, toIsWide, vertexSubgroup, eqToHom_mem, id_mem, wide, arrows_iff, coe_comp_coe, coe_inv_coe, coe_inv_coe', comap_comp, comap_mono, disconnect_isTotallyDisconnected, disconnect_le, disconnect_normal, disconnect_objs, discrete_isNormal, ext, ext_iff, full_arrow_eq_iff, full_empty, full_mono, full_objs, full_univ, galoisConnection_map_comap, generatedNormal_isNormal, generated_le_generatedNormal, faithful, inj_on_objects, id_mem_of_nonempty_isotropy, id_mem_of_src, id_mem_of_tgt, inclusion_comp_embedding, inclusion_faithful, inclusion_inj_on_objects, inclusion_refl, inclusion_trans, inv, inv_mem_iff, isNormal_comap, isNormal_map, isThin_iff, isTotallyDisconnected_iff, isWide_iff_objs_eq_univ, ker_comp, ker_isNormal, le_comap_map, le_iff, le_objs, map_comap_le, map_le_iff_le_comap, map_mono, map_objs_eq, mem_disconnect_objs_iff, mem_discrete_iff, mem_full_iff, mem_full_objs_iff, mem_iff, mem_im_iff, mem_im_objs_iff, mem_ker_iff, mem_map_iff, mem_map_objs_iff, mem_objs_of_src, mem_objs_of_tgt, mem_sInf, mem_sInf_arrows, mem_top, mem_top_objs, mul, mul_mem_cancel_left, mul_mem_cancel_right, obj_surjective_of_im_eq_top, sInf_isNormal, subset_generated, top_isNormal
79
Total109

CategoryTheory

Definitions

NameCategoryTheorems
Subgroupoid πŸ“–CompData
20 mathmath: Subgroupoid.map_comap_le, Subgroupoid.full_empty, Subgroupoid.disconnect_le, Subgroupoid.le_iff, Subgroupoid.inclusion_refl, Subgroupoid.le_comap_map, Subgroupoid.IsNormal.generatedNormal_le, Subgroupoid.mem_sInf, Subgroupoid.generated_le_generatedNormal, Subgroupoid.comap_comp, Subgroupoid.full_univ, Subgroupoid.top_isNormal, Subgroupoid.mem_top_objs, Subgroupoid.mem_iff, Subgroupoid.mem_top, Subgroupoid.map_le_iff_le_comap, Subgroupoid.sInf_isNormal, Subgroupoid.mem_sInf_arrows, Subgroupoid.galoisConnection_map_comap, Subgroupoid.full_mono

CategoryTheory.Subgroupoid

Definitions

NameCategoryTheorems
IsThin πŸ“–MathDef
1 mathmath: isThin_iff
IsTotallyDisconnected πŸ“–MathDef
2 mathmath: isTotallyDisconnected_iff, disconnect_isTotallyDisconnected
IsWide πŸ“–CompData
2 mathmath: IsNormal.toIsWide, isWide_iff_objs_eq_univ
arrows πŸ“–CompOp
23 mathmath: full_arrow_eq_iff, le_iff, IsWide.eqToHom_mem, coe_comp_coe, mem_discrete_iff, mem_map_iff, IsWide.wide, isThin_iff, IsNormal.generatedNormal_le, mem_ker_iff, IsWide.id_mem, ext_iff, IsNormal.conjugation_bij, coe_inv_coe', coe_inv_coe, inv_mem_iff, mem_full_iff, mem_iff, subset_generated, mem_im_iff, mem_top, id_mem_of_nonempty_isotropy, mem_sInf_arrows
asWideQuiver πŸ“–CompOpβ€”
comap πŸ“–CompOp
8 mathmath: map_comap_le, le_comap_map, comap_mono, comap_comp, isNormal_comap, map_le_iff_le_comap, ker_comp, galoisConnection_map_comap
disconnect πŸ“–CompOp
5 mathmath: disconnect_le, mem_disconnect_objs_iff, disconnect_isTotallyDisconnected, disconnect_objs, disconnect_normal
discrete πŸ“–CompOp
2 mathmath: mem_discrete_iff, discrete_isNormal
full πŸ“–CompOp
7 mathmath: full_empty, full_arrow_eq_iff, mem_full_objs_iff, full_univ, full_objs, mem_full_iff, full_mono
generated πŸ“–CompOp
2 mathmath: generated_le_generatedNormal, subset_generated
generatedNormal πŸ“–CompOp
3 mathmath: generatedNormal_isNormal, IsNormal.generatedNormal_le, generated_le_generatedNormal
hom πŸ“–CompOp
3 mathmath: hom.faithful, hom.inj_on_objects, inclusion_comp_embedding
im πŸ“–CompOp
2 mathmath: mem_im_iff, mem_im_objs_iff
inclusion πŸ“–CompOp
5 mathmath: inclusion_inj_on_objects, inclusion_refl, inclusion_trans, inclusion_faithful, inclusion_comp_embedding
instBot πŸ“–CompOp
1 mathmath: full_empty
instCompleteLattice πŸ“–CompOpβ€”
instInfSet πŸ“–CompOp
3 mathmath: mem_sInf, sInf_isNormal, mem_sInf_arrows
instInhabited πŸ“–CompOpβ€”
instMin πŸ“–CompOpβ€”
instPartialOrder πŸ“–CompOp
10 mathmath: map_comap_le, disconnect_le, le_iff, inclusion_refl, le_comap_map, IsNormal.generatedNormal_le, generated_le_generatedNormal, map_le_iff_le_comap, galoisConnection_map_comap, full_mono
instSetLikeSigmaHom πŸ“–CompOp
2 mathmath: mem_sInf, mem_iff
instTop πŸ“–CompOp
4 mathmath: full_univ, top_isNormal, mem_top_objs, mem_top
ker πŸ“–CompOp
3 mathmath: mem_ker_iff, ker_isNormal, ker_comp
map πŸ“–CompOp
9 mathmath: map_comap_le, map_mono, le_comap_map, mem_map_iff, isNormal_map, mem_map_objs_iff, map_le_iff_le_comap, galoisConnection_map_comap, map_objs_eq
objs πŸ“–CompOp
24 mathmath: full_arrow_eq_iff, inclusion_inj_on_objects, inclusion_refl, coe_comp_coe, isThin_iff, hom.faithful, mem_disconnect_objs_iff, isWide_iff_objs_eq_univ, mem_objs_of_src, mem_full_objs_iff, coe_inv_coe', full_objs, coe_inv_coe, mem_top_objs, mem_map_objs_iff, inclusion_trans, le_objs, mem_im_objs_iff, hom.inj_on_objects, disconnect_objs, inclusion_faithful, inclusion_comp_embedding, mem_objs_of_tgt, map_objs_eq
toSet πŸ“–CompOpβ€”
vertexSubgroup πŸ“–CompOp
1 mathmath: IsNormal.vertexSubgroup

Theorems

NameKindAssumesProvesValidatesDepends On
coe_comp_coe πŸ“–mathematicalβ€”Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Groupoid.toCategory
Set
Set.instMembership
objs
arrows
CategoryTheory.CategoryStruct.comp
Set.Elem
coe
β€”β€”
coe_inv_coe πŸ“–mathematicalβ€”Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Groupoid.toCategory
Set
Set.instMembership
objs
arrows
CategoryTheory.Groupoid.inv
Set.Elem
coe
β€”β€”
coe_inv_coe' πŸ“–mathematicalβ€”Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Groupoid.toCategory
Set
Set.instMembership
objs
arrows
CategoryTheory.inv
Set.Elem
coe
CategoryTheory.IsGroupoid.all_isIso
CategoryTheory.instIsGroupoid
β€”CategoryTheory.IsGroupoid.all_isIso
CategoryTheory.instIsGroupoid
comap_comp πŸ“–mathematicalβ€”comap
CategoryTheory.Functor.comp
CategoryTheory.Groupoid.toCategory
CategoryTheory.Subgroupoid
β€”β€”
comap_mono πŸ“–mathematicalCategoryTheory.Subgroupoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
comapβ€”β€”
disconnect_isTotallyDisconnected πŸ“–mathematicalβ€”IsTotallyDisconnected
disconnect
β€”isTotallyDisconnected_iff
disconnect_le πŸ“–mathematicalβ€”CategoryTheory.Subgroupoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
disconnect
β€”le_iff
disconnect_normal πŸ“–mathematicalIsNormaldisconnectβ€”IsWide.wide
IsNormal.toIsWide
IsNormal.conj
disconnect_objs πŸ“–mathematicalβ€”objs
disconnect
β€”Set.ext
mem_disconnect_objs_iff
discrete_isNormal πŸ“–mathematicalβ€”IsNormal
discrete
β€”CategoryTheory.IsIso.of_groupoid
CategoryTheory.Groupoid.inv_eq_inv
CategoryTheory.Category.id_comp
CategoryTheory.IsIso.inv_hom_id
ext πŸ“–β€”arrowsβ€”β€”β€”
ext_iff πŸ“–mathematicalβ€”arrowsβ€”ext
full_arrow_eq_iff πŸ“–mathematicalβ€”Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Groupoid.toCategory
Set
Set.instMembership
objs
full
arrows
β€”β€”
full_empty πŸ“–mathematicalβ€”full
Set
Set.instEmptyCollection
Bot.bot
CategoryTheory.Subgroupoid
instBot
β€”ext
Set.ext
full_mono πŸ“–mathematicalSet
Set.instLE
CategoryTheory.Subgroupoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
full
β€”le_iff
full_objs πŸ“–mathematicalβ€”objs
full
β€”Set.ext
full_univ πŸ“–mathematicalβ€”full
Set.univ
Top.top
CategoryTheory.Subgroupoid
instTop
β€”ext
Set.ext
galoisConnection_map_comap πŸ“–mathematicalCategoryTheory.Functor.obj
CategoryTheory.Groupoid.toCategory
GaloisConnection
CategoryTheory.Subgroupoid
PartialOrder.toPreorder
instPartialOrder
map
comap
β€”β€”
generatedNormal_isNormal πŸ“–mathematicalβ€”IsNormal
generatedNormal
β€”sInf_isNormal
generated_le_generatedNormal πŸ“–mathematicalβ€”CategoryTheory.Subgroupoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
generated
generatedNormal
β€”sInf_le_sInf
id_mem_of_nonempty_isotropy πŸ“–mathematicalSet
Set.instMembership
objs
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Groupoid.toCategory
arrows
CategoryTheory.CategoryStruct.id
β€”CategoryTheory.IsIso.of_groupoid
CategoryTheory.Groupoid.inv_eq_inv
CategoryTheory.IsIso.hom_inv_id
mul
inv
id_mem_of_src πŸ“–mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Groupoid.toCategory
Set
Set.instMembership
arrows
CategoryTheory.CategoryStruct.idβ€”id_mem_of_nonempty_isotropy
mem_objs_of_src
id_mem_of_tgt πŸ“–mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Groupoid.toCategory
Set
Set.instMembership
arrows
CategoryTheory.CategoryStruct.idβ€”id_mem_of_nonempty_isotropy
mem_objs_of_tgt
inclusion_comp_embedding πŸ“–mathematicalCategoryTheory.Subgroupoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
CategoryTheory.Functor.comp
Set.Elem
objs
CategoryTheory.Groupoid.toCategory
coe
inclusion
hom
β€”β€”
inclusion_faithful πŸ“–mathematicalCategoryTheory.Subgroupoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Quiver.Hom
Set.Elem
objs
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Groupoid.toCategory
coe
CategoryTheory.Functor.obj
inclusion
CategoryTheory.Functor.map
β€”β€”
inclusion_inj_on_objects πŸ“–mathematicalCategoryTheory.Subgroupoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Set.Elem
objs
CategoryTheory.Functor.obj
CategoryTheory.Groupoid.toCategory
coe
inclusion
β€”β€”
inclusion_refl πŸ“–mathematicalβ€”inclusion
le_refl
CategoryTheory.Subgroupoid
PartialOrder.toPreorder
instPartialOrder
CategoryTheory.Functor.id
Set.Elem
objs
CategoryTheory.Groupoid.toCategory
coe
β€”CategoryTheory.Functor.hext
le_refl
inclusion_trans πŸ“–mathematicalCategoryTheory.Subgroupoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
inclusion
LE.le.trans
CategoryTheory.Functor.comp
Set.Elem
objs
CategoryTheory.Groupoid.toCategory
coe
β€”LE.le.trans
inv πŸ“–mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Groupoid.toCategory
Set
Set.instMembership
arrows
CategoryTheory.Groupoid.invβ€”β€”
inv_mem_iff πŸ“–mathematicalβ€”Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Groupoid.toCategory
Set
Set.instMembership
arrows
CategoryTheory.Groupoid.inv
β€”CategoryTheory.IsIso.of_groupoid
CategoryTheory.Groupoid.inv_eq_inv
CategoryTheory.IsIso.inv_inv
inv
isNormal_comap πŸ“–mathematicalIsNormalcomapβ€”comap.eq_1
Set.mem_setOf
CategoryTheory.Functor.map_id
IsWide.wide
IsNormal.toIsWide
CategoryTheory.IsIso.of_groupoid
CategoryTheory.Groupoid.inv_eq_inv
CategoryTheory.Functor.map_comp
CategoryTheory.Functor.map_isIso
CategoryTheory.Functor.map_inv
IsNormal.conj
isNormal_map πŸ“–mathematicalCategoryTheory.Functor.obj
CategoryTheory.Groupoid.toCategory
im
Top.top
CategoryTheory.Subgroupoid
instTop
IsNormal
mapβ€”obj_surjective_of_im_eq_top
CategoryTheory.Functor.map_id
IsWide.wide
IsNormal.toIsWide
mem_map_iff
mem_top_objs
mem_im_objs_iff
mem_im_iff
CategoryTheory.IsIso.of_groupoid
Map.Arrows.congr_simp
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.Groupoid.inv_eq_inv
IsNormal.conj
CategoryTheory.Functor.map_isIso
CategoryTheory.Functor.map_comp
CategoryTheory.Functor.map_inv
isThin_iff πŸ“–mathematicalβ€”IsThin
Set.Elem
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Groupoid.toCategory
Set
Set.instMembership
objs
arrows
β€”CategoryTheory.Groupoid.isThin_iff
isTotallyDisconnected_iff πŸ“–mathematicalβ€”IsTotallyDisconnectedβ€”mem_objs_of_src
mem_objs_of_tgt
isWide_iff_objs_eq_univ πŸ“–mathematicalβ€”IsWide
objs
Set.univ
β€”Set.ext
mem_objs_of_src
IsWide.wide
le_of_eq
Set.mem_univ
id_mem_of_src
ker_comp πŸ“–mathematicalβ€”ker
CategoryTheory.Functor.comp
CategoryTheory.Groupoid.toCategory
comap
β€”β€”
ker_isNormal πŸ“–mathematicalβ€”IsNormal
ker
β€”isNormal_comap
discrete_isNormal
le_comap_map πŸ“–mathematicalCategoryTheory.Functor.obj
CategoryTheory.Groupoid.toCategory
CategoryTheory.Subgroupoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
comap
map
β€”GaloisConnection.le_u_l
galoisConnection_map_comap
le_iff πŸ“–mathematicalβ€”CategoryTheory.Subgroupoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Set
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Groupoid.toCategory
Set.instHasSubset
arrows
β€”SetLike.le_def
instIsConcreteLE
Sigma.forall
le_objs πŸ“–mathematicalCategoryTheory.Subgroupoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Set
Set.instHasSubset
objs
β€”β€”
map_comap_le πŸ“–mathematicalCategoryTheory.Functor.obj
CategoryTheory.Groupoid.toCategory
CategoryTheory.Subgroupoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
map
comap
β€”GaloisConnection.l_u_le
galoisConnection_map_comap
map_le_iff_le_comap πŸ“–mathematicalCategoryTheory.Functor.obj
CategoryTheory.Groupoid.toCategory
CategoryTheory.Subgroupoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
map
comap
β€”GaloisConnection.le_iff_le
galoisConnection_map_comap
map_mono πŸ“–mathematicalCategoryTheory.Functor.obj
CategoryTheory.Groupoid.toCategory
CategoryTheory.Subgroupoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
mapβ€”GaloisConnection.monotone_l
galoisConnection_map_comap
map_objs_eq πŸ“–mathematicalCategoryTheory.Functor.obj
CategoryTheory.Groupoid.toCategory
objs
map
Set.image
β€”Set.ext
mem_map_objs_iff
mem_disconnect_objs_iff πŸ“–mathematicalβ€”Set
Set.instMembership
objs
disconnect
β€”β€”
mem_discrete_iff πŸ“–mathematicalβ€”Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Groupoid.toCategory
Set
Set.instMembership
arrows
discrete
CategoryTheory.eqToHom
β€”β€”
mem_full_iff πŸ“–mathematicalβ€”Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Groupoid.toCategory
Set
Set.instMembership
arrows
full
β€”β€”
mem_full_objs_iff πŸ“–mathematicalβ€”Set
Set.instMembership
objs
full
β€”full_objs
mem_iff πŸ“–mathematicalβ€”Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Groupoid.toCategory
CategoryTheory.Subgroupoid
SetLike.instMembership
instSetLikeSigmaHom
Set
Set.instMembership
arrows
β€”β€”
mem_im_iff πŸ“–mathematicalCategoryTheory.Functor.obj
CategoryTheory.Groupoid.toCategory
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Set
Set.instMembership
arrows
im
CategoryTheory.CategoryStruct.comp
CategoryTheory.eqToHom
CategoryTheory.Functor.map
β€”Map.arrows_iff
mem_im_objs_iff πŸ“–mathematicalCategoryTheory.Functor.obj
CategoryTheory.Groupoid.toCategory
Set
Set.instMembership
objs
im
β€”β€”
mem_ker_iff πŸ“–mathematicalβ€”Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Groupoid.toCategory
Set
Set.instMembership
arrows
ker
CategoryTheory.Functor.map
CategoryTheory.eqToHom
CategoryTheory.Functor.obj
β€”mem_discrete_iff
mem_map_iff πŸ“–mathematicalCategoryTheory.Functor.obj
CategoryTheory.Groupoid.toCategory
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Set
Set.instMembership
arrows
map
CategoryTheory.CategoryStruct.comp
CategoryTheory.eqToHom
CategoryTheory.Functor.map
β€”Map.arrows_iff
mem_map_objs_iff πŸ“–mathematicalCategoryTheory.Functor.obj
CategoryTheory.Groupoid.toCategory
Set
Set.instMembership
objs
map
β€”Map.arrows_iff
mem_objs_of_src
mem_objs_of_src πŸ“–mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Groupoid.toCategory
Set
Set.instMembership
arrows
objsβ€”mul
inv
mem_objs_of_tgt πŸ“–mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Groupoid.toCategory
Set
Set.instMembership
arrows
objsβ€”mul
inv
mem_sInf πŸ“–mathematicalβ€”Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Groupoid.toCategory
CategoryTheory.Subgroupoid
SetLike.instMembership
instSetLikeSigmaHom
InfSet.sInf
instInfSet
β€”mem_sInf_arrows
mem_sInf_arrows πŸ“–mathematicalβ€”Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Groupoid.toCategory
Set
Set.instMembership
arrows
InfSet.sInf
CategoryTheory.Subgroupoid
instInfSet
β€”Set.mem_iInterβ‚‚
mem_top πŸ“–mathematicalβ€”Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Groupoid.toCategory
Set
Set.instMembership
arrows
Top.top
CategoryTheory.Subgroupoid
instTop
β€”β€”
mem_top_objs πŸ“–mathematicalβ€”Set
Set.instMembership
objs
Top.top
CategoryTheory.Subgroupoid
instTop
β€”One.instNonempty
mul πŸ“–mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Groupoid.toCategory
Set
Set.instMembership
arrows
CategoryTheory.CategoryStruct.compβ€”β€”
mul_mem_cancel_left πŸ“–mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Groupoid.toCategory
Set
Set.instMembership
arrows
CategoryTheory.CategoryStruct.compβ€”mul
inv
CategoryTheory.IsIso.of_groupoid
CategoryTheory.Groupoid.inv_eq_inv
CategoryTheory.IsIso.inv_hom_id_assoc
mul_mem_cancel_right πŸ“–mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Groupoid.toCategory
Set
Set.instMembership
arrows
CategoryTheory.CategoryStruct.compβ€”mul
inv
CategoryTheory.IsIso.of_groupoid
CategoryTheory.Groupoid.inv_eq_inv
CategoryTheory.Category.assoc
CategoryTheory.IsIso.hom_inv_id
CategoryTheory.Category.comp_id
obj_surjective_of_im_eq_top πŸ“–β€”CategoryTheory.Functor.obj
CategoryTheory.Groupoid.toCategory
im
Top.top
CategoryTheory.Subgroupoid
instTop
β€”β€”mem_im_objs_iff
mem_top_objs
sInf_isNormal πŸ“–mathematicalIsNormalInfSet.sInf
CategoryTheory.Subgroupoid
instInfSet
β€”IsWide.wide
IsNormal.toIsWide
IsNormal.conj
subset_generated πŸ“–mathematicalβ€”Set
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Groupoid.toCategory
Set.instHasSubset
arrows
generated
β€”β€”
top_isNormal πŸ“–mathematicalβ€”IsNormal
Top.top
CategoryTheory.Subgroupoid
instTop
β€”β€”

CategoryTheory.Subgroupoid.Discrete

Definitions

NameCategoryTheorems
Arrows πŸ“–CompDataβ€”

CategoryTheory.Subgroupoid.IsNormal

Theorems

NameKindAssumesProvesValidatesDepends On
conj πŸ“–mathematicalCategoryTheory.Subgroupoid.IsNormal
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Groupoid.toCategory
Set
Set.instMembership
CategoryTheory.Subgroupoid.arrows
CategoryTheory.CategoryStruct.comp
CategoryTheory.Groupoid.inv
β€”β€”
conj' πŸ“–mathematicalCategoryTheory.Subgroupoid.IsNormal
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Groupoid.toCategory
Set
Set.instMembership
CategoryTheory.Subgroupoid.arrows
CategoryTheory.CategoryStruct.comp
CategoryTheory.Groupoid.inv
β€”CategoryTheory.IsIso.of_groupoid
CategoryTheory.Groupoid.inv_eq_inv
CategoryTheory.IsIso.inv_inv
conj
conjugation_bij πŸ“–mathematicalCategoryTheory.Subgroupoid.IsNormalSet.BijOn
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Groupoid.toCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.Groupoid.inv
CategoryTheory.Subgroupoid.arrows
β€”conj
CategoryTheory.IsGroupoid.all_isIso
CategoryTheory.instIsGroupoid
CategoryTheory.IsIso.of_groupoid
CategoryTheory.Groupoid.inv_eq_inv
CategoryTheory.Category.assoc
CategoryTheory.IsIso.hom_inv_id
CategoryTheory.Category.comp_id
CategoryTheory.IsIso.hom_inv_id_assoc
CategoryTheory.whisker_eq
CategoryTheory.eq_whisker
conj'
CategoryTheory.IsIso.inv_hom_id
CategoryTheory.IsIso.inv_hom_id_assoc
generatedNormal_le πŸ“–mathematicalCategoryTheory.Subgroupoid.IsNormalCategoryTheory.Subgroupoid
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.Subgroupoid.instPartialOrder
CategoryTheory.Subgroupoid.generatedNormal
Set
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Groupoid.toCategory
Set.instHasSubset
CategoryTheory.Subgroupoid.arrows
β€”CategoryTheory.Subgroupoid.generated_le_generatedNormal
HasSubset.Subset.trans
Set.instIsTransSubset
CategoryTheory.Subgroupoid.subset_generated
CategoryTheory.Subgroupoid.le_iff
sInf_le
toIsWide πŸ“–mathematicalCategoryTheory.Subgroupoid.IsNormalCategoryTheory.Subgroupoid.IsWideβ€”β€”
vertexSubgroup πŸ“–mathematicalCategoryTheory.Subgroupoid.IsNormal
Set
Set.instMembership
CategoryTheory.Subgroupoid.objs
Subgroup.Normal
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Groupoid.toCategory
CategoryTheory.Groupoid.vertexGroup
CategoryTheory.Subgroupoid.vertexSubgroup
β€”mul_assoc
conj'

CategoryTheory.Subgroupoid.IsWide

Theorems

NameKindAssumesProvesValidatesDepends On
eqToHom_mem πŸ“–mathematicalCategoryTheory.Subgroupoid.IsWideQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Groupoid.toCategory
Set
Set.instMembership
CategoryTheory.Subgroupoid.arrows
CategoryTheory.eqToHom
β€”id_mem
id_mem πŸ“–mathematicalCategoryTheory.Subgroupoid.IsWideQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Groupoid.toCategory
Set
Set.instMembership
CategoryTheory.Subgroupoid.arrows
CategoryTheory.CategoryStruct.id
β€”wide
wide πŸ“–mathematicalCategoryTheory.Subgroupoid.IsWideQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Groupoid.toCategory
Set
Set.instMembership
CategoryTheory.Subgroupoid.arrows
CategoryTheory.CategoryStruct.id
β€”β€”

CategoryTheory.Subgroupoid.Map

Definitions

NameCategoryTheorems
Arrows πŸ“–CompData
1 mathmath: arrows_iff

Theorems

NameKindAssumesProvesValidatesDepends On
arrows_iff πŸ“–mathematicalCategoryTheory.Functor.obj
CategoryTheory.Groupoid.toCategory
Arrows
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.eqToHom
CategoryTheory.Functor.map
β€”CategoryTheory.eq_conj_eqToHom

CategoryTheory.Subgroupoid.hom

Theorems

NameKindAssumesProvesValidatesDepends On
faithful πŸ“–mathematicalβ€”Quiver.Hom
Set.Elem
CategoryTheory.Subgroupoid.objs
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Groupoid.toCategory
CategoryTheory.Subgroupoid.coe
CategoryTheory.Functor.obj
CategoryTheory.Subgroupoid.hom
CategoryTheory.Functor.map
β€”β€”
inj_on_objects πŸ“–mathematicalβ€”Set.Elem
CategoryTheory.Subgroupoid.objs
CategoryTheory.Functor.obj
CategoryTheory.Groupoid.toCategory
CategoryTheory.Subgroupoid.coe
CategoryTheory.Subgroupoid.hom
β€”β€”

---

← Back to Index