Documentation Verification Report

Basic

📁 Source: Mathlib/CategoryTheory/GuitartExact/Basic.lean

Statistics

MetricCount
DefinitionsCostructuredArrowDownwards, mk, functor, inverse, GuitartExact, StructuredArrowRightwards, mk, costructuredArrowDownwardsPrecomp, costructuredArrowRightwards, equivalenceJ, structuredArrowDownwards
11
Theoremsmk_surjective, functor_map, functor_obj, inverse_map, inverse_obj, isConnected_rightwards, mk_surjective, costructuredArrowDownwardsPrecomp_map, costructuredArrowDownwardsPrecomp_obj, costructuredArrowRightwards_map, costructuredArrowRightwards_obj, equivalenceJ_counitIso, equivalenceJ_functor, equivalenceJ_inverse, equivalenceJ_unitIso, guitartExact_id, guitartExact_iff_final, guitartExact_iff_initial, guitartExact_iff_isConnected_downwards, guitartExact_iff_isConnected_rightwards, guitartExact_of_isEquivalence_of_isIso, instFinalCostructuredArrowObjCostructuredArrowRightwardsOfGuitartExact, instInitialStructuredArrowObjStructuredArrowDownwardsOfGuitartExact, instIsConnectedCostructuredArrowStructuredArrowObjStructuredArrowDownwardsOfGuitartExact, instIsConnectedStructuredArrowCostructuredArrowObjCostructuredArrowRightwardsOfGuitartExact, isConnected_rightwards_iff_downwards, structuredArrowDownwards_map, structuredArrowDownwards_obj
28
Total39

CategoryTheory.TwoSquare

Definitions

NameCategoryTheorems
CostructuredArrowDownwards 📖CompOp
25 mathmath: structuredArrowRightwardsOpEquivalence.functor_obj_hom_right, CategoryTheory.LocalizerMorphism.IsRightDerivabilityStructure.Constructor.fromRightResolution_map, structuredArrowRightwardsOpEquivalence.functor_obj_left_hom, structuredArrowRightwardsOpEquivalence_inverse, EquivalenceJ.inverse_map, structuredArrowRightwardsOpEquivalence.functor_obj_right_as, structuredArrowRightwardsOpEquivalence.functor_obj_left_right, equivalenceJ_unitIso, structuredArrowRightwardsOpEquivalence_counitIso, equivalenceJ_counitIso, costructuredArrowDownwardsPrecomp_obj, equivalenceJ_inverse, structuredArrowRightwardsOpEquivalence.functor_map_left_right, structuredArrowRightwardsOpEquivalence_unitIso, costructuredArrowDownwardsPrecomp_map, CategoryTheory.LocalizerMorphism.IsRightDerivabilityStructure.Constructor.isConnected, EquivalenceJ.functor_obj, isConnected_rightwards_iff_downwards, EquivalenceJ.functor_map, equivalenceJ_functor, EquivalenceJ.inverse_obj, CategoryTheory.LocalizerMorphism.IsRightDerivabilityStructure.Constructor.fromRightResolution_obj, guitartExact_iff_isConnected_downwards, structuredArrowRightwardsOpEquivalence_functor, structuredArrowRightwardsOpEquivalence.functor_obj_left_left_as
GuitartExact 📖CompData
25 mathmath: CategoryTheory.instGuitartExactOverObjOverPostOfHasBinaryProductOfPreservesLimitDiscreteWalkingPairPair, guitartExact_id', GuitartExact.vComp_iff_of_equivalences, guitartExact_iff_initial, guitartExact_id, GuitartExact.vComp'_iff_of_equivalences, GuitartExact.whiskerVertical_iff, guitartExact_op_iff, CategoryTheory.LocalizerMorphism.guitartExact_of_isLeftDerivabilityStructure', GuitartExact.instWhiskerVerticalOfIsIsoFunctor, guitartExact_of_isEquivalence_of_isIso, CategoryTheory.LocalizerMorphism.guitartExact_of_isRightDerivabilityStructure, CategoryTheory.LocalizerMorphism.isRightDerivabilityStructure_iff, CategoryTheory.LocalizerMorphism.IsRightDerivabilityStructure.guitartExact', instGuitartExactOppositeOp, CategoryTheory.LocalizerMorphism.guitartExact_of_isLeftDerivabilityStructure, CategoryTheory.LocalizerMorphism.guitartExact_of_isRightDerivabilityStructure', guitartExact_iff_isConnected_rightwards, guitartExact_iff_final, GuitartExact.vComp, guitartExact_iff_isConnected_downwards, GuitartExact.vComp', CategoryTheory.LocalizerMorphism.isLeftDerivabilityStructure_iff, CategoryTheory.LocalizerMorphism.IsLeftDerivabilityStructure.guitartExact', GuitartExact.whiskerVertical
StructuredArrowRightwards 📖CompOp
21 mathmath: structuredArrowRightwardsOpEquivalence.functor_obj_hom_right, structuredArrowRightwardsOpEquivalence.functor_obj_left_hom, structuredArrowRightwardsOpEquivalence_inverse, EquivalenceJ.inverse_map, structuredArrowRightwardsOpEquivalence.functor_obj_right_as, structuredArrowRightwardsOpEquivalence.functor_obj_left_right, equivalenceJ_unitIso, structuredArrowRightwardsOpEquivalence_counitIso, equivalenceJ_counitIso, equivalenceJ_inverse, GuitartExact.isConnected_rightwards, structuredArrowRightwardsOpEquivalence.functor_map_left_right, structuredArrowRightwardsOpEquivalence_unitIso, EquivalenceJ.functor_obj, isConnected_rightwards_iff_downwards, guitartExact_iff_isConnected_rightwards, EquivalenceJ.functor_map, equivalenceJ_functor, EquivalenceJ.inverse_obj, structuredArrowRightwardsOpEquivalence_functor, structuredArrowRightwardsOpEquivalence.functor_obj_left_left_as
costructuredArrowDownwardsPrecomp 📖CompOp
2 mathmath: costructuredArrowDownwardsPrecomp_obj, costructuredArrowDownwardsPrecomp_map
costructuredArrowRightwards 📖CompOp
26 mathmath: structuredArrowRightwardsOpEquivalence.functor_obj_hom_right, instIsConnectedStructuredArrowCostructuredArrowObjCostructuredArrowRightwardsOfGuitartExact, structuredArrowRightwardsOpEquivalence.functor_obj_left_hom, structuredArrowRightwardsOpEquivalence_inverse, EquivalenceJ.inverse_map, structuredArrowRightwardsOpEquivalence.functor_obj_right_as, structuredArrowRightwardsOpEquivalence.functor_obj_left_right, equivalenceJ_unitIso, costructuredArrowRightwards_map, structuredArrowRightwardsOpEquivalence_counitIso, equivalenceJ_counitIso, instFinalCostructuredArrowObjCostructuredArrowRightwardsOfGuitartExact, equivalenceJ_inverse, GuitartExact.isConnected_rightwards, structuredArrowRightwardsOpEquivalence.functor_map_left_right, structuredArrowRightwardsOpEquivalence_unitIso, EquivalenceJ.functor_obj, isConnected_rightwards_iff_downwards, guitartExact_iff_isConnected_rightwards, EquivalenceJ.functor_map, equivalenceJ_functor, guitartExact_iff_final, EquivalenceJ.inverse_obj, structuredArrowRightwardsOpEquivalence_functor, costructuredArrowRightwards_obj, structuredArrowRightwardsOpEquivalence.functor_obj_left_left_as
equivalenceJ 📖CompOp
4 mathmath: equivalenceJ_unitIso, equivalenceJ_counitIso, equivalenceJ_inverse, equivalenceJ_functor
structuredArrowDownwards 📖CompOp
30 mathmath: structuredArrowRightwardsOpEquivalence.functor_obj_hom_right, CategoryTheory.LocalizerMorphism.IsRightDerivabilityStructure.Constructor.fromRightResolution_map, instInitialStructuredArrowObjStructuredArrowDownwardsOfGuitartExact, structuredArrowRightwardsOpEquivalence.functor_obj_left_hom, structuredArrowRightwardsOpEquivalence_inverse, EquivalenceJ.inverse_map, structuredArrowRightwardsOpEquivalence.functor_obj_right_as, instIsConnectedCostructuredArrowStructuredArrowObjStructuredArrowDownwardsOfGuitartExact, structuredArrowRightwardsOpEquivalence.functor_obj_left_right, equivalenceJ_unitIso, guitartExact_iff_initial, structuredArrowRightwardsOpEquivalence_counitIso, equivalenceJ_counitIso, costructuredArrowDownwardsPrecomp_obj, equivalenceJ_inverse, structuredArrowRightwardsOpEquivalence.functor_map_left_right, structuredArrowRightwardsOpEquivalence_unitIso, costructuredArrowDownwardsPrecomp_map, CategoryTheory.LocalizerMorphism.IsRightDerivabilityStructure.Constructor.isConnected, EquivalenceJ.functor_obj, isConnected_rightwards_iff_downwards, structuredArrowDownwards_map, structuredArrowDownwards_obj, EquivalenceJ.functor_map, equivalenceJ_functor, EquivalenceJ.inverse_obj, CategoryTheory.LocalizerMorphism.IsRightDerivabilityStructure.Constructor.fromRightResolution_obj, guitartExact_iff_isConnected_downwards, structuredArrowRightwardsOpEquivalence_functor, structuredArrowRightwardsOpEquivalence.functor_obj_left_left_as

Theorems

NameKindAssumesProvesValidatesDepends On
costructuredArrowDownwardsPrecomp_map 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CostructuredArrowDownwards
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
structuredArrowDownwards
costructuredArrowDownwardsPrecomp
CategoryTheory.CostructuredArrow.homMk
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
CategoryTheory.CommaMorphism.right
CategoryTheory.StructuredArrow.homMk
CategoryTheory.CommaMorphism.left
costructuredArrowDownwardsPrecomp_obj 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CostructuredArrowDownwards
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
structuredArrowDownwards
costructuredArrowDownwardsPrecomp
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
CategoryTheory.CommaMorphism.right
costructuredArrowRightwards_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.obj
costructuredArrowRightwards
CategoryTheory.Comma
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.comp
CategoryTheory.Functor.fromPUnit
CategoryTheory.commaCategory
CategoryTheory.CostructuredArrow.pre
CategoryTheory.Comma.mapLeft
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
CategoryTheory.CostructuredArrow.homMk
CategoryTheory.CommaMorphism.left
costructuredArrowRightwards_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
costructuredArrowRightwards
CategoryTheory.Comma
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.comp
CategoryTheory.Functor.fromPUnit
CategoryTheory.commaCategory
CategoryTheory.CostructuredArrow.pre
CategoryTheory.Comma.mapLeft
CategoryTheory.Comma.left
CategoryTheory.Functor.map
CategoryTheory.Comma.hom
equivalenceJ_counitIso 📖mathematicalCategoryTheory.Equivalence.counitIso
StructuredArrowRightwards
CostructuredArrowDownwards
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.obj
costructuredArrowRightwards
CategoryTheory.StructuredArrow
structuredArrowDownwards
equivalenceJ
CategoryTheory.Iso.refl
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
EquivalenceJ.inverse
EquivalenceJ.functor
equivalenceJ_functor 📖mathematicalCategoryTheory.Equivalence.functor
StructuredArrowRightwards
CostructuredArrowDownwards
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.obj
costructuredArrowRightwards
CategoryTheory.StructuredArrow
structuredArrowDownwards
equivalenceJ
EquivalenceJ.functor
equivalenceJ_inverse 📖mathematicalCategoryTheory.Equivalence.inverse
StructuredArrowRightwards
CostructuredArrowDownwards
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.obj
costructuredArrowRightwards
CategoryTheory.StructuredArrow
structuredArrowDownwards
equivalenceJ
EquivalenceJ.inverse
equivalenceJ_unitIso 📖mathematicalCategoryTheory.Equivalence.unitIso
StructuredArrowRightwards
CostructuredArrowDownwards
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.obj
costructuredArrowRightwards
CategoryTheory.StructuredArrow
structuredArrowDownwards
equivalenceJ
CategoryTheory.Iso.refl
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
guitartExact_id 📖mathematicalGuitartExact
CategoryTheory.Functor.id
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
guitartExact_iff_isConnected_rightwards
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
CategoryTheory.CostructuredArrow.w
CategoryTheory.zigzag_isConnected
CategoryTheory.Zigzag.of_inv_hom
guitartExact_iff_final 📖mathematicalGuitartExact
CategoryTheory.Functor.Final
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.obj
costructuredArrowRightwards
instIsConnectedStructuredArrowCostructuredArrowObjCostructuredArrowRightwardsOfGuitartExact
CategoryTheory.Functor.Final.out
guitartExact_iff_initial 📖mathematicalGuitartExact
CategoryTheory.Functor.Initial
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Functor.obj
structuredArrowDownwards
instIsConnectedCostructuredArrowStructuredArrowObjStructuredArrowDownwardsOfGuitartExact
guitartExact_iff_isConnected_downwards
CategoryTheory.Functor.Initial.out
guitartExact_iff_isConnected_downwards 📖mathematicalGuitartExact
CategoryTheory.IsConnected
CostructuredArrowDownwards
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Functor.obj
structuredArrowDownwards
guitartExact_iff_isConnected_rightwards 📖mathematicalGuitartExact
CategoryTheory.IsConnected
StructuredArrowRightwards
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.obj
costructuredArrowRightwards
GuitartExact.isConnected_rightwards
guitartExact_of_isEquivalence_of_isIso 📖mathematicalGuitartExactguitartExact_iff_initial
CategoryTheory.StructuredArrow.isEquivalence_post
CategoryTheory.Functor.IsEquivalence.full
CategoryTheory.Functor.IsEquivalence.faithful
CategoryTheory.Equivalence.isEquivalence_functor
CategoryTheory.StructuredArrow.isEquivalence_pre
CategoryTheory.Functor.initial_comp
CategoryTheory.Functor.initial_of_isLeftAdjoint
CategoryTheory.Functor.isLeftAdjoint_of_isEquivalence
instFinalCostructuredArrowObjCostructuredArrowRightwardsOfGuitartExact 📖mathematicalCategoryTheory.Functor.Final
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.obj
costructuredArrowRightwards
guitartExact_iff_final
instInitialStructuredArrowObjStructuredArrowDownwardsOfGuitartExact 📖mathematicalCategoryTheory.Functor.Initial
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Functor.obj
structuredArrowDownwards
guitartExact_iff_initial
instIsConnectedCostructuredArrowStructuredArrowObjStructuredArrowDownwardsOfGuitartExact 📖mathematicalCategoryTheory.IsConnected
CategoryTheory.CostructuredArrow
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Functor.obj
structuredArrowDownwards
CategoryTheory.instCategoryCostructuredArrow
guitartExact_iff_isConnected_downwards
instIsConnectedStructuredArrowCostructuredArrowObjCostructuredArrowRightwardsOfGuitartExact 📖mathematicalCategoryTheory.IsConnected
CategoryTheory.StructuredArrow
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.obj
costructuredArrowRightwards
CategoryTheory.instCategoryStructuredArrow
guitartExact_iff_isConnected_rightwards
isConnected_rightwards_iff_downwards 📖mathematicalCategoryTheory.IsConnected
StructuredArrowRightwards
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.obj
costructuredArrowRightwards
CostructuredArrowDownwards
CategoryTheory.StructuredArrow
structuredArrowDownwards
CategoryTheory.isConnected_iff_of_equivalence
structuredArrowDownwards_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Functor.obj
structuredArrowDownwards
CategoryTheory.Comma
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.comp
CategoryTheory.commaCategory
CategoryTheory.StructuredArrow.pre
CategoryTheory.Comma.mapRight
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.StructuredArrow.homMk
CategoryTheory.CommaMorphism.right
structuredArrowDownwards_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
structuredArrowDownwards
CategoryTheory.Comma
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.comp
CategoryTheory.commaCategory
CategoryTheory.StructuredArrow.pre
CategoryTheory.Comma.mapRight
CategoryTheory.Comma.right
CategoryTheory.Functor.map
CategoryTheory.Comma.hom

CategoryTheory.TwoSquare.CostructuredArrowDownwards

Definitions

NameCategoryTheorems
mk 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
mk_surjective 📖CategoryTheory.CostructuredArrow.mk_surjective
CategoryTheory.StructuredArrow.mk_surjective
CategoryTheory.StructuredArrow.homMk_surjective
CategoryTheory.Category.assoc

CategoryTheory.TwoSquare.EquivalenceJ

Definitions

NameCategoryTheorems
functor 📖CompOp
4 mathmath: CategoryTheory.TwoSquare.equivalenceJ_counitIso, functor_obj, functor_map, CategoryTheory.TwoSquare.equivalenceJ_functor
inverse 📖CompOp
4 mathmath: inverse_map, CategoryTheory.TwoSquare.equivalenceJ_counitIso, CategoryTheory.TwoSquare.equivalenceJ_inverse, inverse_obj

Theorems

NameKindAssumesProvesValidatesDepends On
functor_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.TwoSquare.StructuredArrowRightwards
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.obj
CategoryTheory.TwoSquare.costructuredArrowRightwards
CategoryTheory.TwoSquare.CostructuredArrowDownwards
CategoryTheory.StructuredArrow
CategoryTheory.TwoSquare.structuredArrowDownwards
functor
CategoryTheory.CostructuredArrow.homMk
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.comp
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Comma.mapLeft
CategoryTheory.CostructuredArrow.post
CategoryTheory.Comma.right
CategoryTheory.CommaMorphism.left
CategoryTheory.Comma.hom
CategoryTheory.StructuredArrow.homMk
CategoryTheory.CommaMorphism.right
functor_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.TwoSquare.StructuredArrowRightwards
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.TwoSquare.costructuredArrowRightwards
CategoryTheory.TwoSquare.CostructuredArrowDownwards
CategoryTheory.StructuredArrow
CategoryTheory.TwoSquare.structuredArrowDownwards
functor
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.comp
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Comma.mapLeft
CategoryTheory.CostructuredArrow.post
CategoryTheory.Comma.right
CategoryTheory.CommaMorphism.left
CategoryTheory.Comma.hom
CategoryTheory.StructuredArrow.homMk
inverse_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.TwoSquare.CostructuredArrowDownwards
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Functor.obj
CategoryTheory.TwoSquare.structuredArrowDownwards
CategoryTheory.TwoSquare.StructuredArrowRightwards
CategoryTheory.CostructuredArrow
CategoryTheory.TwoSquare.costructuredArrowRightwards
inverse
CategoryTheory.StructuredArrow.homMk
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.comp
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Comma.mapRight
CategoryTheory.StructuredArrow.post
CategoryTheory.Comma.left
CategoryTheory.CommaMorphism.right
CategoryTheory.Comma.hom
CategoryTheory.CostructuredArrow.homMk
CategoryTheory.CommaMorphism.left
inverse_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.TwoSquare.CostructuredArrowDownwards
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.TwoSquare.structuredArrowDownwards
CategoryTheory.TwoSquare.StructuredArrowRightwards
CategoryTheory.CostructuredArrow
CategoryTheory.TwoSquare.costructuredArrowRightwards
inverse
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.comp
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Comma.mapRight
CategoryTheory.StructuredArrow.post
CategoryTheory.Comma.left
CategoryTheory.CommaMorphism.right
CategoryTheory.Comma.hom
CategoryTheory.CostructuredArrow.homMk

CategoryTheory.TwoSquare.GuitartExact

Theorems

NameKindAssumesProvesValidatesDepends On
isConnected_rightwards 📖mathematicalCategoryTheory.IsConnected
CategoryTheory.TwoSquare.StructuredArrowRightwards
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.obj
CategoryTheory.TwoSquare.costructuredArrowRightwards

CategoryTheory.TwoSquare.StructuredArrowRightwards

Definitions

NameCategoryTheorems
mk 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
mk_surjective 📖CategoryTheory.StructuredArrow.mk_surjective
CategoryTheory.CostructuredArrow.mk_surjective
CategoryTheory.CostructuredArrow.homMk_surjective

---

← Back to Index