HomologicalComplex đ | CompData | 850 mathmath: HomotopyCategory.spectralObjectMappingCone_δ'_app, CategoryTheory.ShortComplex.ShortExact.instHasSmallLocalizedShiftedHomHomologicalComplexIntUpQuasiIsoXâCochainComplexMapSingleFunctorOfNatXâ, HomologicalComplex.eqToHom_f, CochainComplex.mappingConeCompTriangleh_commâ_assoc, HomologicalComplex.extendSingleIso_inv_f, HomologicalComplex.evalCompCoyonedaCorepresentableByDoubleId_homEquiv_apply, HomologicalComplex.singleMapHomologicalComplex_hom_app_ne, homotopyEquivalences_le_quasiIso, CategoryTheory.NatIso.mapHomologicalComplex_inv_app_f, HomologicalComplex.instPreservesLimitsOfShapeSingle, HomologicalComplex.rightUnitor'_inv, ComplexShape.Embedding.truncLEFunctor_obj, CategoryTheory.Functor.mapHomologicalComplexIdIso_hom_app_f, HomotopyCategory.quotient_map_out_comp_out, HomologicalComplex.isZero_single_obj_X, HomologicalComplexâ.totalFlipIso_hom_f_Dâ, HomologicalComplex.singleMapHomologicalComplex_hom_app_self, HomologicalComplex.ĎTruncGE_naturality_assoc, HomologicalComplex.singleObjHomologySelfIso_hom_singleObjOpcyclesSelfIso_hom_assoc, HomologicalComplex.truncGE.rightHomologyMapData_ĎQ, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_obj_X_d, HomologicalComplex.singleObjCyclesSelfIso_hom_singleObjOpcyclesSelfIso_hom_assoc, HomologicalComplex.opcyclesMap_comp, HomologicalComplex.truncLEMap_comp_assoc, CategoryTheory.Functor.mapBifunctorHomologicalComplexObj_map_f_f, CategoryTheory.Functor.mapHomologicalComplexUpToQuasiIsoFactorsh_hom_app_assoc, HomologicalComplex.instPreservesColimitsOfShapeSingle, HomologicalComplex.pOpcycles_singleObjOpcyclesSelfIso_inv, quasiIsoAt_iff_comp_right, HomologicalComplex.isZero_single_obj_homology, CategoryTheory.InjectiveResolution.isoRightDerivedToHomotopyCategoryObj_inv_naturality_assoc, HomologicalComplex.cyclesFunctor_map, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_obj_X_X, HomologicalComplex.singleObjOpcyclesSelfIso_hom, HomologicalComplex.singleObjCyclesSelfIso_inv_iCycles, HomologicalComplex.instIsStrictlySupportedOfNat, HomologicalComplexâ.totalShiftâIso_hom_naturality_assoc, CategoryTheory.InjectiveResolution.Κ'_f_zero, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_map_f_f, HomologicalComplex.opcyclesMapIso_inv, HomologicalComplex.biprod_inr_desc_f, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.map_f_f, HomologicalComplex.biprod_lift_fst_f_assoc, HomologicalComplex.homologyΚ_singleObjOpcyclesSelfIso_inv_assoc, ComplexShape.Embedding.truncGE'Functor_obj, Homotopy.nullHomotopicMap_comp, HomologicalComplex.shortComplexFunctor'_obj_Xâ, HomologicalComplex.homotopyCofiber.inrCompHomotopy_hom_desc_hom_assoc, HomologicalComplexâ.shiftFunctorâXXIso_refl, CochainComplex.IsKInjective.nonempty_homotopy_zero, HomologicalComplex.unopFunctor_obj, CategoryTheory.ProjectiveResolution.iso_hom_naturality_assoc, CochainComplex.instIsStrictlyLEObjHomologicalComplexIntUpSingle, CategoryTheory.InjectiveResolution.iso_hom_naturality, HomologicalComplexâ.comm_f, DerivedCategory.instCommShiftHomologicalComplexIntUpHomFunctorQuotientCompQhIso, CategoryTheory.InjectiveResolution.toRightDerivedZero'_naturality_assoc, CategoryTheory.Functor.mapHomologicalComplex_linear, CategoryTheory.InjectiveResolution.isoRightDerivedToHomotopyCategoryObj_inv_naturality, CategoryTheory.ProjectiveResolution.homotopyEquiv_inv_Ď_assoc, HomotopyCategory.isZero_quotient_obj_iff, CategoryTheory.Idempotents.karoubiHomologicalComplexEquivalence_functor, HomologicalComplex.restrictionMap_comp, CategoryTheory.Functor.mapHomotopyEquiv_inv, AlgebraicTopology.DoldKan.homotopyPInftyToId_hom, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.unitIso_inv_app_f_f, CochainComplex.mappingCone.homologySequenceδ_triangleh, CategoryTheory.Functor.mapHomologicalComplex_obj_d, HomologicalComplexâ.total.mapIso_hom, HomologicalComplex.instPreservesFiniteLimitsEvalOfHasFiniteLimits, HomologicalComplex.opcyclesOpIso_inv_naturality_assoc, HomologicalComplex.inl_biprodXIso_inv_assoc, HomologicalComplex.cyclesMap_comp_assoc, CochainComplex.mapBifunctorShiftâIso_hom_naturalityâ_assoc, HomologicalComplex.instIsStableUnderRetractsQuasiIso, HomologicalComplex.biprod_inr_snd_f_assoc, CategoryTheory.Functor.mapHomologicalComplex_map_f, CochainComplex.IsKProjective.homotopyZero_def, HomologicalComplex.biprod_inl_snd_f_assoc, CategoryTheory.ProjectiveResolution.homotopyEquiv_hom_Ď, HomologicalComplexâ.totalAux.dâ_eq, HomologicalComplex.instIsNormalEpiCategory, HomologicalComplexâ.Dâ_totalShiftâXIso_hom_assoc, CategoryTheory.Functor.mapHomotopyEquiv_homotopyHomInvId, HomologicalComplex.eval_map, HomologicalComplex.map_isStrictlySupported, HomologicalComplex.stupidTruncMap_comp, HomologicalComplex.to_single_hom_ext_iff, CochainComplex.HomComplex.Cochain.map_v, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_obj_p_f, HomologicalComplex.biprodXIso_hom_fst, HomologicalComplexâ.Dâ_totalShiftâXIso_hom_assoc, HomologicalComplexâ.d_f_comp_d_f, HomologicalComplexUpToQuasiIso.instIsLocalizationHomologicalComplexCompHomotopyCategoryQuotientQhQuasiIso, HomologicalComplexâ.flipEquivalence_unitIso, HomologicalComplex.add_f_apply, HomologicalComplex.extend_op_d_assoc, CategoryTheory.InjectiveResolution.toRightDerivedZero'_comp_iCycles, CategoryTheory.Functor.map_homogical_complex_additive, CategoryTheory.Idempotents.Karoubi.HomologicalComplex.comp_p_d, HomologicalComplexâ.dâ_eq_zero', HomologicalComplex.singleObjCyclesSelfIso_inv_homologyĎ, CochainComplex.mappingCone.rotateHomotopyEquiv_commâ_assoc, CochainComplex.mapBifunctorShiftâIso_hom_naturalityâ_assoc, HomologicalComplex.unopInverse_map, CategoryTheory.NatTrans.mapHomologicalComplex_app_f, CochainComplex.shiftShortComplexFunctorIso_add'_hom_app, CochainComplex.HomComplex.Cochain.map_zero, HomologicalComplex.natIsoSc'_inv_app_Ďâ, CochainComplex.instIsCompatibleWithShiftHomologicalComplexIntUpQuasiIso, CochainComplex.HomComplex.Cochain.toSingleMk_v, HomologicalComplex.unopEquivalence_functor, CochainComplex.IsKInjective.rightOrthogonal, HomologicalComplex.single_obj_d, HomotopyCategory.instAdditiveHomologicalComplexQuotientHomotopicFunctor, HomotopyCategory.quotient_inverts_homotopyEquivalences, CochainComplex.IsKInjective.Qh_map_bijective, HomologicalComplex.instFaithfulGradedObjectForget, HomologicalComplex.biprod_lift_fst_f, HomologicalComplex.ΚTruncLE_naturality, HomologicalComplexâ.toGradedObjectFunctor_obj, HomologicalComplex.forget_map, CategoryTheory.NatTrans.mapHomologicalComplex_id, HomologicalComplexâ.ΚTotalOrZero_map_assoc, HomologicalComplex.asFunctor_obj_X, HomologicalComplexâ.ΚTotal_map, CategoryTheory.NatTrans.mapHomotopyCategory_app, HomologicalComplexâ.Κ_totalShiftâIso_hom_f_assoc, CategoryTheory.Functor.mapProjectiveResolution_Ď, HomologicalComplex.cyclesMap_id, HomologicalComplex.complexOfFunctorsToFunctorToComplex_obj, HomologicalComplex.opcyclesOpIso_inv_naturality, CategoryTheory.instIsIsoToRightDerivedZero', HomologicalComplexâ.Κ_Dâ_assoc, HomologicalComplex.opEquivalence_unitIso, CochainComplex.instIsStrictlyGEObjHomologicalComplexIntUpSingle, HomologicalComplex.forgetEval_hom_app, HomologicalComplex.homologyΚ_singleObjOpcyclesSelfIso_inv, HomologicalComplexâ.ΚTotal_totalFlipIso_f_inv_assoc, HomologicalComplex.dgoToHomologicalComplex_obj_d, HomotopyCategory.quotient_map_eq_zero_iff, HomologicalComplex.shortComplexFunctor'_map_Ďâ, HomologicalComplex.isZero_zero, CategoryTheory.Abelian.LeftResolution.exactAt_map_chainComplex_succ, HomotopyCategory.instFullHomologicalComplexQuotient, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_obj_X_p, HomologicalComplexâ.dâ_eq_zero, HomologicalComplexâ.Κ_totalShiftâIso_inv_f, HomologicalComplex.extendSingleIso_inv_f_assoc, HomologicalComplex.natIsoSc'_inv_app_Ďâ, HomologicalComplexâ.Κ_totalDesc_assoc, CategoryTheory.ProjectiveResolution.isoLeftDerivedObj_hom_naturality_assoc, HomologicalComplex.truncGEMap_comp_assoc, HomotopyCategory.isoOfHomotopyEquiv_hom, CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_comm_f_assoc, HomologicalComplex.dgoEquivHomologicalComplex_unitIso, CategoryTheory.ProjectiveResolution.isoLeftDerivedToHomotopyCategoryObj_inv_naturality_assoc, CategoryTheory.Functor.mapHomologicalComplex_commShiftIso_eq, HomologicalComplex.mapBifunctorFlipIso_hom_naturality_assoc, HomologicalComplex.homotopyCofiber.inrCompHomotopy_hom, CategoryTheory.Equivalence.mapHomologicalComplex_unitIso, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_obj_p_f, HomologicalComplex.opFunctor_obj, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_homâ, CategoryTheory.Functor.mapBifunctorHomologicalComplexObj_obj_X_d, HomologicalComplex.natIsoSc'_hom_app_Ďâ, HomologicalComplex.instQuasiIsoAtMapOppositeSymmUnopFunctorOp, HomologicalComplex.truncGE'Map_comp, CategoryTheory.InjectiveResolution.toRightDerivedZero_eq, CategoryTheory.Idempotents.instIsIdempotentCompleteHomologicalComplex, ChainComplex.singleâObjXSelf, HomologicalComplex.instEpiGShortComplexTruncLE, ComplexShape.Embedding.restrictionFunctor_map, HomologicalComplex.cyclesOpIso_inv_naturality_assoc, HomologicalComplex.singleObjHomologySelfIso_hom_singleObjOpcyclesSelfIso_hom, CategoryTheory.ProjectiveResolution.isoLeftDerivedObj_inv_naturality_assoc, CochainComplex.mappingConeCompHomotopyEquiv_commâ_assoc, HomologicalComplex.Hom.sqFrom_comp, CochainComplex.mappingConeCompHomotopyEquiv_hom_inv_id, HomologicalComplexUpToQuasiIso.Q_inverts_homotopyEquivalences, HomologicalComplex.shortComplexFunctor_obj_Xâ, HomologicalComplex.singleObjCyclesSelfIso_hom_naturality, HomologicalComplex.cylinder.ĎCompΚâHomotopy.nullHomotopicMap_eq, HomologicalComplex.singleObjCyclesSelfIso_inv_naturality_assoc, HomologicalComplex.sub_f_apply, instIsLocalizationHomologicalComplexIntUpHomotopyCategoryQuotientHomotopyEquivalences, HomotopyCategory.eq_of_homotopy, HomologicalComplex.homotopyCofiber.descSigma_ext_iff, HomologicalComplex.instRespectsIsoQuasiIso, Homotopy.map_nullHomotopicMap', CategoryTheory.Idempotents.karoubiHomologicalComplexEquivalence_unitIso, HomologicalComplexâ.flipEquivalenceUnitIso_hom_app_f_f, CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_comp_d_assoc, HomologicalComplex.opcyclesMap_id, CategoryTheory.Functor.mapProjectiveResolution_complex, CategoryTheory.Idempotents.karoubiHomologicalComplexEquivalence_inverse, HomologicalComplexâ.Κ_totalShiftâIso_inv_f_assoc, HomologicalComplexâ.d_comm, Rep.standardComplex.ÎľToSingleâ_comp_eq, HomologicalComplex.inr_biprodXIso_inv, CategoryTheory.Idempotents.Karoubi.HomologicalComplex.comp_p_d_assoc, HomologicalComplex.stupidTruncMap_id, HomologicalComplex.homotopyCofiber.inrCompHomotopy_hom_desc_hom, HomologicalComplexâ.d_f_comp_d_f_assoc, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.counitIso_inv, HomologicalComplex.instHasFilteredColimitsOfSize, HomologicalComplex.Hom.isoOfComponents_inv_f, CochainComplex.homologyFunctor_shift, HomologicalComplex.cyclesOpNatIso_inv_app, HomologicalComplex.opcyclesFunctor_map, HomologicalComplex.gradedHomologyFunctor_map, HomologicalComplex.quasiIso_iff_evaluation, quasiIsoAt_comp, AlgebraicTopology.DoldKan.homotopyEquivNormalizedMooreComplexAlternatingFaceMapComplex_homotopyHomInvId, HomologicalComplexâ.Κ_Dâ, HomologicalComplex.homologyMap_neg, HomologicalComplex.isZero_stupidTrunc_iff, CategoryTheory.ProjectiveResolution.isoLeftDerivedToHomotopyCategoryObj_hom_naturality_assoc, HomologicalComplex.from_single_hom_ext_iff, Homotopy.nullHomotopicMap'_comp, HomologicalComplex.natTransHomologyĎ_app, HomologicalComplexâ.total.mapAux.dâ_mapMap, HomologicalComplex.singleObjHomologySelfIso_hom_singleObjHomologySelfIso_inv_assoc, HomologicalComplex.dgoEquivHomologicalComplexUnitIso_hom_app_f, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_unitIso_hom_app_f_f, CategoryTheory.NatTrans.mapHomologicalComplex_comp, HomologicalComplex.opcyclesMapIso_hom, CategoryTheory.InjectiveResolution.instIsIsoToRightDerivedZero'Self, HomologicalComplexâ.dâ_eq, HomologicalComplex.cyclesMap_comp, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_map_f_f, HomologicalComplex.homologyĎ_singleObjHomologySelfIso_hom_assoc, HomologicalComplexâ.instHasTotalIntObjUpShiftFunctorâ, HomologicalComplex.instQuasiIsoMapOppositeSymmUnopFunctorOp, HomologicalComplex.single_obj_X_self, HomologicalComplex.biprod_inr_snd_f, HomologicalComplex.id_f, HomologicalComplex.singleMapHomologicalComplex_inv_app_self, HomologicalComplex.dgoEquivHomologicalComplex_functor, ComplexShape.Embedding.instFaithfulHomologicalComplexExtendFunctor, HomologicalComplexâ.XXIsoOfEq_hom_ΚTotal_assoc, HomologicalComplex.extendSingleIso_hom_f_assoc, HomologicalComplex.homologyMapIso_hom, HomologicalComplex.instHasHomologyObjSingle, HomologicalComplex.instIsCorepresentableCompEvalObjOppositeFunctorTypeCoyonedaOp, CategoryTheory.ProjectiveResolution.isoLeftDerivedObj_hom_naturality, CategoryTheory.Functor.mapHomologicalComplex_obj_X, CochainComplex.mappingCone.rotateHomotopyEquiv_commâ, HomologicalComplex.ΚTruncLE_naturality_assoc, HomologicalComplex.instMonoFShortComplexTruncLE, CochainComplex.HomComplex.Cochain.map_add, CochainComplex.homologySequenceδ_quotient_mapTriangle_obj_assoc, CochainComplex.HomComplex.Cochain.fromSingleMk_v, CategoryTheory.Functor.mapHomologicalComplex_upToQuasiIso_Q_inverts_quasiIso, CategoryTheory.Functor.mapHomologicalComplex_reflects_iso, HomologicalComplexâ.instHasTotalIntObjUpCompShiftFunctorâShiftFunctorâ, HomologicalComplex.opcyclesOpIso_hom_naturality_assoc, HomologicalComplexâ.XXIsoOfEq_rfl, CochainComplex.IsKInjective.homotopyZero_def, HomologicalComplex.dgoToHomologicalComplex_obj_X, HomotopyCategory.instEssSurjHomologicalComplexQuotient, HomotopyCategory.quasiIso_eq_quasiIso_map_quotient, HomologicalComplex.extendMap_comp_assoc, HomologicalComplex.restrictionMap_id, HomologicalComplexâ.Κ_Dâ_assoc, ComplexShape.Embedding.AreComplementary.hom_ext, HomologicalComplex.isIso_homologyMap_shortComplexTruncLE_g, HomotopyCategory.quot_mk_eq_quotient_map, HomologicalComplex.units_smul_f_apply, HomologicalComplex.quasiIsoAt_unopFunctor_map_iff, CategoryTheory.ProjectiveResolution.pOpcycles_comp_fromLeftDerivedZero'_assoc, CategoryTheory.NatIso.mapHomologicalComplex_hom_app_f, CategoryTheory.Functor.mapBifunctorHomologicalComplexObj_obj_X_X, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_homâ, ChainComplex.quasiIsoAtâ_iff, HomologicalComplex.singleObjCyclesSelfIso_hom_singleObjOpcyclesSelfIso_hom, CategoryTheory.InjectiveResolution.isoRightDerivedObj_hom_naturality, HomologicalComplexâ.totalFunctor_obj, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.inverse_map, HomologicalComplex.mono_of_mono_f, groupHomology.isoShortComplexH1_hom, HomologicalComplex.isSeparator_coproduct_separatingFamily, HomologicalComplexâ.totalShiftâIso_hom_totalShiftâIso_hom, CochainComplex.instLinearHomologicalComplexIntUpShiftFunctor, CategoryTheory.ProjectiveResolution.homotopyEquiv_inv_Ď, HomologicalComplex.opFunctor_map_f, HomologicalComplex.instIsMultiplicativeQuasiIso, HomologicalComplex.instIsIsoĎTruncGEOfIsStrictlySupported, CategoryTheory.ProjectiveResolution.instIsIsoFromLeftDerivedZero'Self, HomologicalComplexâ.flipFunctor_obj, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.map_f_f, CategoryTheory.Functor.instCommShiftCochainComplexIntDerivedCategoryHomMapDerivedCategoryFactors, HomologicalComplexâ.totalAux.dâ_eq', CategoryTheory.ProjectiveResolution.Ď'_f_zero_assoc, CategoryTheory.ProjectiveResolution.iso_hom_naturality, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.obj_p_f, HomologicalComplexâ.totalAux.dâ_eq, ComplexShape.Embedding.homRestrict_precomp, HomologicalComplex.instPreservesZeroMorphismsEval, HomologicalComplexâ.Dâ_totalShiftâXIso_hom_assoc, HomologicalComplexâ.shiftFunctorâXXIso_refl, HomologicalComplex.homologyMap_id, HomologicalComplex.instHasLimitDiscreteWalkingPairCompPairEval, HomologicalComplex.instQuasiIsoAtOppositeMapSymmOpFunctorOp, HomologicalComplexâ.Κ_totalDesc, ComplexShape.Embedding.extendFunctor_map, HomologicalComplexUpToQuasiIso.Q_map_eq_of_homotopy, HomologicalComplexâ.total.mapAux.dâ_mapMap_assoc, CochainComplex.ConnectData.restrictionLEIso_inv_f, HomologicalComplex.Κ_mapBifunctorFlipIso_inv_assoc, HomologicalComplex.extend_single_d, ComplexShape.Embedding.stupidTruncFunctor_map, HomologicalComplex.singleObjHomologySelfIso_inv_homologyΚ_assoc, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.functor_obj, Homotopy.map_nullHomotopicMap, HomologicalComplexâ.dâ_eq_zero, HomologicalComplex.zsmul_f_apply, HomologicalComplexâ.flip_X_X, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_homâ, HomotopyCategory.instFullFunctorHomologicalComplexObjWhiskeringLeftQuotient, HomologicalComplex.biprod_lift_snd_f, CategoryTheory.ProjectiveResolution.pOpcycles_comp_fromLeftDerivedZero', HomologicalComplex.homologyMap_add, HomologicalComplex.Hom.isoOfComponents_hom_f, CochainComplex.quasiIso_shift_iff, HomologicalComplex.cylinder.Κâ_Ď, HomologicalComplex.singleObjCyclesSelfIso_inv_homologyĎ_assoc, HomologicalComplex.biprod_inl_fst_f_assoc, CategoryTheory.Functor.mapâHomologicalComplex_map_app, HomologicalComplex.unopEquivalence_unitIso, HomologicalComplex.nsmul_f_apply, HomologicalComplex.g_shortComplexTruncLEXâToTruncGE, HomologicalComplex.homotopyCofiber.inr_desc, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_obj_d_f, CategoryTheory.Functor.mapBifunctorHomologicalComplex_map_app_f_f, HomologicalComplex.instHasLimitsOfShape, CochainComplex.mapBifunctorHomologicalComplexShiftâIso_inv_f_f, HomologicalComplex.opEquivalence_counitIso, HomotopyCategory.quotient_obj_surjective, HomologicalComplex.inl_biprodXIso_inv, AlgebraicTopology.DoldKan.compatibility_Nâ_Nâ_karoubi, CochainComplex.mappingCone.map_inr, CategoryTheory.Functor.mapCochainComplexShiftIso_inv_app_f, HomologicalComplex.homotopyCofiber.inr_desc_assoc, HomologicalComplex.mapBifunctorFlipIso_hom_naturality, HomologicalComplex.mono_homologyMap_shortComplexTruncLE_g, HomologicalComplexâ.Dâ_totalShiftâXIso_hom_assoc, HomologicalComplex.truncLEMap_comp, HomologicalComplex.cylinder.inrX_Ď_assoc, CochainComplex.mapBifunctorShiftâIso_hom_naturalityâ, HomologicalComplex.homologyOp_hom_naturality_assoc, HomologicalComplex.homologyMap_comp, HomologicalComplex.homotopyCofiber.inlX_desc_f_assoc, HomologicalComplex.biprod_inl_fst_f, HomologicalComplex.instAdditiveHomologyFunctor, HomologicalComplex.eval_obj, HomologicalComplex.ab5OfSize, HomologicalComplex.shortComplexFunctor_map_Ďâ, HomologicalComplexâ.instHasTotalIntObjUpCompShiftFunctorâShiftFunctorâ, CategoryTheory.InjectiveResolution.toRightDerivedZero'_naturality, HomologicalComplex.comp_f, HomologicalComplex.cylinder.Κâ_Ď, CategoryTheory.Functor.mapHomotopy_hom, HomologicalComplex.singleObjOpcyclesSelfIso_inv_naturality, HomologicalComplex.isIso_ΚTruncLE_iff, CategoryTheory.Functor.mapBifunctorHomologicalComplex_obj_obj_X_d, HomologicalComplex.cyclesOpIso_inv_naturality, quasiIso_iff_comp_left, HomologicalComplex.biprod_inr_fst_f, HomologicalComplex.shortComplexFunctor'_obj_Xâ, CategoryTheory.ProjectiveResolution.fromLeftDerivedZero'_naturality, HomologicalComplex.opcyclesOpIso_hom_naturality, HomologicalComplex.dgoEquivHomologicalComplex_counitIso, HomologicalComplex.homotopyCofiber.eq_desc, HomologicalComplex.truncLE'Map_id, CategoryTheory.Functor.mapHomologicalComplexIdIso_inv_app_f, Homotopy.compRight_hom, ComplexShape.Embedding.homRestrict_comp_extendMap_assoc, CochainComplex.mapBifunctorHomologicalComplexShiftâIso_hom_f_f, CochainComplex.IsKProjective.nonempty_homotopy_zero, HomologicalComplex.instHasHomologyOppositeObjSymmOpFunctorOp, HomologicalComplex.biprodXIso_hom_fst_assoc, HomologicalComplexâ.flipEquivalenceUnitIso_inv_app_f_f, HomologicalComplex.opcyclesMap_comp_assoc, HomologicalComplex.quasiIsoAt_shortComplexTruncLE_g, HomotopyCategory.instFaithfulFunctorHomologicalComplexObjWhiskeringLeftQuotient, HomologicalComplexâ.dâ_eq_zero', CategoryTheory.ProjectiveResolution.leftDerived_app_eq, HomologicalComplex.shortComplexFunctor_map_Ďâ, HomologicalComplexâ.Κ_totalShiftâIso_inv_f_assoc, HomologicalComplexâ.ΚTotal_totalFlipIso_f_hom_assoc, HomologicalComplex.shortComplexFunctor_obj_f, HomologicalComplex.zero_f, HomologicalComplexâ.XXIsoOfEq_inv_ΚTotal_assoc, HomologicalComplex.cylinder.Κâ_Ď_assoc, HomologicalComplex.homotopyCofiber.inrCompHomotopy_hom_eq_zero, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.obj_X_d, HomologicalComplex.homologyFunctor_map, HomologicalComplex.cylinder.Κâ_Ď_assoc, CategoryTheory.HasExt.hasSmallLocalizedShiftedHom_of_isLE_of_isGE, CochainComplex.quasiIsoAt_shift_iff, HomologicalComplexâ.total.mapIso_inv, HomologicalComplex.shortComplexTruncLE_f, HomologicalComplex.extend_op_d, CategoryTheory.HasExt.instHasSmallLocalizedShiftedHomHomologicalComplexIntUpQuasiIsoOfIsGEOfIsLEOfNat, CategoryTheory.ProjectiveResolution.homotopyEquiv_hom_Ď_assoc, HomologicalComplex.shortComplexFunctor'_obj_Xâ, HomologicalComplex.complexOfFunctorsToFunctorToComplex_map_app_f, CochainComplex.HomComplex.Cochain.map_comp, HomologicalComplex.cylinder.Κâ_desc, HomologicalComplex.opInverse_obj, HomologicalComplex.isGrothendieckAbelian, HomologicalComplex.mkHomToSingle_f, HomologicalComplex.biprodXIso_hom_snd, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_obj_X_X, CategoryTheory.ProjectiveResolution.fromLeftDerivedZero'_naturality_assoc, CochainComplex.HomComplex.Cochain.map_sub, ComplexShape.Embedding.ΚTruncLENatTrans_app, HomologicalComplex.shortComplexFunctor'_obj_g, HomologicalComplex.natIsoSc'_hom_app_Ďâ, CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_idem, CategoryTheory.Functor.mapHomologicalComplexUpToQuasiIsoLocalizerMorphism_functor, CochainComplex.IsKProjective.Qh_map_bijective, CategoryTheory.Equivalence.mapHomologicalComplex_functor, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_counitIso_hom, HomologicalComplex.cyclesOpIso_hom_naturality_assoc, HomologicalComplexâ.flipEquivalence_counitIso, HomologicalComplexâ.Κ_totalShiftâIso_hom_f_assoc, CategoryTheory.NatTrans.mapHomologicalComplex_naturality, HomologicalComplex.biprodXIso_hom_snd_assoc, quasiIso_comp, HomologicalComplex.instPreservesZeroMorphismsHomologyFunctor, CategoryTheory.ProjectiveResolution.Ď'_f_zero, HomologicalComplex.leftUnitor'_inv, HomologicalComplexâ.totalFlipIso_hom_f_Dâ, HomologicalComplex.forget_obj, QuasiIsoAt.quasiIso, HomologicalComplex.isSeparating_separatingFamily, Homotopy.comp_nullHomotopicMap, HomologicalComplex.single_map_f_self_assoc, HomologicalComplex.isIso_ĎTruncGE_iff, HomologicalComplex.homologicalComplexToDGO_map_f, CategoryTheory.Functor.mapHomologicalComplex_commShiftIso_inv_app_f, ComplexShape.Embedding.instFullHomologicalComplexExtendFunctor, CochainComplex.exists_iso_single, groupHomology.isoShortComplexH1_inv, CochainComplex.ConnectData.restrictionLEIso_hom_f, CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_comp_d, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_homâ, HomologicalComplexâ.Dâ_totalShiftâXIso_hom, HomologicalComplex.ĎTruncGE_naturality, HomologicalComplexâ.Dâ_totalShiftâXIso_hom, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_obj_X_p, ComplexShape.Embedding.instAdditiveHomologicalComplexRestrictionFunctor, ComplexShape.Embedding.homEquiv_symm_apply, HomologicalComplexâ.comm_f_assoc, HomologicalComplex.cylinder.inrX_Ď, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_homâ, HomologicalComplex.homologyMap_sub, HomologicalComplexâ.totalFlipIso_hom_f_Dâ_assoc, Homotopy.comp_nullHomotopicMap', HomologicalComplex.instPreservesColimitsOfShapeEvalOfHasColimitsOfShape, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_map_f_f, ComplexShape.Embedding.homEquiv_apply_coe, HomologicalComplexâ.XXIsoOfEq_inv_ΚTotal, HomologicalComplex.cylinder.ĎCompΚâHomotopy.inrX_nullHomotopy_f, HomologicalComplex.homologyĎ_singleObjHomologySelfIso_hom, CategoryTheory.Functor.mapHomotopyEquiv_homotopyInvHomId, CategoryTheory.InjectiveResolution.iso_hom_naturality_assoc, HomologicalComplexâ.total.map_comp, HomologicalComplex.cyclesOpIso_hom_naturality, CochainComplex.mappingConeCompHomotopyEquiv_commâ, CategoryTheory.Functor.mapâHomologicalComplex_obj_obj, HomologicalComplex.instHasColimitsOfShape, AlgebraicTopology.map_alternatingFaceMapComplex, CategoryTheory.InjectiveResolution.isoRightDerivedObj_hom_naturality_assoc, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_map_f_f, HomologicalComplex.smul_f_apply, CochainComplex.HomComplex.CohomologyClass.toHom_bijective, CategoryTheory.InjectiveResolution.isoRightDerivedObj_inv_naturality, HomologicalComplexâ.ofGradedObject_X_d, HomologicalComplex.singleObjCyclesSelfIso_inv_iCycles_assoc, HomologicalComplexâ.flipEquivalence_functor, Homotopy.compLeftId_hom, HomologicalComplex.singleObjOpcyclesSelfIso_hom_naturality_assoc, HomologicalComplex.zero_f_apply, CochainComplex.mappingCone.rotateHomotopyEquiv_commâ_assoc, HomotopyCategory.instIsCompatibleWithShiftHomologicalComplexIntUpHomotopic, HomologicalComplex.natTransOpCyclesToCycles_app, Homotopy.add_hom, CategoryTheory.InjectiveResolution.Κ'_f_zero_assoc, Rep.standardComplex.quasiIso_forgetâ_ÎľToSingleâ, HomologicalComplex.instMonoΚTruncLE, HomologicalComplex.inr_biprodXIso_inv_assoc, HomologicalComplex.singleMapHomologicalComplex_inv_app_ne, CategoryTheory.instHasSmallLocalizedShiftedHomHomologicalComplexIntUpQuasiIsoObjCochainComplexCompSingleFunctorOfNatOfHasExt, HomologicalComplex.truncLE'ToRestriction_naturality_assoc, HomologicalComplex.dgoToHomologicalComplex_map_f, ComplexShape.Embedding.instPreservesZeroMorphismsHomologicalComplexExtendFunctor, HomologicalComplex.shortComplexFunctor'_map_Ďâ, HomologicalComplexUpToQuasiIso.Qh_inverts_quasiIso, HomologicalComplexâ.ofGradedObject_X_X, instIsLocalizationHomologicalComplexDownHomotopyCategoryQuotientHomotopyEquivalences, HomologicalComplex.cyclesMap_zero, HomologicalComplexâ.flipEquivalence_inverse, HomologicalComplex.single_map_f_self, CochainComplex.instQuasiIsoIntMapHomologicalComplexUpShiftFunctor, HomologicalComplex.homologyMap_zero, HomologicalComplex.mapBifunctorFlipIso_flip, CategoryTheory.Equivalence.mapHomologicalComplex_counitIso, CategoryTheory.InjectiveResolution.isoRightDerivedToHomotopyCategoryObj_hom_naturality_assoc, CategoryTheory.Functor.leftDerived_map_eq, Homotopy.compRightId_hom, HomologicalComplex.extendMap_add, HomologicalComplex.cyclesFunctor_obj, groupHomology.isoShortComplexH2_hom, HomologicalComplex.shortComplexTruncLE_shortExact, CochainComplex.IsKProjective.leftOrthogonal, HomologicalComplex.instHasTwoOutOfThreePropertyQuasiIso, HomologicalComplex.singleCompEvalIsoSelf_inv_app, HomologicalComplex.asFunctor_obj_d, ComplexShape.Embedding.truncLE'Functor_map, HomologicalComplex.shortComplexFunctor_obj_Xâ, HomologicalComplexâ.ΚTotalOrZero_map, HomologicalComplex.restrictionMap_comp_assoc, HomotopyCategory.quotient_obj_as, HomologicalComplexâ.totalShiftâIso_trans_totalShiftâIso, HomologicalComplex.shortComplexTruncLE_Xâ, HomologicalComplexâ.dâ_eq, CategoryTheory.ProjectiveResolution.leftDerivedToHomotopyCategory_app_eq, HomologicalComplex.truncLEMap_id, ComplexShape.Embedding.ĎTruncGENatTrans_app, HomologicalComplex.instHasFiniteColimits, ComplexShape.Embedding.truncLEFunctor_map, CochainComplex.isKProjective_iff_leftOrthogonal, HomologicalComplexâ.flip_totalFlipIso, HomologicalComplex.quasiIsoAt_iff_evaluation, HomologicalComplex.truncGE.rightHomologyMapData_ĎH, groupCohomology.isoShortComplexH1_hom, HomologicalComplexâ.total.map_comp_assoc, quasiIsoAt_iff', HomologicalComplex.homologyFunctorSingleIso_inv_app, HomologicalComplex.instPreservesLimitsOfShapeEvalOfHasLimitsOfShape, HomologicalComplexâ.shape_f, homotopy_congruence, ComplexShape.Embedding.truncLE'Functor_obj, HomologicalComplexUpToQuasiIso.instIsLocalizationHomotopyCategoryQhQuasiIso, AlgebraicTopology.DoldKan.homotopyEquivNormalizedMooreComplexAlternatingFaceMapComplex_homotopyInvHomId, CochainComplex.quasiIsoAtâ_iff, HomologicalComplex.singleObjHomologySelfIso_hom_naturality, HomologicalComplex.gradedHomologyFunctor_obj, CochainComplex.mappingCone.trianglehMapOfHomotopy_homâ, HomologicalComplex.cylinder.Κâ_desc_assoc, HomologicalComplex.dgoEquivHomologicalComplexCounitIso_hom_app_f, CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_idem_assoc, HomologicalComplex.instQuasiIsoOppositeMapSymmOpFunctorOp, CochainComplex.ConnectData.restrictionGEIso_inv_f, HomologicalComplex.restrictionToTruncGE'_naturality_assoc, HomologicalComplex.singleObjHomologySelfIso_hom_naturality_assoc, CategoryTheory.NatTrans.mapHomologicalComplex_naturality_assoc, HomologicalComplex.singleObjHomologySelfIso_inv_naturality_assoc, HomologicalComplex.instHasBinaryBiproduct, HomologicalComplexâ.ofGradedObject_d_f, CochainComplex.mappingCone.trianglehMapOfHomotopy_homâ, HomologicalComplexâ.Κ_totalShiftâIso_inv_f, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.obj_X_X, CochainComplex.homologySequenceδ_quotient_mapTriangle_obj, CategoryTheory.Functor.mapBifunctorHomologicalComplex_obj_obj_X_X, CochainComplex.mapBifunctorHomologicalComplexShiftâIso_hom_f_f, HomotopyCategory.homologyFunctor_shiftMap_assoc, HomologicalComplexâ.totalShiftâIso_hom_naturality, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.unitIso_hom_app_f_f, CategoryTheory.Functor.mapHomotopyCategory_map, HomologicalComplex.pOpcycles_singleObjOpcyclesSelfIso_inv_assoc, CategoryTheory.Functor.rightDerived_map_eq, HomologicalComplex.truncGE'Map_comp_assoc, HomologicalComplex.mapBifunctorMapHomotopy.commâ_aux, ComplexShape.Embedding.instAdditiveHomologicalComplexExtendFunctor, HomologicalComplex.epi_homologyMap_shortComplexTruncLE_g, HomologicalComplex.truncGE'Map_id, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_obj_d_f, Homotopy.smul_hom, CategoryTheory.ProjectiveResolution.isoLeftDerivedToHomotopyCategoryObj_inv_naturality, HomologicalComplexâ.total.mapAux.dâ_mapMap, HomologicalComplex.isZero_iff_isStrictlySupported_and_isStrictlySupportedOutside, CochainComplex.mappingCone.trianglehMapOfHomotopy_homâ, HomologicalComplex.evalCompCoyonedaCorepresentableByDoubleId_homEquiv_symm_apply, HomologicalComplexâ.ΚTotal_totalFlipIso_f_hom, HomologicalComplex.cyclesMapIso_inv, HomologicalComplex.singleObjCyclesSelfIso_hom_assoc, ComplexShape.Embedding.truncGE'Functor_map, CategoryTheory.Functor.mapHomotopyCategory_obj, ComplexShape.Embedding.homRestrict_precomp_assoc, HomologicalComplex.singleObjCyclesSelfIso_inv_naturality, quasiIsoAt_iff_comp_left, HomologicalComplex.opEquivalence_functor, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_counitIso_inv, HomologicalComplex.singleCompEvalIsoSelf_hom_app, HomologicalComplex.homologicalComplexToDGO_obj_d, HomologicalComplexâ.flip_X_d, HomologicalComplex.instHasSeparator, HomologicalComplex.singleObjOpcyclesSelfIso_inv_naturality_assoc, HomologicalComplex.instPreservesFiniteColimitsSingle, HomologicalComplex.quasiIso_opFunctor_map_iff, Homotopy.comp_hom, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.inverse_obj, HomologicalComplex.biprod_inl_desc_f, HomologicalComplex.singleObjHomologySelfIso_inv_naturality, CategoryTheory.Functor.mapHomologicalComplex_commShiftIso_hom_app_f, HomologicalComplex.restrictionToTruncGE'_naturality, HomologicalComplex.instIsIsoΚTruncLEOfIsStrictlySupported, HomologicalComplexâ.totalShiftâIso_hom_totalShiftâIso_hom_assoc, ComplexShape.Embedding.restrictionToTruncGE'NatTrans_app, groupCohomology.isoShortComplexH2_hom, CochainComplex.mappingCone.mapHomologicalComplexXIso'_hom, CochainComplex.mapBifunctorHomologicalComplexShiftâIso_inv_f_f, HomologicalComplex.evalCompCoyonedaCorepresentableBySingle_homEquiv_symm_apply, HomologicalComplex.homologicalComplexToDGO_obj_obj, HomologicalComplex.stupidTruncMap_comp_assoc, HomologicalComplex.homotopyCofiber.desc_f, HomotopyCategory.homologyShiftIso_hom_app, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.obj_X_p, HomologicalComplex.Κ_mapBifunctorFlipIso_hom, AlgebraicTopology.DoldKan.homotopyPToId_eventually_constant, HomologicalComplex.truncLE'Map_comp, HomologicalComplex.biprod_inr_desc_f_assoc, HomologicalComplex.evalCompCoyonedaCorepresentableBySingle_homEquiv_apply, CochainComplex.HomComplex.δ_map, CategoryTheory.Functor.mapâHomologicalComplex_obj_map, HomologicalComplexâ.totalShiftâIso_hom_naturality_assoc, HomologicalComplex.shortComplexFunctor'_map_Ďâ, HomologicalComplex.unopInverse_obj, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_obj_X_X, CategoryTheory.InjectiveResolution.iso_inv_naturality_assoc, CategoryTheory.InjectiveResolution.isoRightDerivedToHomotopyCategoryObj_hom_naturality, HomologicalComplex.opEquivalence_inverse, HomologicalComplex.truncLE'Map_comp_assoc, HomologicalComplexâ.Κ_Dâ, HomologicalComplex.opcyclesFunctor_obj, HomologicalComplexâ.flipEquivalenceCounitIso_inv_app_f_f, HomologicalComplex.natTransHomologyΚ_app, HomologicalComplex.homologyFunctorIso_hom_app, ComplexShape.Embedding.restrictionFunctor_obj, HomologicalComplexâ.toGradedObjectFunctor_map, CategoryTheory.Functor.mapHomologicalComplexUpToQuasiIsoFactorsh_hom_app, HomologicalComplex.asFunctor_map_f, HomologicalComplex.singleObjCyclesSelfIso_hom_naturality_assoc, ComplexShape.Embedding.truncLE'ToRestrictionNatTrans_app, CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_comm_f, HomologicalComplex.mkHomFromSingle_f, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_homâ, HomologicalComplex.cyclesOpNatIso_hom_app, HomologicalComplex.shortComplexFunctor_map_Ďâ, HomologicalComplex.instPreservesFiniteColimitsEvalOfHasFiniteColimits, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_unitIso_inv_app_f_f, Homotopy.compLeft_hom, HomologicalComplex.shortComplexFunctor_obj_g, groupHomology.isoShortComplexH2_inv, HomologicalComplexâ.Κ_totalShiftâIso_hom_f, HomologicalComplex.exactAt_single_obj, HomologicalComplex.shortComplexTruncLE_Xâ, HomologicalComplexâ.instHasTotalIntObjUpShiftFunctorâ, HomologicalComplex.hasExactColimitsOfShape, CochainComplex.HomComplex.Cochain.map_ofHom, CochainComplex.HomComplex.CohomologyClass.toHom_mk_eq_zero_iff, HomologicalComplex.extendMap_comp, HomologicalComplex.quasiIso_unopFunctor_map_iff, ComplexShape.QFactorsThroughHomotopy.areEqualizedByLocalization, HomologicalComplex.instPreservesBinaryBiproductEval, CategoryTheory.Idempotents.karoubiHomologicalComplexEquivalence_counitIso, HomologicalComplexâ.XXIsoOfEq_hom_ΚTotal, Homotopy.nullHomotopy_hom, CochainComplex.mappingCone.map_eq_mapOfHomotopy, HomologicalComplex.HomologySequence.composableArrowsâFunctor_map, HomologicalComplexâ.totalShiftâIso_hom_naturality, HomologicalComplex.Hom.isoApp_inv, HomotopyCategory.quotient_obj_singleFunctors_obj, HomologicalComplexâ.total.mapAux.dâ_mapMap_assoc, HomologicalComplexâ.dâ_eq', HomologicalComplex.dgoEquivHomologicalComplex_inverse, ComplexShape.quotient_isLocalization, quasiIso_iff_comp_right, CategoryTheory.Functor.mapCochainComplexShiftIso_hom_app_f, CategoryTheory.InjectiveResolution.toRightDerivedZero'_comp_iCycles_assoc, HomologicalComplex.unopEquivalence_inverse, CochainComplex.mapBifunctorShiftâIso_hom_naturalityâ, HomotopyCategory.quotient_obj_mem_subcategoryAcyclic_iff_acyclic, HomologicalComplex.homotopyCofiber.inlX_desc_f, HomotopyCategory.instAdditiveHomologicalComplexQuotient, HomotopyCategory.quotient_map_out, CategoryTheory.ProjectiveResolution.iso_inv_naturality, HomologicalComplexâ.dâ_eq', HomologicalComplex.truncLE'ToRestriction_naturality, HomologicalComplex.instPreservesFiniteLimitsSingle, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.counitIso_hom, HomologicalComplex.extendMap_zero, quasiIsoAt_iff, HomologicalComplex.quasiIsoAt_map_of_preservesHomology, HomologicalComplex.instAdditiveSingle, HomologicalComplex.shortComplexFunctor'_obj_f, HomotopyCategory.homologyFunctor_shiftMap, HomologicalComplex.HomologySequence.composableArrowsâFunctor_obj, HomologicalComplexâ.toGradedObjectMap_apply, HomologicalComplexâ.ΚTotalOrZero_eq_zero, CochainComplex.shiftShortComplexFunctorIso_zero_add_hom_app, HomologicalComplex.opFunctor_additive, HomologicalComplex.instPreservesZeroMorphismsCyclesFunctor, HomologicalComplex.instQuasiIsoShortComplexTruncLEXâToTruncGE, HomologicalComplex.eval_additive, HomologicalComplexâ.flip_d_f, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_counitIso_inv, HomologicalComplexâ.Dâ_totalShiftâXIso_hom, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.obj_d_f, CategoryTheory.InjectiveResolution.isoRightDerivedObj_inv_naturality_assoc, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.obj_X_X, CochainComplex.mappingConeCompTriangleh_commâ, HomologicalComplex.opcyclesMap_zero, HomologicalComplexâ.Dâ_totalShiftâXIso_hom, HomologicalComplex.instEpiĎTruncGE, HomologicalComplex.instHasBinaryBiproductObjEval, groupCohomology.isoShortComplexH1_inv, HomologicalComplex.shortExact_iff_degreewise_shortExact, HomologicalComplex.shortComplexTruncLE_shortExact_δ_eq_zero, CategoryTheory.Functor.mapBifunctorHomologicalComplex_obj_map_f_f, CategoryTheory.ProjectiveResolution.isoLeftDerivedToHomotopyCategoryObj_hom_naturality, HomologicalComplex.biprod_lift_snd_f_assoc, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_unitIso_inv_app_f_f, HomologicalComplex.biprod_inr_fst_f_assoc, ComplexShape.Embedding.extendFunctor_obj, CategoryTheory.Functor.mapBifunctorHomologicalComplexObj_obj_d_f, CochainComplex.isKInjective_iff_rightOrthogonal, CochainComplex.ShiftSequence.shiftIso_inv_app, HomologicalComplex.neg_f_apply, CategoryTheory.ProjectiveResolution.isoLeftDerivedObj_inv_naturality, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_obj_X_X, HomologicalComplex.truncGEMap_comp, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.functor_map, HomologicalComplex.dgoEquivHomologicalComplexUnitIso_inv_app_f, HomologicalComplex.unopFunctor_map_f, HomologicalComplex.homologyOp_hom_naturality, HomologicalComplex.locallySmall, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_obj_X_d, HomologicalComplexâ.flipEquivalenceCounitIso_hom_app_f_f, HomologicalComplex.homologyFunctor_inverts_quasiIso, HomologicalComplex.instHasColimitDiscreteWalkingPairCompPairEval, HomologicalComplex.instPreservesZeroMorphismsSingle, CategoryTheory.ProjectiveResolution.iso_inv_naturality_assoc, CategoryTheory.InjectiveResolution.rightDerivedToHomotopyCategory_app_eq, HomologicalComplex.singleObjCyclesSelfIso_hom, HomologicalComplex.quasiIsoAt_opFunctor_map_iff, HomotopyCategory.quotient_obj_mem_subcategoryAcyclic_iff_exactAt, HomologicalComplexâ.d_comm_assoc, CategoryTheory.Functor.mapHomotopyEquiv_hom, CochainComplex.mappingCone.rotateHomotopyEquiv_commâ, CategoryTheory.Equivalence.mapHomologicalComplex_inverse, ComplexShape.Embedding.truncGEFunctor_map, HomologicalComplexâ.totalAux.dâ_eq', CategoryTheory.Idempotents.karoubiChainComplexEquivalence_unitIso_hom_app_f_f, HomologicalComplex.cylinder.Κâ_desc, HomologicalComplex.Κ_mapBifunctorFlipIso_hom_assoc, HomologicalComplex.extendSingleIso_hom_f, CochainComplex.HomComplex.CohomologyClass.toHom_mk, HomologicalComplexâ.total.hom_ext_iff, groupCohomology.isoShortComplexH2_inv, HomologicalComplex.instFullSingle, HomotopyCategory.quotient_map_mem_quasiIso_iff, HomologicalComplex.biprod_inl_snd_f, HomologicalComplex.homologyFunctorIso_inv_app, CochainComplex.liftCycles_shift_homologyĎ_assoc, HomologicalComplex.comp_f_assoc, HomologicalComplex.unopFunctor_additive, HomologicalComplex.instHasZeroObject, HomologicalComplex.instIsNormalMonoCategory, HomologicalComplex.g_shortComplexTruncLEXâToTruncGE_assoc, CategoryTheory.InjectiveResolution.iso_inv_naturality, HomologicalComplex.instFaithfulSingle, HomologicalComplex.unopEquivalence_counitIso, ComplexShape.Embedding.homRestrict_comp_extendMap, HomologicalComplex.truncGEMap_id, HomologicalComplex.opInverse_map, HomologicalComplexâ.flipFunctor_map_f_f, HomologicalComplex.singleObjHomologySelfIso_inv_homologyΚ, HomologicalComplex.homologyFunctor_obj, HomotopyCategory.isoOfHomotopyEquiv_inv, CategoryTheory.Functor.mapDerivedCategoryFactorsh_hom_app, HomologicalComplex.shortComplexTruncLE_Xâ_isSupportedOutside, HomologicalComplex.biprod_inl_desc_f_assoc, CategoryTheory.ProjectiveResolution.fromLeftDerivedZero_eq, HomologicalComplex.extendMap_id, HomologicalComplex.Hom.isoApp_hom, HomologicalComplex.homologyFunctorSingleIso_hom_app, ComplexShape.Embedding.AreComplementary.hom_ext', HomologicalComplex.singleObjOpcyclesSelfIso_hom_assoc, HomologicalComplex.homologyMap_comp_assoc, HomologicalComplex.singleObjHomologySelfIso_hom_singleObjHomologySelfIso_inv, HomologicalComplex.isZero_single_comp_eval, CategoryTheory.instPreservesZeroMorphismsHomologicalComplexMapHomologicalComplex, HomologicalComplex.cylinder.Κâ_desc_assoc, HomologicalComplex.dgoEquivHomologicalComplexCounitIso_inv_app_f, Homotopy.nullHomotopy'_hom, HomologicalComplex.Hom.isIso_of_components, HomologicalComplex.singleObjOpcyclesSelfIso_hom_naturality, CochainComplex.mappingCone.mapHomologicalComplexXIso'_inv, HomologicalComplexUpToQuasiIso.isIso_Q_map_iff_mem_quasiIso, HomologicalComplex.homologyMapIso_inv, Rep.FiniteCyclicGroup.resolution.Ď_f, HomologicalComplex.natIsoSc'_inv_app_Ďâ, HomologicalComplex.instHasFiniteLimits, HomologicalComplex.exact_iff_degreewise_exact, CategoryTheory.InjectiveResolution.rightDerived_app_eq, HomologicalComplex.instHasHomologyObjOppositeSymmUnopFunctorOp, HomologicalComplex.Hom.fAddMonoidHom_apply, HomologicalComplex.epi_of_epi_f, HomologicalComplexâ.total.map_id, HomotopyCategory.instLinearHomologicalComplexQuotient, CochainComplex.singleâObjXSelf, CochainComplex.mappingConeCompHomotopyEquiv_hom_inv_id_assoc, HomologicalComplexâ.total.forget_map, CochainComplex.liftCycles_shift_homologyĎ, HomologicalComplexâ.totalFunctor_map, HomologicalComplex.natIsoSc'_hom_app_Ďâ, HomologicalComplex.instPreservesZeroMorphismsOpcyclesFunctor, HomologicalComplex.extendMap_id_f, ComplexShape.Embedding.stupidTruncFunctor_obj, HomologicalComplex.cyclesMapIso_hom, CochainComplex.HomComplex.Cochain.map_neg, CategoryTheory.Functor.mapBifunctorHomologicalComplex_obj_obj_toGradedObject, HomologicalComplexâ.ΚTotal_map_assoc, HomologicalComplex.Κ_mapBifunctorFlipIso_inv, CochainComplex.HomComplex.CohomologyClass.homAddEquiv_apply, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_counitIso_hom, HomologicalComplex.cylinder.ĎCompΚâHomotopy.inlX_nullHomotopy_f, ChainComplex.map_chain_complex_of, HomologicalComplexâ.totalFlipIso_hom_f_Dâ_assoc, CochainComplex.instAdditiveHomologicalComplexIntUpShiftFunctor, HomologicalComplexâ.Κ_totalShiftâIso_hom_f, HomologicalComplex.forgetEval_inv_app, CategoryTheory.instIsIsoFromLeftDerivedZero', ComplexShape.Embedding.instPreservesZeroMorphismsHomologicalComplexRestrictionFunctor, HomologicalComplexâ.instFaithfulGradedObjectProdToGradedObjectFunctor, ComplexShape.Embedding.truncGEFunctor_obj, CategoryTheory.Functor.mapBifunctorHomologicalComplex_obj_obj_d_f, HomologicalComplex.shortComplexFunctor_obj_Xâ, CochainComplex.ShiftSequence.shiftIso_hom_app, HomotopyCategory.instCommShiftHomologicalComplexIntUpHomFunctorMapHomotopyCategoryFactors, CochainComplex.mappingCone.map_δ, HomologicalComplexâ.ΚTotal_totalFlipIso_f_inv, CochainComplex.ConnectData.restrictionGEIso_hom_f, HomologicalComplex.quasiIsoAt_map_iff_of_preservesHomology, HomologicalComplex.Hom.sqFrom_id
|