Documentation Verification Report

Karoubi

📁 Source: Mathlib/CategoryTheory/Idempotents/Karoubi.lean

Statistics

MetricCount
DefinitionsKaroubi, f, X, decompId_i, decompId_p, inclusionHom, instCategory, instInhabitedHomOfPreadditive, p, retract, instAdd, instAddCommGroupHom, instNeg, instPreadditiveKaroubi, instZero, toKaroubi, toKaroubiEquivalence
17
Theoremscomm, ext, ext_iff, coe_X, coe_p, comp_f, comp_p, comp_p_assoc, comp_proof, decompId, decompId_assoc, decompId_i_f, decompId_i_naturality, decompId_i_toKaroubi, decompId_p_f, decompId_p_naturality, decompId_p_toKaroubi, decomp_p, eqToHom_f, ext, hom_eq_zero_iff, hom_ext, hom_ext_iff, id_f, idem, idem_assoc, inclusionHom_apply, p_comm, p_comm_assoc, p_comp, p_comp_assoc, retract_i_f, retract_r_f, sum_hom, zsmul_hom, add_def, instAdditiveKaroubiToKaroubi, instEssSurjKaroubiToKaroubiOfIsIdempotentComplete, instFaithfulKaroubiToKaroubi, instFullKaroubiToKaroubi, instIsIdempotentCompleteKaroubi, instPreservesEpimorphismsKaroubiToKaroubi, instPreservesMonomorphismsKaroubiToKaroubi, neg_def, toKaroubiEquivalence_functor_additive, toKaroubi_isEquivalence, toKaroubi_map_f, toKaroubi_obj_X, toKaroubi_obj_p, zero_def
50
Total67

CategoryTheory.Idempotents

Definitions

NameCategoryTheorems
Karoubi 📖CompData
210 mathmath: KaroubiFunctorCategoryEmbedding.obj_map_f, Karoubi.karoubi_hasFiniteBiproducts, CategoryTheory.Abelian.LeftResolution.karoubi.F_obj_p, karoubiChainComplexEquivalence_inverse_obj_X_d, toKaroubi_comp_karoubiFunctorCategoryEmbedding, KaroubiKaroubi.equivalence_counitIso, AlgebraicTopology.DoldKan.N₁_map_f, karoubiChainComplexEquivalence_functor_obj_X_X, neg_def, toKaroubi_isEquivalence, instIsEquivalenceFunctorKaroubiFunctorExtension₂, KaroubiKaroubi.equivalence.additive_inverse, karoubiCochainComplexEquivalence_functor_map_f_f, functorExtension₁CompWhiskeringLeftToKaroubiIso_inv_app_app_f, KaroubiHomologicalComplexEquivalence.Inverse.map_f_f, functorExtension₂_map_app_f, AlgebraicTopology.DoldKan.N₂Γ₂ToKaroubiIso_inv_app, AlgebraicTopology.DoldKan.identity_N₂, instIsEquivalenceFunctorKaroubiObjWhiskeringLeftToKaroubi, karoubiHomologicalComplexEquivalence_functor, KaroubiHomologicalComplexEquivalence.unitIso_inv_app_f_f, CategoryTheory.Preadditive.DoldKan.equivalence_unitIso, AlgebraicTopology.DoldKan.instIsIsoFunctorSimplicialObjectKaroubiNatTrans, CategoryTheory.Abelian.LeftResolution.karoubi.π_app_toKaroubi_obj, CategoryTheory.Abelian.LeftResolution.karoubi.F'_map_f, karoubiCochainComplexEquivalence_inverse_obj_p_f, CategoryTheory.Preadditive.DoldKan.equivalence_functor, karoubiUniversal_functor_eq, functorExtension_map_app, Karoubi.Biproducts.bicone_Îč_f, KaroubiKaroubi.counitIso_inv_app_f_f, add_def, karoubiUniversal₁_functor, karoubiChainComplexEquivalence_functor_obj_X_p, Karoubi.decompId_p_naturality, AlgebraicTopology.DoldKan.instIsIsoFunctorKaroubiSimplicialObjectNatTrans, Karoubi.hom_eq_zero_iff, AlgebraicTopology.DoldKan.N₁_obj_p, CategoryTheory.Preadditive.DoldKan.equivalence_counitIso, Karoubi.inclusionHom_apply, karoubiChainComplexEquivalence_inverse_obj_p_f, Karoubi.eqToHom_f, instIsEquivalenceFunctorKaroubiFunctorExtension, toKaroubiEquivalence_functor_additive, Karoubi.retract_r_f, functorExtension₂CompWhiskeringLeftToKaroubiIso_hom_app_app_f, AlgebraicTopology.karoubi_alternatingFaceMapComplex_d, CategoryTheory.Abelian.LeftResolution.karoubi_π, functorExtension₁CompWhiskeringLeftToKaroubiIso_hom_app_app_f, karoubiHomologicalComplexEquivalence_unitIso, karoubiHomologicalComplexEquivalence_inverse, KaroubiHomologicalComplexEquivalence.counitIso_inv, DoldKan.hΔ, AlgebraicTopology.DoldKan.Γ₂_obj_p_app, DoldKan.N₂_map_isoΓ₀_hom_app_f, FunctorExtension₁.obj_obj_X, karoubiCochainComplexEquivalence_unitIso_hom_app_f_f, karoubiChainComplexEquivalence_functor_map_f_f, functorExtension₂_obj_map_f, CategoryTheory.Abelian.LeftResolution.karoubi.F_map_f, instFaithfulKaroubiToKaroubi, AlgebraicTopology.DoldKan.compatibility_Γ₂N₁_Γ₂N₂_natTrans, instFullKaroubiToKaroubi, AlgebraicTopology.DoldKan.N₁Γ₀_hom_app_f_f, Karoubi.decomp_p, functorExtension_obj_obj, instIsIdempotentCompleteKaroubi, AlgebraicTopology.DoldKan.Γ₂N₂ToKaroubiIso_hom_app, CategoryTheory.Abelian.LeftResolution.karoubi.F'_obj_p, CategoryTheory.Abelian.LeftResolution.instPreservesZeroMorphismsKaroubiF, CategoryTheory.Abelian.LeftResolution.instEpiKaroubiAppπ', Karoubi.id_f, FunctorExtension₁.obj_obj_p, KaroubiHomologicalComplexEquivalence.inverse_map, KaroubiHomologicalComplexEquivalence.Functor.map_f_f, Karoubi.comp_f, KaroubiHomologicalComplexEquivalence.Inverse.obj_p_f, zero_def, AlgebraicTopology.DoldKan.Γ₂_obj_X_map, SimplicialObject.Splitting.toKaroubiNondegComplexIsoN₁_inv_f_f, instEssSurjKaroubiToKaroubiOfIsIdempotentComplete, KaroubiHomologicalComplexEquivalence.functor_obj, toKaroubi_map_f, AlgebraicTopology.DoldKan.N₂Γ₂_inv_app_f_f, karoubiFunctorCategoryEmbedding_obj, karoubiChainComplexEquivalence_functor_obj_d_f, AlgebraicTopology.DoldKan.N₂Γ₂ToKaroubiIso_hom_app, instAdditiveKaroubiToKaroubi, AlgebraicTopology.DoldKan.compatibility_N₂_N₁_karoubi, instFullKaroubiFunctorKaroubiFunctorCategoryEmbedding, SimplicialObject.Split.toKaroubiNondegComplexFunctorIsoN₁_hom_app_f_f, CategoryTheory.Abelian.LeftResolution.karoubi_F, AlgebraicTopology.DoldKan.N₂Γ₂_compatible_with_N₁Γ₀, KaroubiKaroubi.equivalence_inverse, KaroubiKaroubi.equivalence_unitIso, KaroubiFunctorCategoryEmbedding.obj_obj_X, whiskeringLeft_obj_preimage_app, CategoryTheory.Abelian.LeftResolution.instEpiKaroubiAppπObjToKaroubi, AlgebraicTopology.DoldKan.whiskerLeft_toKaroubi_N₂Γ₂_hom, functorExtension₂_obj_obj_X, KaroubiHomologicalComplexEquivalence.Inverse.obj_X_d, DoldKan.N_obj, AlgebraicTopology.DoldKan.toKaroubiCompN₂IsoN₁_hom_app, karoubiChainComplexEquivalence_inverse_obj_X_X, karoubiCochainComplexEquivalence_counitIso_hom, functorExtension₂_obj_obj_p, Karoubi.decompId, Karoubi.sum_hom, DoldKan.η_inv_app_f, KaroubiUniversal₁.counitIso_hom_app_app_f, AlgebraicTopology.DoldKan.toKaroubiCompN₂IsoN₁_inv_app, KaroubiUniversal₁.counitIso_inv_app_app_f, KaroubiKaroubi.inverse_map_f, karoubiCochainComplexEquivalence_functor_obj_X_p, karoubiCochainComplexEquivalence_inverse_map_f_f, AlgebraicTopology.DoldKan.N₁_obj_X, karoubiChainComplexEquivalence_inverse_map_f_f, Karoubi.retract_i_f, KaroubiFunctorCategoryEmbedding.obj_obj_p, Karoubi.decompId_i_toKaroubi, KaroubiKaroubi.idem_f, karoubiUniversal₁_counitIso, AlgebraicTopology.DoldKan.Γ₂N₂ToKaroubiIso_inv_app, FunctorExtension₁.obj_map_f, AlgebraicTopology.DoldKan.instReflectsIsomorphismsSimplicialObjectKaroubiChainComplexNatN₁, functorExtension₂CompWhiskeringLeftToKaroubiIso_inv_app_app_f, CategoryTheory.Abelian.LeftResolution.instEpiKaroubiAppπ, Karoubi.Biproducts.bicone_pt_X, CategoryTheory.Preadditive.DoldKan.equivalence_inverse, Karoubi.zsmul_hom, AlgebraicTopology.DoldKan.N₂_obj_p_f, KaroubiHomologicalComplexEquivalence.Inverse.obj_X_X, Karoubi.decompId_assoc, KaroubiKaroubi.inverse_obj_p, KaroubiHomologicalComplexEquivalence.unitIso_hom_app_f_f, KaroubiKaroubi.unitIso_hom_app_f, AlgebraicTopology.DoldKan.N₂_obj_X_X, DoldKan.isoN₁_hom_app_f, AlgebraicTopology.DoldKan.N₁Γ₀_hom_app, karoubiCochainComplexEquivalence_functor_obj_d_f, natTrans_eq, functorExtension_obj_map, karoubiUniversal₁_unitIso, karoubiUniversal₂_functor_eq, karoubiFunctorCategoryEmbedding_map, karoubiChainComplexEquivalence_counitIso_inv, KaroubiHomologicalComplexEquivalence.inverse_obj, karoubiUniversal₁_inverse, AlgebraicTopology.DoldKan.N₂_obj_X_d, AlgebraicTopology.DoldKan.karoubi_PInfty_f, CategoryTheory.Abelian.LeftResolution.instPreservesZeroMorphismsKaroubiFKaroubi, KaroubiHomologicalComplexEquivalence.Functor.obj_X_p, KaroubiKaroubi.counitIso_hom_app_f_f, instPreservesMonomorphismsKaroubiToKaroubi, KaroubiKaroubi.instAdditiveKaroubiInverse, KaroubiKaroubi.idem_f_assoc, AlgebraicTopology.DoldKan.Γ₂N₁.natTrans_app_f_app, karoubiCochainComplexEquivalence_inverse_obj_X_X, KaroubiKaroubi.equivalence_functor, karoubiChainComplexEquivalence_unitIso_inv_app_f_f, AlgebraicTopology.DoldKan.N₁Γ₀_inv_app, Karoubi.Biproducts.bicone_π_f, KaroubiKaroubi.inverse_obj_X, KaroubiKaroubi.unitIso_inv_app_f, CategoryTheory.Abelian.DoldKan.comparisonN_hom_app_f, karoubiHomologicalComplexEquivalence_counitIso, Karoubi.instHasBinaryBiproductComplement, instFaithfulKaroubiFunctorKaroubiFunctorCategoryEmbedding, SimplicialObject.Split.toKaroubiNondegComplexFunctorIsoN₁_inv_app_f_f, CategoryTheory.Abelian.LeftResolution.karoubi.F'_obj_X, Karoubi.decompId_p_toKaroubi, AlgebraicTopology.DoldKan.Γ₂_obj_X_obj, KaroubiKaroubi.equivalence.additive_functor, AlgebraicTopology.DoldKan.Γ₂_map_f_app, KaroubiHomologicalComplexEquivalence.counitIso_hom, KaroubiKaroubi.p_comm_f, FunctorExtension₁.map_app_f, CategoryTheory.Abelian.LeftResolution.karoubi.π'_app_f, karoubiCochainComplexEquivalence_counitIso_inv, AlgebraicTopology.DoldKan.Γ₂N₁_inv, KaroubiHomologicalComplexEquivalence.Functor.obj_d_f, AlgebraicTopology.DoldKan.instReflectsIsomorphismsKaroubiSimplicialObjectChainComplexNatN₂, KaroubiHomologicalComplexEquivalence.Functor.obj_X_X, toKaroubi_obj_X, AlgebraicTopology.DoldKan.identity_N₂_objectwise, DoldKan.hη, karoubiCochainComplexEquivalence_unitIso_inv_app_f_f, AlgebraicTopology.DoldKan.N₁Γ₀_inv_app_f_f, SimplicialObject.Splitting.toKaroubiNondegComplexIsoN₁_hom_f_f, CategoryTheory.Abelian.LeftResolution.karoubi.F_obj_X, karoubiCochainComplexEquivalence_functor_obj_X_X, KaroubiHomologicalComplexEquivalence.functor_map, KaroubiKaroubi.p_comm_f_assoc, karoubiCochainComplexEquivalence_inverse_obj_X_d, AlgebraicTopology.DoldKan.N₂_map_f_f, Karoubi.decompId_i_naturality, Karoubi.Biproducts.bicone_pt_p, karoubiChainComplexEquivalence_unitIso_hom_app_f_f, AlgebraicTopology.DoldKan.N₁Γ₀_app, DoldKan.N_map, instPreservesEpimorphismsKaroubiToKaroubi, CategoryTheory.Abelian.DoldKan.comparisonN_inv_app_f, functorExtension₁_obj, KaroubiFunctorCategoryEmbedding.map_app_f, toKaroubi_obj_p, AlgebraicTopology.DoldKan.Γ₂N₂_inv, DoldKan.η_hom_app_f, functorExtension₁_map, AlgebraicTopology.DoldKan.Γ₂N₂.natTrans_app_f_app, karoubiChainComplexEquivalence_counitIso_hom
instAdd 📖CompOp
1 mathmath: add_def
instAddCommGroupHom 📖CompOp
3 mathmath: Karoubi.inclusionHom_apply, Karoubi.sum_hom, Karoubi.zsmul_hom
instNeg 📖CompOp
1 mathmath: neg_def
instPreadditiveKaroubi 📖CompOp
60 mathmath: Karoubi.karoubi_hasFiniteBiproducts, karoubiChainComplexEquivalence_inverse_obj_X_d, karoubiChainComplexEquivalence_functor_obj_X_X, KaroubiKaroubi.equivalence.additive_inverse, karoubiCochainComplexEquivalence_functor_map_f_f, KaroubiHomologicalComplexEquivalence.Inverse.map_f_f, karoubiHomologicalComplexEquivalence_functor, KaroubiHomologicalComplexEquivalence.unitIso_inv_app_f_f, karoubiCochainComplexEquivalence_inverse_obj_p_f, Karoubi.Biproducts.bicone_Îč_f, karoubiChainComplexEquivalence_functor_obj_X_p, karoubiChainComplexEquivalence_inverse_obj_p_f, toKaroubiEquivalence_functor_additive, AlgebraicTopology.karoubi_alternatingFaceMapComplex_d, karoubiHomologicalComplexEquivalence_unitIso, karoubiHomologicalComplexEquivalence_inverse, KaroubiHomologicalComplexEquivalence.counitIso_inv, karoubiCochainComplexEquivalence_unitIso_hom_app_f_f, karoubiChainComplexEquivalence_functor_map_f_f, CategoryTheory.Abelian.LeftResolution.instPreservesZeroMorphismsKaroubiF, KaroubiHomologicalComplexEquivalence.inverse_map, KaroubiHomologicalComplexEquivalence.Functor.map_f_f, KaroubiHomologicalComplexEquivalence.Inverse.obj_p_f, KaroubiHomologicalComplexEquivalence.functor_obj, karoubiChainComplexEquivalence_functor_obj_d_f, instAdditiveKaroubiToKaroubi, AlgebraicTopology.DoldKan.compatibility_N₂_N₁_karoubi, KaroubiHomologicalComplexEquivalence.Inverse.obj_X_d, karoubiChainComplexEquivalence_inverse_obj_X_X, karoubiCochainComplexEquivalence_counitIso_hom, karoubiCochainComplexEquivalence_functor_obj_X_p, karoubiCochainComplexEquivalence_inverse_map_f_f, karoubiChainComplexEquivalence_inverse_map_f_f, Karoubi.Biproducts.bicone_pt_X, KaroubiHomologicalComplexEquivalence.Inverse.obj_X_X, KaroubiHomologicalComplexEquivalence.unitIso_hom_app_f_f, karoubiCochainComplexEquivalence_functor_obj_d_f, karoubiChainComplexEquivalence_counitIso_inv, KaroubiHomologicalComplexEquivalence.inverse_obj, AlgebraicTopology.DoldKan.karoubi_PInfty_f, CategoryTheory.Abelian.LeftResolution.instPreservesZeroMorphismsKaroubiFKaroubi, KaroubiHomologicalComplexEquivalence.Functor.obj_X_p, KaroubiKaroubi.instAdditiveKaroubiInverse, karoubiCochainComplexEquivalence_inverse_obj_X_X, karoubiChainComplexEquivalence_unitIso_inv_app_f_f, Karoubi.Biproducts.bicone_π_f, karoubiHomologicalComplexEquivalence_counitIso, Karoubi.instHasBinaryBiproductComplement, KaroubiKaroubi.equivalence.additive_functor, KaroubiHomologicalComplexEquivalence.counitIso_hom, karoubiCochainComplexEquivalence_counitIso_inv, KaroubiHomologicalComplexEquivalence.Functor.obj_d_f, KaroubiHomologicalComplexEquivalence.Functor.obj_X_X, karoubiCochainComplexEquivalence_unitIso_inv_app_f_f, karoubiCochainComplexEquivalence_functor_obj_X_X, KaroubiHomologicalComplexEquivalence.functor_map, karoubiCochainComplexEquivalence_inverse_obj_X_d, Karoubi.Biproducts.bicone_pt_p, karoubiChainComplexEquivalence_unitIso_hom_app_f_f, karoubiChainComplexEquivalence_counitIso_hom
instZero 📖CompOp
2 mathmath: Karoubi.hom_eq_zero_iff, zero_def
toKaroubi 📖CompOp
63 mathmath: toKaroubi_comp_karoubiFunctorCategoryEmbedding, toKaroubi_isEquivalence, functorExtension₁CompWhiskeringLeftToKaroubiIso_inv_app_app_f, functorExtension₂_map_app_f, AlgebraicTopology.DoldKan.N₂Γ₂ToKaroubiIso_inv_app, instIsEquivalenceFunctorKaroubiObjWhiskeringLeftToKaroubi, AlgebraicTopology.DoldKan.instIsIsoFunctorSimplicialObjectKaroubiNatTrans, CategoryTheory.Abelian.LeftResolution.karoubi.π_app_toKaroubi_obj, KaroubiKaroubi.counitIso_inv_app_f_f, Karoubi.retract_r_f, functorExtension₂CompWhiskeringLeftToKaroubiIso_hom_app_app_f, functorExtension₁CompWhiskeringLeftToKaroubiIso_hom_app_app_f, AlgebraicTopology.DoldKan.Γ₂_obj_p_app, functorExtension₂_obj_map_f, instFaithfulKaroubiToKaroubi, AlgebraicTopology.DoldKan.compatibility_Γ₂N₁_Γ₂N₂_natTrans, instFullKaroubiToKaroubi, AlgebraicTopology.DoldKan.N₁Γ₀_hom_app_f_f, Karoubi.decomp_p, AlgebraicTopology.DoldKan.Γ₂N₂ToKaroubiIso_hom_app, CategoryTheory.Abelian.LeftResolution.instEpiKaroubiAppπ', SimplicialObject.Splitting.toKaroubiNondegComplexIsoN₁_inv_f_f, instEssSurjKaroubiToKaroubiOfIsIdempotentComplete, toKaroubi_map_f, AlgebraicTopology.DoldKan.N₂Γ₂ToKaroubiIso_hom_app, instAdditiveKaroubiToKaroubi, SimplicialObject.Split.toKaroubiNondegComplexFunctorIsoN₁_hom_app_f_f, AlgebraicTopology.DoldKan.N₂Γ₂_compatible_with_N₁Γ₀, whiskeringLeft_obj_preimage_app, CategoryTheory.Abelian.LeftResolution.instEpiKaroubiAppπObjToKaroubi, AlgebraicTopology.DoldKan.whiskerLeft_toKaroubi_N₂Γ₂_hom, AlgebraicTopology.DoldKan.toKaroubiCompN₂IsoN₁_hom_app, KaroubiUniversal₁.counitIso_hom_app_app_f, AlgebraicTopology.DoldKan.toKaroubiCompN₂IsoN₁_inv_app, KaroubiUniversal₁.counitIso_inv_app_app_f, Karoubi.retract_i_f, Karoubi.decompId_i_toKaroubi, AlgebraicTopology.DoldKan.Γ₂N₂ToKaroubiIso_inv_app, functorExtension₂CompWhiskeringLeftToKaroubiIso_inv_app_app_f, KaroubiKaroubi.unitIso_hom_app_f, AlgebraicTopology.DoldKan.N₁Γ₀_hom_app, karoubiUniversal₁_unitIso, karoubiUniversal₁_inverse, KaroubiKaroubi.counitIso_hom_app_f_f, instPreservesMonomorphismsKaroubiToKaroubi, AlgebraicTopology.DoldKan.Γ₂N₁.natTrans_app_f_app, KaroubiKaroubi.equivalence_functor, AlgebraicTopology.DoldKan.N₁Γ₀_inv_app, KaroubiKaroubi.unitIso_inv_app_f, CategoryTheory.Abelian.DoldKan.comparisonN_hom_app_f, SimplicialObject.Split.toKaroubiNondegComplexFunctorIsoN₁_inv_app_f_f, Karoubi.decompId_p_toKaroubi, AlgebraicTopology.DoldKan.Γ₂_map_f_app, CategoryTheory.Abelian.LeftResolution.karoubi.π'_app_f, AlgebraicTopology.DoldKan.Γ₂N₁_inv, toKaroubi_obj_X, AlgebraicTopology.DoldKan.N₁Γ₀_inv_app_f_f, SimplicialObject.Splitting.toKaroubiNondegComplexIsoN₁_hom_f_f, AlgebraicTopology.DoldKan.N₁Γ₀_app, instPreservesEpimorphismsKaroubiToKaroubi, CategoryTheory.Abelian.DoldKan.comparisonN_inv_app_f, toKaroubi_obj_p, AlgebraicTopology.DoldKan.Γ₂N₂.natTrans_app_f_app
toKaroubiEquivalence 📖CompOp
14 mathmath: functorExtension_map_app, toKaroubiEquivalence_functor_additive, DoldKan.hΔ, DoldKan.N₂_map_isoΓ₀_hom_app_f, functorExtension_obj_obj, DoldKan.N_obj, DoldKan.η_inv_app_f, DoldKan.isoN₁_hom_app_f, functorExtension_obj_map, CategoryTheory.Abelian.DoldKan.comparisonN_hom_app_f, DoldKan.hη, DoldKan.N_map, CategoryTheory.Abelian.DoldKan.comparisonN_inv_app_f, DoldKan.η_hom_app_f

Theorems

NameKindAssumesProvesValidatesDepends On
add_def 📖mathematical—Quiver.Hom
Karoubi
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Karoubi.instCategory
instAdd
Karoubi.X
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
CategoryTheory.Preadditive.homGroup
Karoubi.Hom.f
——
instAdditiveKaroubiToKaroubi 📖mathematical—CategoryTheory.Functor.Additive
Karoubi
Karoubi.instCategory
instPreadditiveKaroubi
toKaroubi
——
instEssSurjKaroubiToKaroubiOfIsIdempotentComplete 📖mathematical—CategoryTheory.Functor.EssSurj
Karoubi
Karoubi.instCategory
toKaroubi
—CategoryTheory.IsIdempotentComplete.idempotents_split
Karoubi.idem
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
CategoryTheory.Category.assoc
instFaithfulKaroubiToKaroubi 📖mathematical—CategoryTheory.Functor.Faithful
Karoubi
Karoubi.instCategory
toKaroubi
——
instFullKaroubiToKaroubi 📖mathematical—CategoryTheory.Functor.Full
Karoubi
Karoubi.instCategory
toKaroubi
——
instIsIdempotentCompleteKaroubi 📖mathematical—CategoryTheory.IsIdempotentComplete
Karoubi
Karoubi.instCategory
—Karoubi.comp_p
Karoubi.p_comp
instPreservesEpimorphismsKaroubiToKaroubi 📖mathematical—CategoryTheory.Functor.PreservesEpimorphisms
Karoubi
Karoubi.instCategory
toKaroubi
—Karoubi.hom_ext
CategoryTheory.cancel_epi
instPreservesMonomorphismsKaroubiToKaroubi 📖mathematical—CategoryTheory.Functor.PreservesMonomorphisms
Karoubi
Karoubi.instCategory
toKaroubi
—Karoubi.hom_ext
CategoryTheory.cancel_mono
neg_def 📖mathematical—Quiver.Hom
Karoubi
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Karoubi.instCategory
instNeg
Karoubi.X
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
CategoryTheory.Preadditive.homGroup
Karoubi.Hom.f
——
toKaroubiEquivalence_functor_additive 📖mathematical—CategoryTheory.Functor.Additive
Karoubi
Karoubi.instCategory
instPreadditiveKaroubi
CategoryTheory.Equivalence.functor
toKaroubiEquivalence
—instAdditiveKaroubiToKaroubi
toKaroubi_isEquivalence 📖mathematical—CategoryTheory.Functor.IsEquivalence
Karoubi
Karoubi.instCategory
toKaroubi
—instFaithfulKaroubiToKaroubi
instFullKaroubiToKaroubi
instEssSurjKaroubiToKaroubiOfIsIdempotentComplete
toKaroubi_map_f 📖mathematical—Karoubi.Hom.f
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.map
Karoubi
Karoubi.instCategory
toKaroubi
——
toKaroubi_obj_X 📖mathematical—Karoubi.X
CategoryTheory.Functor.obj
Karoubi
Karoubi.instCategory
toKaroubi
——
toKaroubi_obj_p 📖mathematical—Karoubi.p
CategoryTheory.Functor.obj
Karoubi
Karoubi.instCategory
toKaroubi
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
zero_def 📖mathematical—Quiver.Hom
Karoubi
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Karoubi.instCategory
instZero
Karoubi.X
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
——

CategoryTheory.Idempotents.Karoubi

Definitions

NameCategoryTheorems
X 📖CompOp
138 mathmath: CategoryTheory.Idempotents.app_idem_assoc, CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.obj_map_f, CategoryTheory.Abelian.LeftResolution.karoubi.F_obj_p, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_obj_X_d, AlgebraicTopology.DoldKan.N₁_map_f, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_obj_X_X, CategoryTheory.Idempotents.neg_def, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_map_f_f, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.map_f_f, CategoryTheory.Idempotents.functorExtension₂_map_app_f, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.unitIso_inv_app_f_f, CategoryTheory.Abelian.LeftResolution.karoubi.F'_map_f, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_obj_p_f, HomologicalComplex.comp_p_d, idem_assoc, Biproducts.bicone_Îč_f, CategoryTheory.Idempotents.KaroubiKaroubi.counitIso_inv_app_f_f, CategoryTheory.Idempotents.app_p_comp, CategoryTheory.Idempotents.add_def, comp_p, CategoryTheory.Idempotents.app_p_comm, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_obj_X_p, decompId_p_naturality, hom_eq_zero_iff, HomologicalComplex.p_comm_f_assoc, inclusionHom_apply, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_obj_p_f, eqToHom_f, retract_r_f, AlgebraicTopology.karoubi_alternatingFaceMapComplex_d, HomologicalComplex.p_comp_d_assoc, HomologicalComplex.comp_p_d_assoc, AlgebraicTopology.DoldKan.Γ₂_obj_p_app, CategoryTheory.Idempotents.DoldKan.N₂_map_isoΓ₀_hom_app_f, CategoryTheory.Idempotents.FunctorExtension₁.obj_obj_X, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_unitIso_hom_app_f_f, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_map_f_f, CategoryTheory.Idempotents.functorExtension₂_obj_map_f, CategoryTheory.Abelian.LeftResolution.karoubi.F_map_f, AlgebraicTopology.DoldKan.N₁Γ₀_hom_app_f_f, decomp_p, CategoryTheory.Idempotents.FunctorExtension₁.obj_obj_p, p_comm_assoc, CategoryTheory.Idempotents.app_p_comp_assoc, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.map_f_f, comp_f, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.obj_p_f, CategoryTheory.Idempotents.zero_def, AlgebraicTopology.DoldKan.Γ₂_obj_X_map, SimplicialObject.Splitting.toKaroubiNondegComplexIsoN₁_inv_f_f, AlgebraicTopology.DoldKan.N₂Γ₂_inv_app_f_f, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_obj_d_f, AlgebraicTopology.DoldKan.N₂Γ₂ToKaroubiIso_hom_app, decompId_i_f, p_comp, SimplicialObject.Split.toKaroubiNondegComplexFunctorIsoN₁_hom_app_f_f, comp_proof, CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.obj_obj_X, Hom.comm, CategoryTheory.Idempotents.whiskeringLeft_obj_preimage_app, CategoryTheory.Idempotents.functorExtension₂_obj_obj_X, CategoryTheory.Idempotents.app_p_comm_assoc, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.obj_X_d, AlgebraicTopology.DoldKan.toKaroubiCompN₂IsoN₁_hom_app, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_obj_X_X, HomologicalComplex.p_idem, CategoryTheory.Idempotents.functorExtension₂_obj_obj_p, decompId, sum_hom, CategoryTheory.Idempotents.KaroubiUniversal₁.counitIso_hom_app_app_f, CategoryTheory.Idempotents.KaroubiUniversal₁.counitIso_inv_app_app_f, HomologicalComplex.p_comp_d, CategoryTheory.Idempotents.KaroubiKaroubi.inverse_map_f, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_obj_X_p, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_map_f_f, AlgebraicTopology.DoldKan.N₁_obj_X, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_map_f_f, retract_i_f, CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.obj_obj_p, CategoryTheory.Idempotents.KaroubiKaroubi.idem_f, p_comp_assoc, CategoryTheory.Idempotents.FunctorExtension₁.obj_map_f, CategoryTheory.Idempotents.app_comp_p, Biproducts.bicone_pt_X, complement_p, HomologicalComplex.p_idem_assoc, zsmul_hom, idem, AlgebraicTopology.DoldKan.N₂_obj_p_f, CategoryTheory.Idempotents.app_comp_p_assoc, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.obj_X_X, decompId_assoc, CategoryTheory.Idempotents.KaroubiKaroubi.inverse_obj_p, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.unitIso_hom_app_f_f, AlgebraicTopology.DoldKan.N₂_obj_X_X, CategoryTheory.Idempotents.DoldKan.isoN₁_hom_app_f, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_obj_d_f, CategoryTheory.Idempotents.natTrans_eq, AlgebraicTopology.DoldKan.N₂_obj_X_d, coe_X, AlgebraicTopology.DoldKan.karoubi_PInfty_f, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.obj_X_p, CategoryTheory.Idempotents.KaroubiKaroubi.counitIso_hom_app_f_f, CategoryTheory.Idempotents.KaroubiKaroubi.idem_f_assoc, AlgebraicTopology.DoldKan.Γ₂N₁.natTrans_app_f_app, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_obj_X_X, HomologicalComplex.p_comm_f, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_unitIso_inv_app_f_f, decompId_p_f, Biproducts.bicone_π_f, CategoryTheory.Idempotents.KaroubiKaroubi.inverse_obj_X, complement_X, SimplicialObject.Split.toKaroubiNondegComplexFunctorIsoN₁_inv_app_f_f, CategoryTheory.Abelian.LeftResolution.karoubi.F'_obj_X, decompId_p_toKaroubi, AlgebraicTopology.DoldKan.Γ₂_obj_X_obj, comp_p_assoc, AlgebraicTopology.DoldKan.Γ₂_map_f_app, CategoryTheory.Idempotents.KaroubiKaroubi.p_comm_f, CategoryTheory.Idempotents.FunctorExtension₁.map_app_f, CategoryTheory.Idempotents.app_idem, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.obj_d_f, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.obj_X_X, CategoryTheory.Idempotents.toKaroubi_obj_X, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_unitIso_inv_app_f_f, AlgebraicTopology.DoldKan.N₁Γ₀_inv_app_f_f, SimplicialObject.Splitting.toKaroubiNondegComplexIsoN₁_hom_f_f, CategoryTheory.Abelian.LeftResolution.karoubi.F_obj_X, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_obj_X_X, CategoryTheory.Idempotents.KaroubiKaroubi.p_comm_f_assoc, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_obj_X_d, AlgebraicTopology.DoldKan.N₂_map_f_f, decompId_i_naturality, Biproducts.bicone_pt_p, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_unitIso_hom_app_f_f, CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.map_app_f, AlgebraicTopology.DoldKan.Γ₂N₂.natTrans_app_f_app, p_comm
decompId_i 📖CompOp
10 mathmath: decomp_p, decompId_i_f, CategoryTheory.Idempotents.whiskeringLeft_obj_preimage_app, decompId, CategoryTheory.Idempotents.KaroubiUniversal₁.counitIso_inv_app_app_f, decompId_i_toKaroubi, decompId_assoc, CategoryTheory.Idempotents.natTrans_eq, decompId_i_naturality, AlgebraicTopology.DoldKan.Γ₂N₂.natTrans_app_f_app
decompId_p 📖CompOp
10 mathmath: decompId_p_naturality, decomp_p, CategoryTheory.Idempotents.whiskeringLeft_obj_preimage_app, decompId, CategoryTheory.Idempotents.KaroubiUniversal₁.counitIso_hom_app_app_f, decompId_assoc, CategoryTheory.Idempotents.natTrans_eq, decompId_p_f, decompId_p_toKaroubi, AlgebraicTopology.DoldKan.Γ₂N₂.natTrans_app_f_app
inclusionHom 📖CompOp
1 mathmath: inclusionHom_apply
instCategory 📖CompOp
210 mathmath: CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.obj_map_f, karoubi_hasFiniteBiproducts, CategoryTheory.Abelian.LeftResolution.karoubi.F_obj_p, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_obj_X_d, CategoryTheory.Idempotents.toKaroubi_comp_karoubiFunctorCategoryEmbedding, CategoryTheory.Idempotents.KaroubiKaroubi.equivalence_counitIso, AlgebraicTopology.DoldKan.N₁_map_f, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_obj_X_X, CategoryTheory.Idempotents.neg_def, CategoryTheory.Idempotents.toKaroubi_isEquivalence, CategoryTheory.Idempotents.instIsEquivalenceFunctorKaroubiFunctorExtension₂, CategoryTheory.Idempotents.KaroubiKaroubi.equivalence.additive_inverse, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_map_f_f, CategoryTheory.Idempotents.functorExtension₁CompWhiskeringLeftToKaroubiIso_inv_app_app_f, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.map_f_f, CategoryTheory.Idempotents.functorExtension₂_map_app_f, AlgebraicTopology.DoldKan.N₂Γ₂ToKaroubiIso_inv_app, AlgebraicTopology.DoldKan.identity_N₂, CategoryTheory.Idempotents.instIsEquivalenceFunctorKaroubiObjWhiskeringLeftToKaroubi, CategoryTheory.Idempotents.karoubiHomologicalComplexEquivalence_functor, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.unitIso_inv_app_f_f, CategoryTheory.Preadditive.DoldKan.equivalence_unitIso, AlgebraicTopology.DoldKan.instIsIsoFunctorSimplicialObjectKaroubiNatTrans, CategoryTheory.Abelian.LeftResolution.karoubi.π_app_toKaroubi_obj, CategoryTheory.Abelian.LeftResolution.karoubi.F'_map_f, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_obj_p_f, CategoryTheory.Preadditive.DoldKan.equivalence_functor, CategoryTheory.Idempotents.karoubiUniversal_functor_eq, CategoryTheory.Idempotents.functorExtension_map_app, Biproducts.bicone_Îč_f, CategoryTheory.Idempotents.KaroubiKaroubi.counitIso_inv_app_f_f, CategoryTheory.Idempotents.add_def, CategoryTheory.Idempotents.karoubiUniversal₁_functor, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_obj_X_p, decompId_p_naturality, AlgebraicTopology.DoldKan.instIsIsoFunctorKaroubiSimplicialObjectNatTrans, hom_eq_zero_iff, AlgebraicTopology.DoldKan.N₁_obj_p, CategoryTheory.Preadditive.DoldKan.equivalence_counitIso, inclusionHom_apply, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_obj_p_f, eqToHom_f, CategoryTheory.Idempotents.instIsEquivalenceFunctorKaroubiFunctorExtension, CategoryTheory.Idempotents.toKaroubiEquivalence_functor_additive, retract_r_f, CategoryTheory.Idempotents.functorExtension₂CompWhiskeringLeftToKaroubiIso_hom_app_app_f, AlgebraicTopology.karoubi_alternatingFaceMapComplex_d, CategoryTheory.Abelian.LeftResolution.karoubi_π, CategoryTheory.Idempotents.functorExtension₁CompWhiskeringLeftToKaroubiIso_hom_app_app_f, CategoryTheory.Idempotents.karoubiHomologicalComplexEquivalence_unitIso, CategoryTheory.Idempotents.karoubiHomologicalComplexEquivalence_inverse, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.counitIso_inv, CategoryTheory.Idempotents.DoldKan.hΔ, AlgebraicTopology.DoldKan.Γ₂_obj_p_app, CategoryTheory.Idempotents.DoldKan.N₂_map_isoΓ₀_hom_app_f, CategoryTheory.Idempotents.FunctorExtension₁.obj_obj_X, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_unitIso_hom_app_f_f, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_map_f_f, CategoryTheory.Idempotents.functorExtension₂_obj_map_f, CategoryTheory.Abelian.LeftResolution.karoubi.F_map_f, CategoryTheory.Idempotents.instFaithfulKaroubiToKaroubi, AlgebraicTopology.DoldKan.compatibility_Γ₂N₁_Γ₂N₂_natTrans, CategoryTheory.Idempotents.instFullKaroubiToKaroubi, AlgebraicTopology.DoldKan.N₁Γ₀_hom_app_f_f, decomp_p, CategoryTheory.Idempotents.functorExtension_obj_obj, CategoryTheory.Idempotents.instIsIdempotentCompleteKaroubi, AlgebraicTopology.DoldKan.Γ₂N₂ToKaroubiIso_hom_app, CategoryTheory.Abelian.LeftResolution.karoubi.F'_obj_p, CategoryTheory.Abelian.LeftResolution.instPreservesZeroMorphismsKaroubiF, CategoryTheory.Abelian.LeftResolution.instEpiKaroubiAppπ', id_f, CategoryTheory.Idempotents.FunctorExtension₁.obj_obj_p, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.inverse_map, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.map_f_f, comp_f, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.obj_p_f, CategoryTheory.Idempotents.zero_def, AlgebraicTopology.DoldKan.Γ₂_obj_X_map, SimplicialObject.Splitting.toKaroubiNondegComplexIsoN₁_inv_f_f, CategoryTheory.Idempotents.instEssSurjKaroubiToKaroubiOfIsIdempotentComplete, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.functor_obj, CategoryTheory.Idempotents.toKaroubi_map_f, AlgebraicTopology.DoldKan.N₂Γ₂_inv_app_f_f, CategoryTheory.Idempotents.karoubiFunctorCategoryEmbedding_obj, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_obj_d_f, AlgebraicTopology.DoldKan.N₂Γ₂ToKaroubiIso_hom_app, CategoryTheory.Idempotents.instAdditiveKaroubiToKaroubi, AlgebraicTopology.DoldKan.compatibility_N₂_N₁_karoubi, CategoryTheory.Idempotents.instFullKaroubiFunctorKaroubiFunctorCategoryEmbedding, SimplicialObject.Split.toKaroubiNondegComplexFunctorIsoN₁_hom_app_f_f, CategoryTheory.Abelian.LeftResolution.karoubi_F, AlgebraicTopology.DoldKan.N₂Γ₂_compatible_with_N₁Γ₀, CategoryTheory.Idempotents.KaroubiKaroubi.equivalence_inverse, CategoryTheory.Idempotents.KaroubiKaroubi.equivalence_unitIso, CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.obj_obj_X, CategoryTheory.Idempotents.whiskeringLeft_obj_preimage_app, CategoryTheory.Abelian.LeftResolution.instEpiKaroubiAppπObjToKaroubi, AlgebraicTopology.DoldKan.whiskerLeft_toKaroubi_N₂Γ₂_hom, CategoryTheory.Idempotents.functorExtension₂_obj_obj_X, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.obj_X_d, CategoryTheory.Idempotents.DoldKan.N_obj, AlgebraicTopology.DoldKan.toKaroubiCompN₂IsoN₁_hom_app, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_obj_X_X, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_counitIso_hom, CategoryTheory.Idempotents.functorExtension₂_obj_obj_p, decompId, sum_hom, CategoryTheory.Idempotents.DoldKan.η_inv_app_f, CategoryTheory.Idempotents.KaroubiUniversal₁.counitIso_hom_app_app_f, AlgebraicTopology.DoldKan.toKaroubiCompN₂IsoN₁_inv_app, CategoryTheory.Idempotents.KaroubiUniversal₁.counitIso_inv_app_app_f, CategoryTheory.Idempotents.KaroubiKaroubi.inverse_map_f, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_obj_X_p, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_map_f_f, AlgebraicTopology.DoldKan.N₁_obj_X, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_map_f_f, retract_i_f, CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.obj_obj_p, decompId_i_toKaroubi, CategoryTheory.Idempotents.KaroubiKaroubi.idem_f, CategoryTheory.Idempotents.karoubiUniversal₁_counitIso, AlgebraicTopology.DoldKan.Γ₂N₂ToKaroubiIso_inv_app, CategoryTheory.Idempotents.FunctorExtension₁.obj_map_f, AlgebraicTopology.DoldKan.instReflectsIsomorphismsSimplicialObjectKaroubiChainComplexNatN₁, CategoryTheory.Idempotents.functorExtension₂CompWhiskeringLeftToKaroubiIso_inv_app_app_f, CategoryTheory.Abelian.LeftResolution.instEpiKaroubiAppπ, Biproducts.bicone_pt_X, CategoryTheory.Preadditive.DoldKan.equivalence_inverse, zsmul_hom, AlgebraicTopology.DoldKan.N₂_obj_p_f, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.obj_X_X, decompId_assoc, CategoryTheory.Idempotents.KaroubiKaroubi.inverse_obj_p, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.unitIso_hom_app_f_f, CategoryTheory.Idempotents.KaroubiKaroubi.unitIso_hom_app_f, AlgebraicTopology.DoldKan.N₂_obj_X_X, CategoryTheory.Idempotents.DoldKan.isoN₁_hom_app_f, AlgebraicTopology.DoldKan.N₁Γ₀_hom_app, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_obj_d_f, CategoryTheory.Idempotents.natTrans_eq, CategoryTheory.Idempotents.functorExtension_obj_map, CategoryTheory.Idempotents.karoubiUniversal₁_unitIso, CategoryTheory.Idempotents.karoubiUniversal₂_functor_eq, CategoryTheory.Idempotents.karoubiFunctorCategoryEmbedding_map, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_counitIso_inv, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.inverse_obj, CategoryTheory.Idempotents.karoubiUniversal₁_inverse, AlgebraicTopology.DoldKan.N₂_obj_X_d, AlgebraicTopology.DoldKan.karoubi_PInfty_f, CategoryTheory.Abelian.LeftResolution.instPreservesZeroMorphismsKaroubiFKaroubi, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.obj_X_p, CategoryTheory.Idempotents.KaroubiKaroubi.counitIso_hom_app_f_f, CategoryTheory.Idempotents.instPreservesMonomorphismsKaroubiToKaroubi, CategoryTheory.Idempotents.KaroubiKaroubi.instAdditiveKaroubiInverse, CategoryTheory.Idempotents.KaroubiKaroubi.idem_f_assoc, AlgebraicTopology.DoldKan.Γ₂N₁.natTrans_app_f_app, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_obj_X_X, CategoryTheory.Idempotents.KaroubiKaroubi.equivalence_functor, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_unitIso_inv_app_f_f, AlgebraicTopology.DoldKan.N₁Γ₀_inv_app, Biproducts.bicone_π_f, CategoryTheory.Idempotents.KaroubiKaroubi.inverse_obj_X, CategoryTheory.Idempotents.KaroubiKaroubi.unitIso_inv_app_f, CategoryTheory.Abelian.DoldKan.comparisonN_hom_app_f, CategoryTheory.Idempotents.karoubiHomologicalComplexEquivalence_counitIso, instHasBinaryBiproductComplement, CategoryTheory.Idempotents.instFaithfulKaroubiFunctorKaroubiFunctorCategoryEmbedding, SimplicialObject.Split.toKaroubiNondegComplexFunctorIsoN₁_inv_app_f_f, CategoryTheory.Abelian.LeftResolution.karoubi.F'_obj_X, decompId_p_toKaroubi, AlgebraicTopology.DoldKan.Γ₂_obj_X_obj, CategoryTheory.Idempotents.KaroubiKaroubi.equivalence.additive_functor, AlgebraicTopology.DoldKan.Γ₂_map_f_app, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.counitIso_hom, CategoryTheory.Idempotents.KaroubiKaroubi.p_comm_f, CategoryTheory.Idempotents.FunctorExtension₁.map_app_f, CategoryTheory.Abelian.LeftResolution.karoubi.π'_app_f, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_counitIso_inv, AlgebraicTopology.DoldKan.Γ₂N₁_inv, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.obj_d_f, AlgebraicTopology.DoldKan.instReflectsIsomorphismsKaroubiSimplicialObjectChainComplexNatN₂, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.obj_X_X, CategoryTheory.Idempotents.toKaroubi_obj_X, AlgebraicTopology.DoldKan.identity_N₂_objectwise, CategoryTheory.Idempotents.DoldKan.hη, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_unitIso_inv_app_f_f, AlgebraicTopology.DoldKan.N₁Γ₀_inv_app_f_f, SimplicialObject.Splitting.toKaroubiNondegComplexIsoN₁_hom_f_f, CategoryTheory.Abelian.LeftResolution.karoubi.F_obj_X, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_obj_X_X, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.functor_map, CategoryTheory.Idempotents.KaroubiKaroubi.p_comm_f_assoc, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_obj_X_d, AlgebraicTopology.DoldKan.N₂_map_f_f, decompId_i_naturality, Biproducts.bicone_pt_p, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_unitIso_hom_app_f_f, AlgebraicTopology.DoldKan.N₁Γ₀_app, CategoryTheory.Idempotents.DoldKan.N_map, CategoryTheory.Idempotents.instPreservesEpimorphismsKaroubiToKaroubi, CategoryTheory.Abelian.DoldKan.comparisonN_inv_app_f, CategoryTheory.Idempotents.functorExtension₁_obj, CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.map_app_f, CategoryTheory.Idempotents.toKaroubi_obj_p, AlgebraicTopology.DoldKan.Γ₂N₂_inv, CategoryTheory.Idempotents.DoldKan.η_hom_app_f, CategoryTheory.Idempotents.functorExtension₁_map, AlgebraicTopology.DoldKan.Γ₂N₂.natTrans_app_f_app, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_counitIso_hom
instInhabitedHomOfPreadditive 📖CompOp—
p 📖CompOp
85 mathmath: CategoryTheory.Idempotents.app_idem_assoc, CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.obj_map_f, CategoryTheory.Abelian.LeftResolution.karoubi.F_obj_p, CategoryTheory.Idempotents.functorExtension₁CompWhiskeringLeftToKaroubiIso_inv_app_app_f, CategoryTheory.Idempotents.functorExtension₂_map_app_f, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.unitIso_inv_app_f_f, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_obj_p_f, HomologicalComplex.comp_p_d, idem_assoc, Biproducts.bicone_Îč_f, CategoryTheory.Idempotents.KaroubiKaroubi.counitIso_inv_app_f_f, CategoryTheory.Idempotents.app_p_comp, comp_p, CategoryTheory.Idempotents.app_p_comm, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_obj_X_p, AlgebraicTopology.DoldKan.N₁_obj_p, HomologicalComplex.p_comm_f_assoc, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_obj_p_f, eqToHom_f, retract_r_f, AlgebraicTopology.karoubi_alternatingFaceMapComplex_d, CategoryTheory.Idempotents.functorExtension₁CompWhiskeringLeftToKaroubiIso_hom_app_app_f, HomologicalComplex.p_comp_d_assoc, HomologicalComplex.comp_p_d_assoc, AlgebraicTopology.DoldKan.Γ₂_obj_p_app, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_unitIso_hom_app_f_f, CategoryTheory.Idempotents.functorExtension₂_obj_map_f, CategoryTheory.Abelian.LeftResolution.karoubi.F_map_f, decomp_p, CategoryTheory.Abelian.LeftResolution.karoubi.F'_obj_p, id_f, CategoryTheory.Idempotents.FunctorExtension₁.obj_obj_p, p_comm_assoc, CategoryTheory.Idempotents.app_p_comp_assoc, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.obj_p_f, AlgebraicTopology.DoldKan.N₂Γ₂_inv_app_f_f, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_obj_d_f, decompId_i_f, p_comp, comp_proof, Hom.comm, CategoryTheory.Idempotents.app_p_comm_assoc, HomologicalComplex.p_idem, CategoryTheory.Idempotents.functorExtension₂_obj_obj_p, HomologicalComplex.p_comp_d, coe_p, CategoryTheory.Idempotents.KaroubiKaroubi.inverse_map_f, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_obj_X_p, retract_i_f, CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.obj_obj_p, CategoryTheory.Idempotents.KaroubiKaroubi.idem_f, p_comp_assoc, CategoryTheory.Idempotents.FunctorExtension₁.obj_map_f, CategoryTheory.Idempotents.app_comp_p, complement_p, HomologicalComplex.p_idem_assoc, idem, AlgebraicTopology.DoldKan.N₂_obj_p_f, CategoryTheory.Idempotents.app_comp_p_assoc, CategoryTheory.Idempotents.KaroubiKaroubi.inverse_obj_p, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.unitIso_hom_app_f_f, CategoryTheory.Idempotents.KaroubiKaroubi.unitIso_hom_app_f, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_obj_d_f, AlgebraicTopology.DoldKan.karoubi_PInfty_f, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.obj_X_p, CategoryTheory.Idempotents.KaroubiKaroubi.counitIso_hom_app_f_f, CategoryTheory.Idempotents.KaroubiKaroubi.idem_f_assoc, HomologicalComplex.p_comm_f, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_unitIso_inv_app_f_f, decompId_p_f, Biproducts.bicone_π_f, CategoryTheory.Idempotents.KaroubiKaroubi.unitIso_inv_app_f, comp_p_assoc, AlgebraicTopology.DoldKan.Γ₂_map_f_app, CategoryTheory.Idempotents.KaroubiKaroubi.p_comm_f, CategoryTheory.Idempotents.FunctorExtension₁.map_app_f, CategoryTheory.Idempotents.app_idem, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.obj_d_f, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_unitIso_inv_app_f_f, CategoryTheory.Idempotents.KaroubiKaroubi.p_comm_f_assoc, AlgebraicTopology.DoldKan.N₂_map_f_f, Biproducts.bicone_pt_p, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_unitIso_hom_app_f_f, CategoryTheory.Idempotents.toKaroubi_obj_p, p_comm
retract 📖CompOp
2 mathmath: retract_r_f, retract_i_f

Theorems

NameKindAssumesProvesValidatesDepends On
coe_X 📖mathematical—X
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
coe_p 📖mathematical—p
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
comp_f 📖mathematical—Hom.f
CategoryTheory.CategoryStruct.comp
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Category.toCategoryStruct
instCategory
X
——
comp_p 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
Hom.f
p
—Hom.comm
CategoryTheory.Category.assoc
idem
comp_p_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
Hom.f
p
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comp_p
comp_proof 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
p
Hom.f
—CategoryTheory.Category.assoc
comp_p
p_comp_assoc
decompId 📖mathematical—CategoryTheory.CategoryStruct.id
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.CategoryStruct.comp
X
decompId_i
decompId_p
—hom_ext
idem
decompId_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Category.toCategoryStruct
instCategory
X
CategoryTheory.CategoryStruct.id
decompId_i
decompId_p
—CategoryTheory.Category.id_comp
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
decompId
decompId_i_f 📖mathematical—Hom.f
X
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
decompId_i
p
——
decompId_i_naturality 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Category.toCategoryStruct
instCategory
X
CategoryTheory.CategoryStruct.id
decompId_i
Hom.f
—comp_p
p_comp
decompId_i_toKaroubi 📖mathematical—decompId_i
CategoryTheory.Functor.obj
CategoryTheory.Idempotents.Karoubi
instCategory
CategoryTheory.Idempotents.toKaroubi
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
decompId_p_f 📖mathematical—Hom.f
X
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
decompId_p
p
——
decompId_p_naturality 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Category.toCategoryStruct
instCategory
X
CategoryTheory.CategoryStruct.id
decompId_p
Hom.f
—p_comp
comp_p
decompId_p_toKaroubi 📖mathematical—decompId_p
CategoryTheory.Functor.obj
CategoryTheory.Idempotents.Karoubi
instCategory
CategoryTheory.Idempotents.toKaroubi
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
X
——
decomp_p 📖mathematical—CategoryTheory.Functor.map
CategoryTheory.Idempotents.Karoubi
instCategory
CategoryTheory.Idempotents.toKaroubi
X
p
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.id
decompId_p
decompId_i
—hom_ext
idem
eqToHom_f 📖mathematical—Hom.f
CategoryTheory.eqToHom
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.CategoryStruct.comp
X
p
—CategoryTheory.Category.comp_id
ext 📖—X
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
p
CategoryTheory.eqToHom
——CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
hom_eq_zero_iff 📖mathematical—Quiver.Hom
CategoryTheory.Idempotents.Karoubi
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.Idempotents.instZero
Hom.f
X
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
—hom_ext_iff
hom_ext 📖—Hom.f———
hom_ext_iff 📖mathematical—Hom.f—Hom.ext
id_f 📖mathematical—Hom.f
CategoryTheory.CategoryStruct.id
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Category.toCategoryStruct
instCategory
p
——
idem 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
p
——
idem_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
p
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
idem
inclusionHom_apply 📖mathematical—DFunLike.coe
AddMonoidHom
Quiver.Hom
CategoryTheory.Idempotents.Karoubi
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instCategory
X
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
CategoryTheory.Idempotents.instAddCommGroupHom
CategoryTheory.Preadditive.homGroup
AddMonoidHom.instFunLike
inclusionHom
Hom.f
——
p_comm 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
p
Hom.f
—p_comp
comp_p
p_comm_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
p
Hom.f
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
p_comm
p_comp 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
p
Hom.f
—Hom.comm
CategoryTheory.Category.assoc
idem
p_comp_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
p
Hom.f
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
p_comp
retract_i_f 📖mathematical—Hom.f
CategoryTheory.Functor.obj
CategoryTheory.Idempotents.Karoubi
instCategory
CategoryTheory.Idempotents.toKaroubi
X
CategoryTheory.Retract.i
retract
p
——
retract_r_f 📖mathematical—Hom.f
CategoryTheory.Functor.obj
CategoryTheory.Idempotents.Karoubi
instCategory
CategoryTheory.Idempotents.toKaroubi
X
CategoryTheory.Retract.r
retract
p
——
sum_hom 📖mathematical—Hom.f
Finset.sum
Quiver.Hom
CategoryTheory.Idempotents.Karoubi
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instCategory
AddCommGroup.toAddCommMonoid
CategoryTheory.Idempotents.instAddCommGroupHom
X
CategoryTheory.Preadditive.homGroup
—map_sum
AddMonoidHom.instAddMonoidHomClass
zsmul_hom 📖mathematical—Hom.f
Quiver.Hom
CategoryTheory.Idempotents.Karoubi
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instCategory
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
CategoryTheory.Idempotents.instAddCommGroupHom
X
CategoryTheory.Preadditive.homGroup
—map_zsmul
AddMonoidHom.instAddMonoidHomClass

CategoryTheory.Idempotents.Karoubi.Hom

Definitions

NameCategoryTheorems
f 📖CompOp
106 mathmath: CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.obj_map_f, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_obj_X_d, AlgebraicTopology.DoldKan.N₁_map_f, CategoryTheory.Idempotents.neg_def, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_map_f_f, CategoryTheory.Idempotents.functorExtension₁CompWhiskeringLeftToKaroubiIso_inv_app_app_f, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.map_f_f, CategoryTheory.Idempotents.functorExtension₂_map_app_f, AlgebraicTopology.DoldKan.N₂Γ₂ToKaroubiIso_inv_app, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.unitIso_inv_app_f_f, CategoryTheory.Abelian.LeftResolution.karoubi.F'_map_f, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_obj_p_f, CategoryTheory.Idempotents.Karoubi.HomologicalComplex.comp_p_d, CategoryTheory.Idempotents.Karoubi.Biproducts.bicone_Îč_f, CategoryTheory.Idempotents.KaroubiKaroubi.counitIso_inv_app_f_f, CategoryTheory.Idempotents.app_p_comp, CategoryTheory.Idempotents.add_def, CategoryTheory.Idempotents.Karoubi.comp_p, CategoryTheory.Idempotents.app_p_comm, CategoryTheory.Idempotents.Karoubi.decompId_p_naturality, CategoryTheory.Idempotents.Karoubi.hom_eq_zero_iff, CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_comm_f_assoc, CategoryTheory.Idempotents.Karoubi.inclusionHom_apply, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_obj_p_f, CategoryTheory.Idempotents.Karoubi.eqToHom_f, CategoryTheory.Idempotents.Karoubi.retract_r_f, CategoryTheory.Idempotents.functorExtension₂CompWhiskeringLeftToKaroubiIso_hom_app_app_f, ext_iff, AlgebraicTopology.karoubi_alternatingFaceMapComplex_d, CategoryTheory.Idempotents.functorExtension₁CompWhiskeringLeftToKaroubiIso_hom_app_app_f, CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_comp_d_assoc, CategoryTheory.Idempotents.Karoubi.HomologicalComplex.comp_p_d_assoc, CategoryTheory.Idempotents.DoldKan.N₂_map_isoΓ₀_hom_app_f, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_unitIso_hom_app_f_f, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_map_f_f, CategoryTheory.Idempotents.functorExtension₂_obj_map_f, CategoryTheory.Abelian.LeftResolution.karoubi.F_map_f, AlgebraicTopology.DoldKan.N₁Γ₀_hom_app_f_f, CategoryTheory.Idempotents.Karoubi.id_f, CategoryTheory.Idempotents.FunctorExtension₁.obj_obj_p, CategoryTheory.Idempotents.Karoubi.p_comm_assoc, CategoryTheory.Idempotents.app_p_comp_assoc, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.map_f_f, CategoryTheory.Idempotents.Karoubi.comp_f, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.obj_p_f, SimplicialObject.Splitting.toKaroubiNondegComplexIsoN₁_inv_f_f, CategoryTheory.Idempotents.toKaroubi_map_f, AlgebraicTopology.DoldKan.N₂Γ₂_inv_app_f_f, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_obj_d_f, AlgebraicTopology.DoldKan.N₂Γ₂ToKaroubiIso_hom_app, CategoryTheory.Idempotents.Karoubi.decompId_i_f, CategoryTheory.Idempotents.Karoubi.p_comp, SimplicialObject.Split.toKaroubiNondegComplexFunctorIsoN₁_hom_app_f_f, CategoryTheory.Idempotents.Karoubi.comp_proof, comm, CategoryTheory.Idempotents.app_p_comm_assoc, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.obj_X_d, AlgebraicTopology.DoldKan.toKaroubiCompN₂IsoN₁_hom_app, CategoryTheory.Idempotents.Karoubi.sum_hom, CategoryTheory.Idempotents.KaroubiUniversal₁.counitIso_hom_app_app_f, AlgebraicTopology.DoldKan.toKaroubiCompN₂IsoN₁_inv_app, CategoryTheory.Idempotents.KaroubiUniversal₁.counitIso_inv_app_app_f, CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_comp_d, CategoryTheory.Idempotents.KaroubiKaroubi.inverse_map_f, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_map_f_f, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_map_f_f, CategoryTheory.Idempotents.Karoubi.retract_i_f, CategoryTheory.Idempotents.KaroubiKaroubi.idem_f, CategoryTheory.Idempotents.Karoubi.p_comp_assoc, CategoryTheory.Idempotents.FunctorExtension₁.obj_map_f, CategoryTheory.Idempotents.app_comp_p, CategoryTheory.Idempotents.functorExtension₂CompWhiskeringLeftToKaroubiIso_inv_app_app_f, CategoryTheory.Idempotents.Karoubi.zsmul_hom, CategoryTheory.Idempotents.app_comp_p_assoc, CategoryTheory.Idempotents.KaroubiKaroubi.inverse_obj_p, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.unitIso_hom_app_f_f, CategoryTheory.Idempotents.KaroubiKaroubi.unitIso_hom_app_f, CategoryTheory.Idempotents.DoldKan.isoN₁_hom_app_f, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_obj_d_f, AlgebraicTopology.DoldKan.karoubi_PInfty_f, CategoryTheory.Idempotents.KaroubiKaroubi.counitIso_hom_app_f_f, CategoryTheory.Idempotents.KaroubiKaroubi.idem_f_assoc, AlgebraicTopology.DoldKan.Γ₂N₁.natTrans_app_f_app, CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_comm_f, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_unitIso_inv_app_f_f, CategoryTheory.Idempotents.Karoubi.decompId_p_f, CategoryTheory.Idempotents.Karoubi.Biproducts.bicone_π_f, CategoryTheory.Idempotents.KaroubiKaroubi.unitIso_inv_app_f, SimplicialObject.Split.toKaroubiNondegComplexFunctorIsoN₁_inv_app_f_f, CategoryTheory.Idempotents.Karoubi.comp_p_assoc, AlgebraicTopology.DoldKan.Γ₂_map_f_app, CategoryTheory.Idempotents.KaroubiKaroubi.p_comm_f, CategoryTheory.Idempotents.FunctorExtension₁.map_app_f, CategoryTheory.Abelian.LeftResolution.karoubi.π'_app_f, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.obj_d_f, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_unitIso_inv_app_f_f, AlgebraicTopology.DoldKan.N₁Γ₀_inv_app_f_f, SimplicialObject.Splitting.toKaroubiNondegComplexIsoN₁_hom_f_f, CategoryTheory.Idempotents.KaroubiKaroubi.p_comm_f_assoc, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_obj_X_d, AlgebraicTopology.DoldKan.N₂_map_f_f, CategoryTheory.Idempotents.Karoubi.decompId_i_naturality, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_unitIso_hom_app_f_f, CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.map_app_f, CategoryTheory.Idempotents.Karoubi.hom_ext_iff, CategoryTheory.Idempotents.Karoubi.p_comm

Theorems

NameKindAssumesProvesValidatesDepends On
comm 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Idempotents.Karoubi.X
CategoryTheory.Idempotents.Karoubi.p
f
——
ext 📖—f———
ext_iff 📖mathematical—f—ext

---

← Back to Index