Documentation Verification Report

KaroubiKaroubi

šŸ“ Source: Mathlib/CategoryTheory/Idempotents/KaroubiKaroubi.lean

Statistics

MetricCount
DefinitionscounitIso, equivalence, inverse, unitIso
4
TheoremscounitIso_hom_app_f_f, counitIso_inv_app_f_f, additive_functor, additive_inverse, equivalence_counitIso, equivalence_functor, equivalence_inverse, equivalence_unitIso, idem_f, idem_f_assoc, instAdditiveKaroubiInverse, inverse_map_f, inverse_obj_X, inverse_obj_p, p_comm_f, p_comm_f_assoc, unitIso_hom_app_f, unitIso_inv_app_f
18
Total22

CategoryTheory.Idempotents.KaroubiKaroubi

Definitions

NameCategoryTheorems
counitIso šŸ“–CompOp
3 mathmath: equivalence_counitIso, counitIso_inv_app_f_f, counitIso_hom_app_f_f
equivalence šŸ“–CompOp
7 mathmath: equivalence_counitIso, equivalence.additive_inverse, AlgebraicTopology.DoldKan.compatibility_Nā‚‚_N₁_karoubi, equivalence_inverse, equivalence_unitIso, equivalence_functor, equivalence.additive_functor
inverse šŸ“–CompOp
9 mathmath: counitIso_inv_app_f_f, equivalence_inverse, inverse_map_f, inverse_obj_p, unitIso_hom_app_f, counitIso_hom_app_f_f, instAdditiveKaroubiInverse, inverse_obj_X, unitIso_inv_app_f
unitIso šŸ“–CompOp
3 mathmath: equivalence_unitIso, unitIso_hom_app_f, unitIso_inv_app_f

Theorems

NameKindAssumesProvesValidatesDepends On
counitIso_hom_app_f_f šŸ“–mathematical—CategoryTheory.Idempotents.Karoubi.Hom.f
CategoryTheory.Idempotents.Karoubi.X
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Idempotents.Karoubi.instCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
inverse
CategoryTheory.Idempotents.toKaroubi
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
counitIso
CategoryTheory.Idempotents.Karoubi.p
——
counitIso_inv_app_f_f šŸ“–mathematical—CategoryTheory.Idempotents.Karoubi.Hom.f
CategoryTheory.Idempotents.Karoubi.X
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Idempotents.Karoubi.instCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
inverse
CategoryTheory.Idempotents.toKaroubi
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
counitIso
CategoryTheory.Idempotents.Karoubi.p
——
equivalence_counitIso šŸ“–mathematical—CategoryTheory.Equivalence.counitIso
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Idempotents.Karoubi.instCategory
equivalence
counitIso
——
equivalence_functor šŸ“–mathematical—CategoryTheory.Equivalence.functor
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Idempotents.Karoubi.instCategory
equivalence
CategoryTheory.Idempotents.toKaroubi
——
equivalence_inverse šŸ“–mathematical—CategoryTheory.Equivalence.inverse
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Idempotents.Karoubi.instCategory
equivalence
inverse
——
equivalence_unitIso šŸ“–mathematical—CategoryTheory.Equivalence.unitIso
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Idempotents.Karoubi.instCategory
equivalence
unitIso
——
idem_f šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Idempotents.Karoubi.X
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Idempotents.Karoubi.instCategory
CategoryTheory.Idempotents.Karoubi.Hom.f
CategoryTheory.Idempotents.Karoubi.p
—CategoryTheory.Idempotents.Karoubi.idem
idem_f_assoc šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Idempotents.Karoubi.X
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Idempotents.Karoubi.instCategory
CategoryTheory.Idempotents.Karoubi.Hom.f
CategoryTheory.Idempotents.Karoubi.p
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
idem_f
instAdditiveKaroubiInverse šŸ“–mathematical—CategoryTheory.Functor.Additive
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Idempotents.Karoubi.instCategory
CategoryTheory.Idempotents.instPreadditiveKaroubi
inverse
——
inverse_map_f šŸ“–mathematical—CategoryTheory.Idempotents.Karoubi.Hom.f
CategoryTheory.Idempotents.Karoubi.X
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Idempotents.Karoubi.instCategory
CategoryTheory.Idempotents.Karoubi.p
CategoryTheory.Functor.map
inverse
——
inverse_obj_X šŸ“–mathematical—CategoryTheory.Idempotents.Karoubi.X
CategoryTheory.Functor.obj
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Idempotents.Karoubi.instCategory
inverse
——
inverse_obj_p šŸ“–mathematical—CategoryTheory.Idempotents.Karoubi.p
CategoryTheory.Functor.obj
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Idempotents.Karoubi.instCategory
inverse
CategoryTheory.Idempotents.Karoubi.Hom.f
CategoryTheory.Idempotents.Karoubi.X
——
p_comm_f šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Idempotents.Karoubi.X
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Idempotents.Karoubi.instCategory
CategoryTheory.Idempotents.Karoubi.Hom.f
CategoryTheory.Idempotents.Karoubi.p
—CategoryTheory.Idempotents.Karoubi.p_comm
p_comm_f_assoc šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Idempotents.Karoubi.X
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Idempotents.Karoubi.instCategory
CategoryTheory.Idempotents.Karoubi.Hom.f
CategoryTheory.Idempotents.Karoubi.p
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
p_comm_f
unitIso_hom_app_f šŸ“–mathematical—CategoryTheory.Idempotents.Karoubi.Hom.f
CategoryTheory.Functor.obj
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Idempotents.Karoubi.instCategory
CategoryTheory.Functor.comp
CategoryTheory.Idempotents.toKaroubi
inverse
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
unitIso
CategoryTheory.Idempotents.Karoubi.p
——
unitIso_inv_app_f šŸ“–mathematical—CategoryTheory.Idempotents.Karoubi.Hom.f
CategoryTheory.Functor.obj
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Idempotents.Karoubi.instCategory
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Idempotents.toKaroubi
inverse
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
unitIso
CategoryTheory.Idempotents.Karoubi.p
——

CategoryTheory.Idempotents.KaroubiKaroubi.equivalence

Theorems

NameKindAssumesProvesValidatesDepends On
additive_functor šŸ“–mathematical—CategoryTheory.Functor.Additive
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Idempotents.Karoubi.instCategory
CategoryTheory.Idempotents.instPreadditiveKaroubi
CategoryTheory.Equivalence.functor
CategoryTheory.Idempotents.KaroubiKaroubi.equivalence
——
additive_inverse šŸ“–mathematical—CategoryTheory.Functor.Additive
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Idempotents.Karoubi.instCategory
CategoryTheory.Idempotents.instPreadditiveKaroubi
CategoryTheory.Equivalence.inverse
CategoryTheory.Idempotents.KaroubiKaroubi.equivalence
——

---

← Back to Index