Documentation Verification Report

HomCongr

📁 Source: Mathlib/CategoryTheory/HomCongr.lean

Statistics

MetricCount
DefinitionshomCongr, isoCongr, isoCongrLeft, isoCongrRight
4
Theoremsmap_homCongr, map_isoCongr, homCongr_apply, homCongr_comp, homCongr_refl, homCongr_symm, homCongr_symm_apply, homCongr_trans, isoCongr_apply, isoCongr_symm_apply
10
Total14

CategoryTheory.Functor

Theorems

NameKindAssumesProvesValidatesDepends On
map_homCongr 📖mathematicalmap
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.Iso.homCongr
obj
mapIso
map_comp
map_isoCongr 📖mathematicalmapIso
DFunLike.coe
Equiv
CategoryTheory.Iso
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.Iso.isoCongr
obj
mapIso_trans

CategoryTheory.Iso

Definitions

NameCategoryTheorems
homCongr 📖CompOp
9 mathmath: CategoryTheory.Functor.map_homCongr, ModuleCat.Iso.homCongr_eq_arrowCongr, SemimoduleCat.Iso.homCongr_eq_arrowCongr, homCongr_trans, homCongr_comp, homCongr_refl, homCongr_apply, homCongr_symm_apply, homCongr_symm
isoCongr 📖CompOp
3 mathmath: isoCongr_symm_apply, CategoryTheory.Functor.map_isoCongr, isoCongr_apply
isoCongrLeft 📖CompOp
isoCongrRight 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
homCongr_apply 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
homCongr
CategoryTheory.CategoryStruct.comp
inv
hom
homCongr_comp 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
homCongr
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.assoc
hom_inv_id_assoc
homCongr_refl 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
homCongr
refl
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
homCongr_symm 📖mathematicalEquiv.symm
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
homCongr
symm
homCongr_symm_apply 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
homCongr
CategoryTheory.CategoryStruct.comp
hom
inv
homCongr_trans 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
homCongr
trans
Equiv.trans
CategoryTheory.Category.assoc
isoCongr_apply 📖mathematicalDFunLike.coe
Equiv
CategoryTheory.Iso
EquivLike.toFunLike
Equiv.instEquivLike
isoCongr
trans
symm
isoCongr_symm_apply 📖mathematicalDFunLike.coe
Equiv
CategoryTheory.Iso
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
isoCongr
trans
symm

---

← Back to Index