| Name | Category | Theorems |
Karoubi đ | CompData | 210 mathmath: KaroubiFunctorCategoryEmbedding.obj_map_f, Karoubi.karoubi_hasFiniteBiproducts, CategoryTheory.Abelian.LeftResolution.karoubi.F_obj_p, karoubiChainComplexEquivalence_inverse_obj_X_d, toKaroubi_comp_karoubiFunctorCategoryEmbedding, KaroubiKaroubi.equivalence_counitIso, AlgebraicTopology.DoldKan.Nâ_map_f, karoubiChainComplexEquivalence_functor_obj_X_X, neg_def, toKaroubi_isEquivalence, instIsEquivalenceFunctorKaroubiFunctorExtensionâ, KaroubiKaroubi.equivalence.additive_inverse, karoubiCochainComplexEquivalence_functor_map_f_f, functorExtensionâCompWhiskeringLeftToKaroubiIso_inv_app_app_f, KaroubiHomologicalComplexEquivalence.Inverse.map_f_f, functorExtensionâ_map_app_f, AlgebraicTopology.DoldKan.NâÎâToKaroubiIso_inv_app, AlgebraicTopology.DoldKan.identity_Nâ, instIsEquivalenceFunctorKaroubiObjWhiskeringLeftToKaroubi, karoubiHomologicalComplexEquivalence_functor, KaroubiHomologicalComplexEquivalence.unitIso_inv_app_f_f, CategoryTheory.Preadditive.DoldKan.equivalence_unitIso, AlgebraicTopology.DoldKan.instIsIsoFunctorSimplicialObjectKaroubiNatTrans, CategoryTheory.Abelian.LeftResolution.karoubi.Ï_app_toKaroubi_obj, CategoryTheory.Abelian.LeftResolution.karoubi.F'_map_f, karoubiCochainComplexEquivalence_inverse_obj_p_f, CategoryTheory.Preadditive.DoldKan.equivalence_functor, karoubiUniversal_functor_eq, functorExtension_map_app, Karoubi.Biproducts.bicone_Îč_f, KaroubiKaroubi.counitIso_inv_app_f_f, add_def, karoubiUniversalâ_functor, karoubiChainComplexEquivalence_functor_obj_X_p, Karoubi.decompId_p_naturality, AlgebraicTopology.DoldKan.instIsIsoFunctorKaroubiSimplicialObjectNatTrans, Karoubi.hom_eq_zero_iff, AlgebraicTopology.DoldKan.Nâ_obj_p, CategoryTheory.Preadditive.DoldKan.equivalence_counitIso, Karoubi.inclusionHom_apply, karoubiChainComplexEquivalence_inverse_obj_p_f, Karoubi.eqToHom_f, instIsEquivalenceFunctorKaroubiFunctorExtension, toKaroubiEquivalence_functor_additive, Karoubi.retract_r_f, functorExtensionâCompWhiskeringLeftToKaroubiIso_hom_app_app_f, AlgebraicTopology.karoubi_alternatingFaceMapComplex_d, CategoryTheory.Abelian.LeftResolution.karoubi_Ï, functorExtensionâCompWhiskeringLeftToKaroubiIso_hom_app_app_f, karoubiHomologicalComplexEquivalence_unitIso, karoubiHomologicalComplexEquivalence_inverse, KaroubiHomologicalComplexEquivalence.counitIso_inv, DoldKan.hΔ, AlgebraicTopology.DoldKan.Îâ_obj_p_app, DoldKan.Nâ_map_isoÎâ_hom_app_f, FunctorExtensionâ.obj_obj_X, karoubiCochainComplexEquivalence_unitIso_hom_app_f_f, karoubiChainComplexEquivalence_functor_map_f_f, functorExtensionâ_obj_map_f, CategoryTheory.Abelian.LeftResolution.karoubi.F_map_f, instFaithfulKaroubiToKaroubi, AlgebraicTopology.DoldKan.compatibility_ÎâNâ_ÎâNâ_natTrans, instFullKaroubiToKaroubi, AlgebraicTopology.DoldKan.NâÎâ_hom_app_f_f, Karoubi.decomp_p, functorExtension_obj_obj, instIsIdempotentCompleteKaroubi, AlgebraicTopology.DoldKan.ÎâNâToKaroubiIso_hom_app, CategoryTheory.Abelian.LeftResolution.karoubi.F'_obj_p, CategoryTheory.Abelian.LeftResolution.instPreservesZeroMorphismsKaroubiF, CategoryTheory.Abelian.LeftResolution.instEpiKaroubiAppÏ', Karoubi.id_f, FunctorExtensionâ.obj_obj_p, KaroubiHomologicalComplexEquivalence.inverse_map, KaroubiHomologicalComplexEquivalence.Functor.map_f_f, Karoubi.comp_f, KaroubiHomologicalComplexEquivalence.Inverse.obj_p_f, zero_def, AlgebraicTopology.DoldKan.Îâ_obj_X_map, SimplicialObject.Splitting.toKaroubiNondegComplexIsoNâ_inv_f_f, instEssSurjKaroubiToKaroubiOfIsIdempotentComplete, KaroubiHomologicalComplexEquivalence.functor_obj, toKaroubi_map_f, AlgebraicTopology.DoldKan.NâÎâ_inv_app_f_f, karoubiFunctorCategoryEmbedding_obj, karoubiChainComplexEquivalence_functor_obj_d_f, AlgebraicTopology.DoldKan.NâÎâToKaroubiIso_hom_app, instAdditiveKaroubiToKaroubi, AlgebraicTopology.DoldKan.compatibility_Nâ_Nâ_karoubi, instFullKaroubiFunctorKaroubiFunctorCategoryEmbedding, SimplicialObject.Split.toKaroubiNondegComplexFunctorIsoNâ_hom_app_f_f, CategoryTheory.Abelian.LeftResolution.karoubi_F, AlgebraicTopology.DoldKan.NâÎâ_compatible_with_NâÎâ, KaroubiKaroubi.equivalence_inverse, KaroubiKaroubi.equivalence_unitIso, KaroubiFunctorCategoryEmbedding.obj_obj_X, whiskeringLeft_obj_preimage_app, CategoryTheory.Abelian.LeftResolution.instEpiKaroubiAppÏObjToKaroubi, AlgebraicTopology.DoldKan.whiskerLeft_toKaroubi_NâÎâ_hom, functorExtensionâ_obj_obj_X, KaroubiHomologicalComplexEquivalence.Inverse.obj_X_d, DoldKan.N_obj, AlgebraicTopology.DoldKan.toKaroubiCompNâIsoNâ_hom_app, karoubiChainComplexEquivalence_inverse_obj_X_X, karoubiCochainComplexEquivalence_counitIso_hom, functorExtensionâ_obj_obj_p, Karoubi.decompId, Karoubi.sum_hom, DoldKan.η_inv_app_f, KaroubiUniversalâ.counitIso_hom_app_app_f, AlgebraicTopology.DoldKan.toKaroubiCompNâIsoNâ_inv_app, KaroubiUniversalâ.counitIso_inv_app_app_f, KaroubiKaroubi.inverse_map_f, karoubiCochainComplexEquivalence_functor_obj_X_p, karoubiCochainComplexEquivalence_inverse_map_f_f, AlgebraicTopology.DoldKan.Nâ_obj_X, karoubiChainComplexEquivalence_inverse_map_f_f, Karoubi.retract_i_f, KaroubiFunctorCategoryEmbedding.obj_obj_p, Karoubi.decompId_i_toKaroubi, KaroubiKaroubi.idem_f, karoubiUniversalâ_counitIso, AlgebraicTopology.DoldKan.ÎâNâToKaroubiIso_inv_app, FunctorExtensionâ.obj_map_f, AlgebraicTopology.DoldKan.instReflectsIsomorphismsSimplicialObjectKaroubiChainComplexNatNâ, functorExtensionâCompWhiskeringLeftToKaroubiIso_inv_app_app_f, CategoryTheory.Abelian.LeftResolution.instEpiKaroubiAppÏ, Karoubi.Biproducts.bicone_pt_X, CategoryTheory.Preadditive.DoldKan.equivalence_inverse, Karoubi.zsmul_hom, AlgebraicTopology.DoldKan.Nâ_obj_p_f, KaroubiHomologicalComplexEquivalence.Inverse.obj_X_X, Karoubi.decompId_assoc, KaroubiKaroubi.inverse_obj_p, KaroubiHomologicalComplexEquivalence.unitIso_hom_app_f_f, KaroubiKaroubi.unitIso_hom_app_f, AlgebraicTopology.DoldKan.Nâ_obj_X_X, DoldKan.isoNâ_hom_app_f, AlgebraicTopology.DoldKan.NâÎâ_hom_app, karoubiCochainComplexEquivalence_functor_obj_d_f, natTrans_eq, functorExtension_obj_map, karoubiUniversalâ_unitIso, karoubiUniversalâ_functor_eq, karoubiFunctorCategoryEmbedding_map, karoubiChainComplexEquivalence_counitIso_inv, KaroubiHomologicalComplexEquivalence.inverse_obj, karoubiUniversalâ_inverse, AlgebraicTopology.DoldKan.Nâ_obj_X_d, AlgebraicTopology.DoldKan.karoubi_PInfty_f, CategoryTheory.Abelian.LeftResolution.instPreservesZeroMorphismsKaroubiFKaroubi, KaroubiHomologicalComplexEquivalence.Functor.obj_X_p, KaroubiKaroubi.counitIso_hom_app_f_f, instPreservesMonomorphismsKaroubiToKaroubi, KaroubiKaroubi.instAdditiveKaroubiInverse, KaroubiKaroubi.idem_f_assoc, AlgebraicTopology.DoldKan.ÎâNâ.natTrans_app_f_app, karoubiCochainComplexEquivalence_inverse_obj_X_X, KaroubiKaroubi.equivalence_functor, karoubiChainComplexEquivalence_unitIso_inv_app_f_f, AlgebraicTopology.DoldKan.NâÎâ_inv_app, Karoubi.Biproducts.bicone_Ï_f, KaroubiKaroubi.inverse_obj_X, KaroubiKaroubi.unitIso_inv_app_f, CategoryTheory.Abelian.DoldKan.comparisonN_hom_app_f, karoubiHomologicalComplexEquivalence_counitIso, Karoubi.instHasBinaryBiproductComplement, instFaithfulKaroubiFunctorKaroubiFunctorCategoryEmbedding, SimplicialObject.Split.toKaroubiNondegComplexFunctorIsoNâ_inv_app_f_f, CategoryTheory.Abelian.LeftResolution.karoubi.F'_obj_X, Karoubi.decompId_p_toKaroubi, AlgebraicTopology.DoldKan.Îâ_obj_X_obj, KaroubiKaroubi.equivalence.additive_functor, AlgebraicTopology.DoldKan.Îâ_map_f_app, KaroubiHomologicalComplexEquivalence.counitIso_hom, KaroubiKaroubi.p_comm_f, FunctorExtensionâ.map_app_f, CategoryTheory.Abelian.LeftResolution.karoubi.Ï'_app_f, karoubiCochainComplexEquivalence_counitIso_inv, AlgebraicTopology.DoldKan.ÎâNâ_inv, KaroubiHomologicalComplexEquivalence.Functor.obj_d_f, AlgebraicTopology.DoldKan.instReflectsIsomorphismsKaroubiSimplicialObjectChainComplexNatNâ, KaroubiHomologicalComplexEquivalence.Functor.obj_X_X, toKaroubi_obj_X, AlgebraicTopology.DoldKan.identity_Nâ_objectwise, DoldKan.hη, karoubiCochainComplexEquivalence_unitIso_inv_app_f_f, AlgebraicTopology.DoldKan.NâÎâ_inv_app_f_f, SimplicialObject.Splitting.toKaroubiNondegComplexIsoNâ_hom_f_f, CategoryTheory.Abelian.LeftResolution.karoubi.F_obj_X, karoubiCochainComplexEquivalence_functor_obj_X_X, KaroubiHomologicalComplexEquivalence.functor_map, KaroubiKaroubi.p_comm_f_assoc, karoubiCochainComplexEquivalence_inverse_obj_X_d, AlgebraicTopology.DoldKan.Nâ_map_f_f, Karoubi.decompId_i_naturality, Karoubi.Biproducts.bicone_pt_p, karoubiChainComplexEquivalence_unitIso_hom_app_f_f, AlgebraicTopology.DoldKan.NâÎâ_app, DoldKan.N_map, instPreservesEpimorphismsKaroubiToKaroubi, CategoryTheory.Abelian.DoldKan.comparisonN_inv_app_f, functorExtensionâ_obj, KaroubiFunctorCategoryEmbedding.map_app_f, toKaroubi_obj_p, AlgebraicTopology.DoldKan.ÎâNâ_inv, DoldKan.η_hom_app_f, functorExtensionâ_map, AlgebraicTopology.DoldKan.ÎâNâ.natTrans_app_f_app, karoubiChainComplexEquivalence_counitIso_hom
|
instAdd đ | CompOp | 1 mathmath: add_def
|
instAddCommGroupHom đ | CompOp | 3 mathmath: Karoubi.inclusionHom_apply, Karoubi.sum_hom, Karoubi.zsmul_hom
|
instNeg đ | CompOp | 1 mathmath: neg_def
|
instPreadditiveKaroubi đ | CompOp | 60 mathmath: Karoubi.karoubi_hasFiniteBiproducts, karoubiChainComplexEquivalence_inverse_obj_X_d, karoubiChainComplexEquivalence_functor_obj_X_X, KaroubiKaroubi.equivalence.additive_inverse, karoubiCochainComplexEquivalence_functor_map_f_f, KaroubiHomologicalComplexEquivalence.Inverse.map_f_f, karoubiHomologicalComplexEquivalence_functor, KaroubiHomologicalComplexEquivalence.unitIso_inv_app_f_f, karoubiCochainComplexEquivalence_inverse_obj_p_f, Karoubi.Biproducts.bicone_Îč_f, karoubiChainComplexEquivalence_functor_obj_X_p, karoubiChainComplexEquivalence_inverse_obj_p_f, toKaroubiEquivalence_functor_additive, AlgebraicTopology.karoubi_alternatingFaceMapComplex_d, karoubiHomologicalComplexEquivalence_unitIso, karoubiHomologicalComplexEquivalence_inverse, KaroubiHomologicalComplexEquivalence.counitIso_inv, karoubiCochainComplexEquivalence_unitIso_hom_app_f_f, karoubiChainComplexEquivalence_functor_map_f_f, CategoryTheory.Abelian.LeftResolution.instPreservesZeroMorphismsKaroubiF, KaroubiHomologicalComplexEquivalence.inverse_map, KaroubiHomologicalComplexEquivalence.Functor.map_f_f, KaroubiHomologicalComplexEquivalence.Inverse.obj_p_f, KaroubiHomologicalComplexEquivalence.functor_obj, karoubiChainComplexEquivalence_functor_obj_d_f, instAdditiveKaroubiToKaroubi, AlgebraicTopology.DoldKan.compatibility_Nâ_Nâ_karoubi, KaroubiHomologicalComplexEquivalence.Inverse.obj_X_d, karoubiChainComplexEquivalence_inverse_obj_X_X, karoubiCochainComplexEquivalence_counitIso_hom, karoubiCochainComplexEquivalence_functor_obj_X_p, karoubiCochainComplexEquivalence_inverse_map_f_f, karoubiChainComplexEquivalence_inverse_map_f_f, Karoubi.Biproducts.bicone_pt_X, KaroubiHomologicalComplexEquivalence.Inverse.obj_X_X, KaroubiHomologicalComplexEquivalence.unitIso_hom_app_f_f, karoubiCochainComplexEquivalence_functor_obj_d_f, karoubiChainComplexEquivalence_counitIso_inv, KaroubiHomologicalComplexEquivalence.inverse_obj, AlgebraicTopology.DoldKan.karoubi_PInfty_f, CategoryTheory.Abelian.LeftResolution.instPreservesZeroMorphismsKaroubiFKaroubi, KaroubiHomologicalComplexEquivalence.Functor.obj_X_p, KaroubiKaroubi.instAdditiveKaroubiInverse, karoubiCochainComplexEquivalence_inverse_obj_X_X, karoubiChainComplexEquivalence_unitIso_inv_app_f_f, Karoubi.Biproducts.bicone_Ï_f, karoubiHomologicalComplexEquivalence_counitIso, Karoubi.instHasBinaryBiproductComplement, KaroubiKaroubi.equivalence.additive_functor, KaroubiHomologicalComplexEquivalence.counitIso_hom, karoubiCochainComplexEquivalence_counitIso_inv, KaroubiHomologicalComplexEquivalence.Functor.obj_d_f, KaroubiHomologicalComplexEquivalence.Functor.obj_X_X, karoubiCochainComplexEquivalence_unitIso_inv_app_f_f, karoubiCochainComplexEquivalence_functor_obj_X_X, KaroubiHomologicalComplexEquivalence.functor_map, karoubiCochainComplexEquivalence_inverse_obj_X_d, Karoubi.Biproducts.bicone_pt_p, karoubiChainComplexEquivalence_unitIso_hom_app_f_f, karoubiChainComplexEquivalence_counitIso_hom
|
instZero đ | CompOp | 2 mathmath: Karoubi.hom_eq_zero_iff, zero_def
|
toKaroubi đ | CompOp | 63 mathmath: toKaroubi_comp_karoubiFunctorCategoryEmbedding, toKaroubi_isEquivalence, functorExtensionâCompWhiskeringLeftToKaroubiIso_inv_app_app_f, functorExtensionâ_map_app_f, AlgebraicTopology.DoldKan.NâÎâToKaroubiIso_inv_app, instIsEquivalenceFunctorKaroubiObjWhiskeringLeftToKaroubi, AlgebraicTopology.DoldKan.instIsIsoFunctorSimplicialObjectKaroubiNatTrans, CategoryTheory.Abelian.LeftResolution.karoubi.Ï_app_toKaroubi_obj, KaroubiKaroubi.counitIso_inv_app_f_f, Karoubi.retract_r_f, functorExtensionâCompWhiskeringLeftToKaroubiIso_hom_app_app_f, functorExtensionâCompWhiskeringLeftToKaroubiIso_hom_app_app_f, AlgebraicTopology.DoldKan.Îâ_obj_p_app, functorExtensionâ_obj_map_f, instFaithfulKaroubiToKaroubi, AlgebraicTopology.DoldKan.compatibility_ÎâNâ_ÎâNâ_natTrans, instFullKaroubiToKaroubi, AlgebraicTopology.DoldKan.NâÎâ_hom_app_f_f, Karoubi.decomp_p, AlgebraicTopology.DoldKan.ÎâNâToKaroubiIso_hom_app, CategoryTheory.Abelian.LeftResolution.instEpiKaroubiAppÏ', SimplicialObject.Splitting.toKaroubiNondegComplexIsoNâ_inv_f_f, instEssSurjKaroubiToKaroubiOfIsIdempotentComplete, toKaroubi_map_f, AlgebraicTopology.DoldKan.NâÎâToKaroubiIso_hom_app, instAdditiveKaroubiToKaroubi, SimplicialObject.Split.toKaroubiNondegComplexFunctorIsoNâ_hom_app_f_f, AlgebraicTopology.DoldKan.NâÎâ_compatible_with_NâÎâ, whiskeringLeft_obj_preimage_app, CategoryTheory.Abelian.LeftResolution.instEpiKaroubiAppÏObjToKaroubi, AlgebraicTopology.DoldKan.whiskerLeft_toKaroubi_NâÎâ_hom, AlgebraicTopology.DoldKan.toKaroubiCompNâIsoNâ_hom_app, KaroubiUniversalâ.counitIso_hom_app_app_f, AlgebraicTopology.DoldKan.toKaroubiCompNâIsoNâ_inv_app, KaroubiUniversalâ.counitIso_inv_app_app_f, Karoubi.retract_i_f, Karoubi.decompId_i_toKaroubi, AlgebraicTopology.DoldKan.ÎâNâToKaroubiIso_inv_app, functorExtensionâCompWhiskeringLeftToKaroubiIso_inv_app_app_f, KaroubiKaroubi.unitIso_hom_app_f, AlgebraicTopology.DoldKan.NâÎâ_hom_app, karoubiUniversalâ_unitIso, karoubiUniversalâ_inverse, KaroubiKaroubi.counitIso_hom_app_f_f, instPreservesMonomorphismsKaroubiToKaroubi, AlgebraicTopology.DoldKan.ÎâNâ.natTrans_app_f_app, KaroubiKaroubi.equivalence_functor, AlgebraicTopology.DoldKan.NâÎâ_inv_app, KaroubiKaroubi.unitIso_inv_app_f, CategoryTheory.Abelian.DoldKan.comparisonN_hom_app_f, SimplicialObject.Split.toKaroubiNondegComplexFunctorIsoNâ_inv_app_f_f, Karoubi.decompId_p_toKaroubi, AlgebraicTopology.DoldKan.Îâ_map_f_app, CategoryTheory.Abelian.LeftResolution.karoubi.Ï'_app_f, AlgebraicTopology.DoldKan.ÎâNâ_inv, toKaroubi_obj_X, AlgebraicTopology.DoldKan.NâÎâ_inv_app_f_f, SimplicialObject.Splitting.toKaroubiNondegComplexIsoNâ_hom_f_f, AlgebraicTopology.DoldKan.NâÎâ_app, instPreservesEpimorphismsKaroubiToKaroubi, CategoryTheory.Abelian.DoldKan.comparisonN_inv_app_f, toKaroubi_obj_p, AlgebraicTopology.DoldKan.ÎâNâ.natTrans_app_f_app
|
toKaroubiEquivalence đ | CompOp | 14 mathmath: functorExtension_map_app, toKaroubiEquivalence_functor_additive, DoldKan.hΔ, DoldKan.Nâ_map_isoÎâ_hom_app_f, functorExtension_obj_obj, DoldKan.N_obj, DoldKan.η_inv_app_f, DoldKan.isoNâ_hom_app_f, functorExtension_obj_map, CategoryTheory.Abelian.DoldKan.comparisonN_hom_app_f, DoldKan.hη, DoldKan.N_map, CategoryTheory.Abelian.DoldKan.comparisonN_inv_app_f, DoldKan.η_hom_app_f
|
| Name | Category | Theorems |
X đ | CompOp | 138 mathmath: CategoryTheory.Idempotents.app_idem_assoc, CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.obj_map_f, CategoryTheory.Abelian.LeftResolution.karoubi.F_obj_p, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_obj_X_d, AlgebraicTopology.DoldKan.Nâ_map_f, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_obj_X_X, CategoryTheory.Idempotents.neg_def, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_map_f_f, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.map_f_f, CategoryTheory.Idempotents.functorExtensionâ_map_app_f, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.unitIso_inv_app_f_f, CategoryTheory.Abelian.LeftResolution.karoubi.F'_map_f, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_obj_p_f, HomologicalComplex.comp_p_d, idem_assoc, Biproducts.bicone_Îč_f, CategoryTheory.Idempotents.KaroubiKaroubi.counitIso_inv_app_f_f, CategoryTheory.Idempotents.app_p_comp, CategoryTheory.Idempotents.add_def, comp_p, CategoryTheory.Idempotents.app_p_comm, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_obj_X_p, decompId_p_naturality, hom_eq_zero_iff, HomologicalComplex.p_comm_f_assoc, inclusionHom_apply, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_obj_p_f, eqToHom_f, retract_r_f, AlgebraicTopology.karoubi_alternatingFaceMapComplex_d, HomologicalComplex.p_comp_d_assoc, HomologicalComplex.comp_p_d_assoc, AlgebraicTopology.DoldKan.Îâ_obj_p_app, CategoryTheory.Idempotents.DoldKan.Nâ_map_isoÎâ_hom_app_f, CategoryTheory.Idempotents.FunctorExtensionâ.obj_obj_X, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_unitIso_hom_app_f_f, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_map_f_f, CategoryTheory.Idempotents.functorExtensionâ_obj_map_f, CategoryTheory.Abelian.LeftResolution.karoubi.F_map_f, AlgebraicTopology.DoldKan.NâÎâ_hom_app_f_f, decomp_p, CategoryTheory.Idempotents.FunctorExtensionâ.obj_obj_p, p_comm_assoc, CategoryTheory.Idempotents.app_p_comp_assoc, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.map_f_f, comp_f, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.obj_p_f, CategoryTheory.Idempotents.zero_def, AlgebraicTopology.DoldKan.Îâ_obj_X_map, SimplicialObject.Splitting.toKaroubiNondegComplexIsoNâ_inv_f_f, AlgebraicTopology.DoldKan.NâÎâ_inv_app_f_f, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_obj_d_f, AlgebraicTopology.DoldKan.NâÎâToKaroubiIso_hom_app, decompId_i_f, p_comp, SimplicialObject.Split.toKaroubiNondegComplexFunctorIsoNâ_hom_app_f_f, comp_proof, CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.obj_obj_X, Hom.comm, CategoryTheory.Idempotents.whiskeringLeft_obj_preimage_app, CategoryTheory.Idempotents.functorExtensionâ_obj_obj_X, CategoryTheory.Idempotents.app_p_comm_assoc, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.obj_X_d, AlgebraicTopology.DoldKan.toKaroubiCompNâIsoNâ_hom_app, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_obj_X_X, HomologicalComplex.p_idem, CategoryTheory.Idempotents.functorExtensionâ_obj_obj_p, decompId, sum_hom, CategoryTheory.Idempotents.KaroubiUniversalâ.counitIso_hom_app_app_f, CategoryTheory.Idempotents.KaroubiUniversalâ.counitIso_inv_app_app_f, HomologicalComplex.p_comp_d, CategoryTheory.Idempotents.KaroubiKaroubi.inverse_map_f, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_obj_X_p, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_map_f_f, AlgebraicTopology.DoldKan.Nâ_obj_X, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_map_f_f, retract_i_f, CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.obj_obj_p, CategoryTheory.Idempotents.KaroubiKaroubi.idem_f, p_comp_assoc, CategoryTheory.Idempotents.FunctorExtensionâ.obj_map_f, CategoryTheory.Idempotents.app_comp_p, Biproducts.bicone_pt_X, complement_p, HomologicalComplex.p_idem_assoc, zsmul_hom, idem, AlgebraicTopology.DoldKan.Nâ_obj_p_f, CategoryTheory.Idempotents.app_comp_p_assoc, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.obj_X_X, decompId_assoc, CategoryTheory.Idempotents.KaroubiKaroubi.inverse_obj_p, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.unitIso_hom_app_f_f, AlgebraicTopology.DoldKan.Nâ_obj_X_X, CategoryTheory.Idempotents.DoldKan.isoNâ_hom_app_f, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_obj_d_f, CategoryTheory.Idempotents.natTrans_eq, AlgebraicTopology.DoldKan.Nâ_obj_X_d, coe_X, AlgebraicTopology.DoldKan.karoubi_PInfty_f, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.obj_X_p, CategoryTheory.Idempotents.KaroubiKaroubi.counitIso_hom_app_f_f, CategoryTheory.Idempotents.KaroubiKaroubi.idem_f_assoc, AlgebraicTopology.DoldKan.ÎâNâ.natTrans_app_f_app, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_obj_X_X, HomologicalComplex.p_comm_f, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_unitIso_inv_app_f_f, decompId_p_f, Biproducts.bicone_Ï_f, CategoryTheory.Idempotents.KaroubiKaroubi.inverse_obj_X, complement_X, SimplicialObject.Split.toKaroubiNondegComplexFunctorIsoNâ_inv_app_f_f, CategoryTheory.Abelian.LeftResolution.karoubi.F'_obj_X, decompId_p_toKaroubi, AlgebraicTopology.DoldKan.Îâ_obj_X_obj, comp_p_assoc, AlgebraicTopology.DoldKan.Îâ_map_f_app, CategoryTheory.Idempotents.KaroubiKaroubi.p_comm_f, CategoryTheory.Idempotents.FunctorExtensionâ.map_app_f, CategoryTheory.Idempotents.app_idem, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.obj_d_f, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.obj_X_X, CategoryTheory.Idempotents.toKaroubi_obj_X, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_unitIso_inv_app_f_f, AlgebraicTopology.DoldKan.NâÎâ_inv_app_f_f, SimplicialObject.Splitting.toKaroubiNondegComplexIsoNâ_hom_f_f, CategoryTheory.Abelian.LeftResolution.karoubi.F_obj_X, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_obj_X_X, CategoryTheory.Idempotents.KaroubiKaroubi.p_comm_f_assoc, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_obj_X_d, AlgebraicTopology.DoldKan.Nâ_map_f_f, decompId_i_naturality, Biproducts.bicone_pt_p, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_unitIso_hom_app_f_f, CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.map_app_f, AlgebraicTopology.DoldKan.ÎâNâ.natTrans_app_f_app, p_comm
|
decompId_i đ | CompOp | 10 mathmath: decomp_p, decompId_i_f, CategoryTheory.Idempotents.whiskeringLeft_obj_preimage_app, decompId, CategoryTheory.Idempotents.KaroubiUniversalâ.counitIso_inv_app_app_f, decompId_i_toKaroubi, decompId_assoc, CategoryTheory.Idempotents.natTrans_eq, decompId_i_naturality, AlgebraicTopology.DoldKan.ÎâNâ.natTrans_app_f_app
|
decompId_p đ | CompOp | 10 mathmath: decompId_p_naturality, decomp_p, CategoryTheory.Idempotents.whiskeringLeft_obj_preimage_app, decompId, CategoryTheory.Idempotents.KaroubiUniversalâ.counitIso_hom_app_app_f, decompId_assoc, CategoryTheory.Idempotents.natTrans_eq, decompId_p_f, decompId_p_toKaroubi, AlgebraicTopology.DoldKan.ÎâNâ.natTrans_app_f_app
|
inclusionHom đ | CompOp | 1 mathmath: inclusionHom_apply
|
instCategory đ | CompOp | 210 mathmath: CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.obj_map_f, karoubi_hasFiniteBiproducts, CategoryTheory.Abelian.LeftResolution.karoubi.F_obj_p, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_obj_X_d, CategoryTheory.Idempotents.toKaroubi_comp_karoubiFunctorCategoryEmbedding, CategoryTheory.Idempotents.KaroubiKaroubi.equivalence_counitIso, AlgebraicTopology.DoldKan.Nâ_map_f, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_obj_X_X, CategoryTheory.Idempotents.neg_def, CategoryTheory.Idempotents.toKaroubi_isEquivalence, CategoryTheory.Idempotents.instIsEquivalenceFunctorKaroubiFunctorExtensionâ, CategoryTheory.Idempotents.KaroubiKaroubi.equivalence.additive_inverse, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_map_f_f, CategoryTheory.Idempotents.functorExtensionâCompWhiskeringLeftToKaroubiIso_inv_app_app_f, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.map_f_f, CategoryTheory.Idempotents.functorExtensionâ_map_app_f, AlgebraicTopology.DoldKan.NâÎâToKaroubiIso_inv_app, AlgebraicTopology.DoldKan.identity_Nâ, CategoryTheory.Idempotents.instIsEquivalenceFunctorKaroubiObjWhiskeringLeftToKaroubi, CategoryTheory.Idempotents.karoubiHomologicalComplexEquivalence_functor, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.unitIso_inv_app_f_f, CategoryTheory.Preadditive.DoldKan.equivalence_unitIso, AlgebraicTopology.DoldKan.instIsIsoFunctorSimplicialObjectKaroubiNatTrans, CategoryTheory.Abelian.LeftResolution.karoubi.Ï_app_toKaroubi_obj, CategoryTheory.Abelian.LeftResolution.karoubi.F'_map_f, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_obj_p_f, CategoryTheory.Preadditive.DoldKan.equivalence_functor, CategoryTheory.Idempotents.karoubiUniversal_functor_eq, CategoryTheory.Idempotents.functorExtension_map_app, Biproducts.bicone_Îč_f, CategoryTheory.Idempotents.KaroubiKaroubi.counitIso_inv_app_f_f, CategoryTheory.Idempotents.add_def, CategoryTheory.Idempotents.karoubiUniversalâ_functor, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_obj_X_p, decompId_p_naturality, AlgebraicTopology.DoldKan.instIsIsoFunctorKaroubiSimplicialObjectNatTrans, hom_eq_zero_iff, AlgebraicTopology.DoldKan.Nâ_obj_p, CategoryTheory.Preadditive.DoldKan.equivalence_counitIso, inclusionHom_apply, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_obj_p_f, eqToHom_f, CategoryTheory.Idempotents.instIsEquivalenceFunctorKaroubiFunctorExtension, CategoryTheory.Idempotents.toKaroubiEquivalence_functor_additive, retract_r_f, CategoryTheory.Idempotents.functorExtensionâCompWhiskeringLeftToKaroubiIso_hom_app_app_f, AlgebraicTopology.karoubi_alternatingFaceMapComplex_d, CategoryTheory.Abelian.LeftResolution.karoubi_Ï, CategoryTheory.Idempotents.functorExtensionâCompWhiskeringLeftToKaroubiIso_hom_app_app_f, CategoryTheory.Idempotents.karoubiHomologicalComplexEquivalence_unitIso, CategoryTheory.Idempotents.karoubiHomologicalComplexEquivalence_inverse, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.counitIso_inv, CategoryTheory.Idempotents.DoldKan.hΔ, AlgebraicTopology.DoldKan.Îâ_obj_p_app, CategoryTheory.Idempotents.DoldKan.Nâ_map_isoÎâ_hom_app_f, CategoryTheory.Idempotents.FunctorExtensionâ.obj_obj_X, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_unitIso_hom_app_f_f, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_map_f_f, CategoryTheory.Idempotents.functorExtensionâ_obj_map_f, CategoryTheory.Abelian.LeftResolution.karoubi.F_map_f, CategoryTheory.Idempotents.instFaithfulKaroubiToKaroubi, AlgebraicTopology.DoldKan.compatibility_ÎâNâ_ÎâNâ_natTrans, CategoryTheory.Idempotents.instFullKaroubiToKaroubi, AlgebraicTopology.DoldKan.NâÎâ_hom_app_f_f, decomp_p, CategoryTheory.Idempotents.functorExtension_obj_obj, CategoryTheory.Idempotents.instIsIdempotentCompleteKaroubi, AlgebraicTopology.DoldKan.ÎâNâToKaroubiIso_hom_app, CategoryTheory.Abelian.LeftResolution.karoubi.F'_obj_p, CategoryTheory.Abelian.LeftResolution.instPreservesZeroMorphismsKaroubiF, CategoryTheory.Abelian.LeftResolution.instEpiKaroubiAppÏ', id_f, CategoryTheory.Idempotents.FunctorExtensionâ.obj_obj_p, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.inverse_map, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.map_f_f, comp_f, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.obj_p_f, CategoryTheory.Idempotents.zero_def, AlgebraicTopology.DoldKan.Îâ_obj_X_map, SimplicialObject.Splitting.toKaroubiNondegComplexIsoNâ_inv_f_f, CategoryTheory.Idempotents.instEssSurjKaroubiToKaroubiOfIsIdempotentComplete, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.functor_obj, CategoryTheory.Idempotents.toKaroubi_map_f, AlgebraicTopology.DoldKan.NâÎâ_inv_app_f_f, CategoryTheory.Idempotents.karoubiFunctorCategoryEmbedding_obj, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_obj_d_f, AlgebraicTopology.DoldKan.NâÎâToKaroubiIso_hom_app, CategoryTheory.Idempotents.instAdditiveKaroubiToKaroubi, AlgebraicTopology.DoldKan.compatibility_Nâ_Nâ_karoubi, CategoryTheory.Idempotents.instFullKaroubiFunctorKaroubiFunctorCategoryEmbedding, SimplicialObject.Split.toKaroubiNondegComplexFunctorIsoNâ_hom_app_f_f, CategoryTheory.Abelian.LeftResolution.karoubi_F, AlgebraicTopology.DoldKan.NâÎâ_compatible_with_NâÎâ, CategoryTheory.Idempotents.KaroubiKaroubi.equivalence_inverse, CategoryTheory.Idempotents.KaroubiKaroubi.equivalence_unitIso, CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.obj_obj_X, CategoryTheory.Idempotents.whiskeringLeft_obj_preimage_app, CategoryTheory.Abelian.LeftResolution.instEpiKaroubiAppÏObjToKaroubi, AlgebraicTopology.DoldKan.whiskerLeft_toKaroubi_NâÎâ_hom, CategoryTheory.Idempotents.functorExtensionâ_obj_obj_X, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.obj_X_d, CategoryTheory.Idempotents.DoldKan.N_obj, AlgebraicTopology.DoldKan.toKaroubiCompNâIsoNâ_hom_app, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_obj_X_X, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_counitIso_hom, CategoryTheory.Idempotents.functorExtensionâ_obj_obj_p, decompId, sum_hom, CategoryTheory.Idempotents.DoldKan.η_inv_app_f, CategoryTheory.Idempotents.KaroubiUniversalâ.counitIso_hom_app_app_f, AlgebraicTopology.DoldKan.toKaroubiCompNâIsoNâ_inv_app, CategoryTheory.Idempotents.KaroubiUniversalâ.counitIso_inv_app_app_f, CategoryTheory.Idempotents.KaroubiKaroubi.inverse_map_f, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_obj_X_p, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_map_f_f, AlgebraicTopology.DoldKan.Nâ_obj_X, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_map_f_f, retract_i_f, CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.obj_obj_p, decompId_i_toKaroubi, CategoryTheory.Idempotents.KaroubiKaroubi.idem_f, CategoryTheory.Idempotents.karoubiUniversalâ_counitIso, AlgebraicTopology.DoldKan.ÎâNâToKaroubiIso_inv_app, CategoryTheory.Idempotents.FunctorExtensionâ.obj_map_f, AlgebraicTopology.DoldKan.instReflectsIsomorphismsSimplicialObjectKaroubiChainComplexNatNâ, CategoryTheory.Idempotents.functorExtensionâCompWhiskeringLeftToKaroubiIso_inv_app_app_f, CategoryTheory.Abelian.LeftResolution.instEpiKaroubiAppÏ, Biproducts.bicone_pt_X, CategoryTheory.Preadditive.DoldKan.equivalence_inverse, zsmul_hom, AlgebraicTopology.DoldKan.Nâ_obj_p_f, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.obj_X_X, decompId_assoc, CategoryTheory.Idempotents.KaroubiKaroubi.inverse_obj_p, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.unitIso_hom_app_f_f, CategoryTheory.Idempotents.KaroubiKaroubi.unitIso_hom_app_f, AlgebraicTopology.DoldKan.Nâ_obj_X_X, CategoryTheory.Idempotents.DoldKan.isoNâ_hom_app_f, AlgebraicTopology.DoldKan.NâÎâ_hom_app, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_obj_d_f, CategoryTheory.Idempotents.natTrans_eq, CategoryTheory.Idempotents.functorExtension_obj_map, CategoryTheory.Idempotents.karoubiUniversalâ_unitIso, CategoryTheory.Idempotents.karoubiUniversalâ_functor_eq, CategoryTheory.Idempotents.karoubiFunctorCategoryEmbedding_map, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_counitIso_inv, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.inverse_obj, CategoryTheory.Idempotents.karoubiUniversalâ_inverse, AlgebraicTopology.DoldKan.Nâ_obj_X_d, AlgebraicTopology.DoldKan.karoubi_PInfty_f, CategoryTheory.Abelian.LeftResolution.instPreservesZeroMorphismsKaroubiFKaroubi, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.obj_X_p, CategoryTheory.Idempotents.KaroubiKaroubi.counitIso_hom_app_f_f, CategoryTheory.Idempotents.instPreservesMonomorphismsKaroubiToKaroubi, CategoryTheory.Idempotents.KaroubiKaroubi.instAdditiveKaroubiInverse, CategoryTheory.Idempotents.KaroubiKaroubi.idem_f_assoc, AlgebraicTopology.DoldKan.ÎâNâ.natTrans_app_f_app, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_obj_X_X, CategoryTheory.Idempotents.KaroubiKaroubi.equivalence_functor, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_unitIso_inv_app_f_f, AlgebraicTopology.DoldKan.NâÎâ_inv_app, Biproducts.bicone_Ï_f, CategoryTheory.Idempotents.KaroubiKaroubi.inverse_obj_X, CategoryTheory.Idempotents.KaroubiKaroubi.unitIso_inv_app_f, CategoryTheory.Abelian.DoldKan.comparisonN_hom_app_f, CategoryTheory.Idempotents.karoubiHomologicalComplexEquivalence_counitIso, instHasBinaryBiproductComplement, CategoryTheory.Idempotents.instFaithfulKaroubiFunctorKaroubiFunctorCategoryEmbedding, SimplicialObject.Split.toKaroubiNondegComplexFunctorIsoNâ_inv_app_f_f, CategoryTheory.Abelian.LeftResolution.karoubi.F'_obj_X, decompId_p_toKaroubi, AlgebraicTopology.DoldKan.Îâ_obj_X_obj, CategoryTheory.Idempotents.KaroubiKaroubi.equivalence.additive_functor, AlgebraicTopology.DoldKan.Îâ_map_f_app, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.counitIso_hom, CategoryTheory.Idempotents.KaroubiKaroubi.p_comm_f, CategoryTheory.Idempotents.FunctorExtensionâ.map_app_f, CategoryTheory.Abelian.LeftResolution.karoubi.Ï'_app_f, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_counitIso_inv, AlgebraicTopology.DoldKan.ÎâNâ_inv, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.obj_d_f, AlgebraicTopology.DoldKan.instReflectsIsomorphismsKaroubiSimplicialObjectChainComplexNatNâ, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.obj_X_X, CategoryTheory.Idempotents.toKaroubi_obj_X, AlgebraicTopology.DoldKan.identity_Nâ_objectwise, CategoryTheory.Idempotents.DoldKan.hη, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_unitIso_inv_app_f_f, AlgebraicTopology.DoldKan.NâÎâ_inv_app_f_f, SimplicialObject.Splitting.toKaroubiNondegComplexIsoNâ_hom_f_f, CategoryTheory.Abelian.LeftResolution.karoubi.F_obj_X, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_obj_X_X, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.functor_map, CategoryTheory.Idempotents.KaroubiKaroubi.p_comm_f_assoc, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_obj_X_d, AlgebraicTopology.DoldKan.Nâ_map_f_f, decompId_i_naturality, Biproducts.bicone_pt_p, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_unitIso_hom_app_f_f, AlgebraicTopology.DoldKan.NâÎâ_app, CategoryTheory.Idempotents.DoldKan.N_map, CategoryTheory.Idempotents.instPreservesEpimorphismsKaroubiToKaroubi, CategoryTheory.Abelian.DoldKan.comparisonN_inv_app_f, CategoryTheory.Idempotents.functorExtensionâ_obj, CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.map_app_f, CategoryTheory.Idempotents.toKaroubi_obj_p, AlgebraicTopology.DoldKan.ÎâNâ_inv, CategoryTheory.Idempotents.DoldKan.η_hom_app_f, CategoryTheory.Idempotents.functorExtensionâ_map, AlgebraicTopology.DoldKan.ÎâNâ.natTrans_app_f_app, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_counitIso_hom
|
instInhabitedHomOfPreadditive đ | CompOp | â |
p đ | CompOp | 85 mathmath: CategoryTheory.Idempotents.app_idem_assoc, CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.obj_map_f, CategoryTheory.Abelian.LeftResolution.karoubi.F_obj_p, CategoryTheory.Idempotents.functorExtensionâCompWhiskeringLeftToKaroubiIso_inv_app_app_f, CategoryTheory.Idempotents.functorExtensionâ_map_app_f, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.unitIso_inv_app_f_f, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_obj_p_f, HomologicalComplex.comp_p_d, idem_assoc, Biproducts.bicone_Îč_f, CategoryTheory.Idempotents.KaroubiKaroubi.counitIso_inv_app_f_f, CategoryTheory.Idempotents.app_p_comp, comp_p, CategoryTheory.Idempotents.app_p_comm, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_obj_X_p, AlgebraicTopology.DoldKan.Nâ_obj_p, HomologicalComplex.p_comm_f_assoc, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_obj_p_f, eqToHom_f, retract_r_f, AlgebraicTopology.karoubi_alternatingFaceMapComplex_d, CategoryTheory.Idempotents.functorExtensionâCompWhiskeringLeftToKaroubiIso_hom_app_app_f, HomologicalComplex.p_comp_d_assoc, HomologicalComplex.comp_p_d_assoc, AlgebraicTopology.DoldKan.Îâ_obj_p_app, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_unitIso_hom_app_f_f, CategoryTheory.Idempotents.functorExtensionâ_obj_map_f, CategoryTheory.Abelian.LeftResolution.karoubi.F_map_f, decomp_p, CategoryTheory.Abelian.LeftResolution.karoubi.F'_obj_p, id_f, CategoryTheory.Idempotents.FunctorExtensionâ.obj_obj_p, p_comm_assoc, CategoryTheory.Idempotents.app_p_comp_assoc, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.obj_p_f, AlgebraicTopology.DoldKan.NâÎâ_inv_app_f_f, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_obj_d_f, decompId_i_f, p_comp, comp_proof, Hom.comm, CategoryTheory.Idempotents.app_p_comm_assoc, HomologicalComplex.p_idem, CategoryTheory.Idempotents.functorExtensionâ_obj_obj_p, HomologicalComplex.p_comp_d, coe_p, CategoryTheory.Idempotents.KaroubiKaroubi.inverse_map_f, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_obj_X_p, retract_i_f, CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.obj_obj_p, CategoryTheory.Idempotents.KaroubiKaroubi.idem_f, p_comp_assoc, CategoryTheory.Idempotents.FunctorExtensionâ.obj_map_f, CategoryTheory.Idempotents.app_comp_p, complement_p, HomologicalComplex.p_idem_assoc, idem, AlgebraicTopology.DoldKan.Nâ_obj_p_f, CategoryTheory.Idempotents.app_comp_p_assoc, CategoryTheory.Idempotents.KaroubiKaroubi.inverse_obj_p, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.unitIso_hom_app_f_f, CategoryTheory.Idempotents.KaroubiKaroubi.unitIso_hom_app_f, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_obj_d_f, AlgebraicTopology.DoldKan.karoubi_PInfty_f, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.obj_X_p, CategoryTheory.Idempotents.KaroubiKaroubi.counitIso_hom_app_f_f, CategoryTheory.Idempotents.KaroubiKaroubi.idem_f_assoc, HomologicalComplex.p_comm_f, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_unitIso_inv_app_f_f, decompId_p_f, Biproducts.bicone_Ï_f, CategoryTheory.Idempotents.KaroubiKaroubi.unitIso_inv_app_f, comp_p_assoc, AlgebraicTopology.DoldKan.Îâ_map_f_app, CategoryTheory.Idempotents.KaroubiKaroubi.p_comm_f, CategoryTheory.Idempotents.FunctorExtensionâ.map_app_f, CategoryTheory.Idempotents.app_idem, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.obj_d_f, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_unitIso_inv_app_f_f, CategoryTheory.Idempotents.KaroubiKaroubi.p_comm_f_assoc, AlgebraicTopology.DoldKan.Nâ_map_f_f, Biproducts.bicone_pt_p, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_unitIso_hom_app_f_f, CategoryTheory.Idempotents.toKaroubi_obj_p, p_comm
|
retract đ | CompOp | 2 mathmath: retract_r_f, retract_i_f
|