Documentation Verification Report

SimplicialObject

📁 Source: Mathlib/CategoryTheory/Idempotents/SimplicialObject.lean

Statistics

MetricCount
DefinitionsSimplicialObject
1
TheoremsinstIsIdempotentCompleteCosimplicialObject, instIsIdempotentCompleteSimplicialObject
2
Total3

CategoryTheory

Definitions

NameCategoryTheorems
SimplicialObject 📖CompOp
245 mathmath: AlgebraicTopology.DoldKan.natTransPInfty_app, SimplicialObject.id_left_app, SimplicialObject.whiskering_obj_map_app, AlgebraicTopology.DoldKan.N₁_map_f, AlgebraicTopology.DoldKan.HigherFacesVanish.inclusionOfMooreComplexMap, Arrow.augmentedCechNerve_hom_app, SimplicialObject.comp_right, SimplicialObject.Augmented.point_map, AlgebraicTopology.DoldKan.N₂Γ₂ToKaroubiIso_inv_app, AlgebraicTopology.DoldKan.identity_N₂, cosimplicialSimplicialEquiv_counitIso_hom_app_app, CosimplicialObject.Augmented.leftOp_right, simplicialCosimplicialEquiv_counitIso_inv_app_app, simplicialCosimplicialEquiv_inverse_map, SimplicialObject.Augmented.toArrow_map_right, SimplicialObject.opFunctor_obj_σ, Preadditive.DoldKan.equivalence_unitIso, SimplicialObject.augment_left, AlgebraicTopology.DoldKan.instIsIsoFunctorSimplicialObjectKaroubiNatTrans, AlgebraicTopology.AlternatingFaceMapComplex.ε_app_f_succ, SimplicialObject.Augmented.ExtraDegeneracy.s_comp_δ₀_assoc, SimplicialObject.Truncated.cosk.full, AlgebraicTopology.DoldKan.homotopyEquivNormalizedMooreComplexAlternatingFaceMapComplex_inv, SimplicialObject.opFunctor_obj_map, SimplicialObject.Split.forget_obj, Arrow.mapAugmentedCechNerve_left, Preadditive.DoldKan.equivalence_functor, SimplicialObject.Augmented.w₀, AlgebraicTopology.AlternatingCofaceMapComplex.d_eq_unop_d, SimplicialObject.instIsRightKanExtensionOppositeTruncatedSimplexCategoryObjCoskAppTruncatedCounitCoskAdjTruncation, SimplicialObject.Augmented.toArrow_map_left, AlgebraicTopology.alternatingFaceMapComplex_obj_d, SimplicialObject.Augmented.ExtraDegeneracy.s'_comp_ε, SimplicialObject.Augmented.toArrow_obj_left, SimplicialObject.Truncated.cosk.faithful, SimplicialObject.Split.forget_map, SimplicialObject.Split.comp_F, AlgebraicTopology.DoldKan.instIsIsoFunctorKaroubiSimplicialObjectNatTrans, AlgebraicTopology.DoldKan.N₁_obj_p, SimplicialObject.opFunctor_map_app, Preadditive.DoldKan.equivalence_counitIso, SimplicialObject.Augmented.rightOpLeftOpIso_inv_right, AlgebraicTopology.karoubi_alternatingFaceMapComplex_d, AlgebraicTopology.alternatingFaceMapComplex_map_f, SimplicialObject.Augmented.ExtraDegeneracy.s_comp_δ, SimplicialObject.Augmented.const_obj_hom, Idempotents.DoldKan.hε, AlgebraicTopology.DoldKan.homotopyEquivNormalizedMooreComplexAlternatingFaceMapComplex_homotopyHomInvId, SimplicialObject.opEquivalence_counitIso, SimplicialObject.Augmented.whiskering_map_app_right, AlgebraicTopology.DoldKan.Γ₂_obj_p_app, Idempotents.DoldKan.N₂_map_isoΓ₀_hom_app_f, simplicialToCosimplicialAugmented_map_left, AlgebraicTopology.DoldKan.map_Hσ, id_app, AlgebraicTopology.DoldKan.compatibility_Γ₂N₁_Γ₂N₂_natTrans, SSet.Augmented.stdSimplex_map_right, AlgebraicTopology.DoldKan.Γ₀_obj_map, cosimplicialSimplicialEquiv_functor_obj_obj, SimplicialObject.Augmented.const_map_left, simplicialCosimplicialEquiv_unitIso_hom_app, AlgebraicTopology.DoldKan.N₁Γ₀_hom_app_f_f, SSet.Augmented.stdSimplex_obj_left, SimplicialObject.Augmented.const_obj_right, AlgebraicTopology.DoldKan.inclusionOfMooreComplexMap_comp_PInfty_assoc, Idempotents.instIsIdempotentCompleteSimplicialObject, Idempotents.DoldKan.equivalence_counitIso, AlgebraicTopology.DoldKan.Γ₂N₂ToKaroubiIso_hom_app, simplicialCosimplicialEquiv_counitIso_hom_app_app, CosimplicialObject.Augmented.leftOp_left_map, cosimplicialSimplicialEquiv_inverse_obj, SimplicialObject.isoCoskOfIsCoskeletal_hom, AlgebraicTopology.AlternatingFaceMapComplex.ε_app_f_zero, SimplicialObject.instHasLimitsOfShape, SimplicialObject.Augmented.ExtraDegeneracy.s₀_comp_δ₁_assoc, AlgebraicTopology.inclusionOfMooreComplex_app, AlgebraicTopology.DoldKan.Γ₂_obj_X_map, SimplicialObject.Splitting.toKaroubiNondegComplexIsoN₁_inv_f_f, SimplicialObject.augment_right, SimplicialObject.augment_hom_zero, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_left_app, SimplicialObject.Augmented.rightOp_right_map, Idempotents.DoldKan.equivalence_inverse, AlgebraicTopology.DoldKan.N₂Γ₂_inv_app_f_f, AlgebraicTopology.DoldKan.inclusionOfMooreComplexMap_comp_PInfty, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompDropIso_hom_app_app, SimplicialObject.Splitting.ofIso_isColimit', SimplicialObject.Truncated.sk.full, cosimplicialSimplicialEquiv_functor_map_app, AlgebraicTopology.DoldKan.N₂Γ₂ToKaroubiIso_hom_app, Limits.FormalCoproduct.cechFunctor_obj, AlgebraicTopology.DoldKan.compatibility_N₂_N₁_karoubi, SimplicialObject.Augmented.hom_ext_iff, AlgebraicTopology.DoldKan.map_PInfty_f, SimplicialObject.Augmented.rightOpLeftOpIso_inv_left_app, SimplicialObject.Split.toKaroubiNondegComplexFunctorIsoN₁_hom_app_f_f, cosimplicialSimplicialEquiv_counitIso_inv_app_app, SimplicialObject.augment_hom_app, SimplicialObject.Augmented.rightOpLeftOpIso_hom_left_app, AlgebraicTopology.DoldKan.N₂Γ₂_compatible_with_N₁Γ₀, SSet.Augmented.stdSimplex_obj_right, AlgebraicTopology.normalizedMooreComplex_objD, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_map_right, SimplicialObject.Splitting.ofIso_ι, SimplicialObject.opFunctor_obj_δ, SimplicialObject.Augmented.const_map_right, AlgebraicTopology.DoldKan.whiskerLeft_toKaroubi_N₂Γ₂_hom, SimplicialObject.instIsIsoAppUnitTruncatedCoskAdj, AlgebraicTopology.normalizedMooreComplex_map, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_map_left_app, AlgebraicTopology.DoldKan.Γ₀_map_app, SimplicialObject.comp_left_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_right, Idempotents.DoldKan.N_obj, AlgebraicTopology.DoldKan.toKaroubiCompN₂IsoN₁_hom_app, SimplicialObject.whiskering_map_app_app, SimplicialObject.Augmented.rightOp_right_obj, SimplicialObject.Augmented.rightOpLeftOpIso_hom_right, Limits.FormalCoproduct.cechFunctor_map_app, cosimplicialSimplicialEquiv_unitIso_hom_app, AlgebraicTopology.DoldKan.map_P, Arrow.augmentedCechNerve_left, Idempotents.DoldKan.η_inv_app_f, SimplicialObject.Augmented.whiskering_map_app_left, SimplicialObject.Augmented.ExtraDegeneracy.s_comp_σ, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_left_app, AlgebraicTopology.DoldKan.toKaroubiCompN₂IsoN₁_inv_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_hom_app, SimplicialObject.Augmented.drop_obj, SimplicialObject.equivalenceRightToLeft_right, comp_app, SimplicialObject.Augmented.ExtraDegeneracy.s₀_comp_δ₁, SimplicialObject.cechNerve_obj, AlgebraicTopology.DoldKan.natTransP_app, AlgebraicTopology.DoldKan.N₁_obj_X, AlgebraicTopology.map_alternatingFaceMapComplex, SimplicialObject.Augmented.ExtraDegeneracy.s_comp_δ_assoc, AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_comp_inclusionOfMooreComplexMap, AlgebraicTopology.DoldKan.Γ₀_obj_obj, cosimplicialSimplicialEquiv_unitIso_inv_app, SimplicialObject.opFunctorCompOpFunctorIso_hom_app_app, Arrow.augmentedCechNerve_right, SimplicialObject.Augmented.w₀_assoc, SimplicialObject.cechNerve_map, SimplicialObject.whiskering_obj_obj_obj, SimplicialObject.Augmented.ExtraDegeneracy.s_comp_σ_assoc, SimplicialObject.opEquivalence_unitIso, Idempotents.DoldKan.Γ_obj_map, SimplicialObject.Augmented.const_obj_left, simplicialCosimplicialEquiv_inverse_obj, AlgebraicTopology.DoldKan.natTransPInfty_f_app, Idempotents.DoldKan.Γ_obj_obj, simplicialCosimplicialEquiv_functor_map_app, AlgebraicTopology.DoldKan.Γ₂N₂ToKaroubiIso_inv_app, AlgebraicTopology.DoldKan.instMonoChainComplexNatInclusionOfMooreComplexMap, SSet.Augmented.stdSimplex_obj_hom_app, SimplicialObject.whiskering_obj_obj_map, Abelian.DoldKan.equivalence_inverse, AlgebraicTopology.DoldKan.instReflectsIsomorphismsSimplicialObjectKaroubiChainComplexNatN₁, SimplicialObject.instHasColimitsOfShape, SimplicialObject.Augmented.ExtraDegeneracy.s'_comp_ε_assoc, SimplicialObject.equivalenceRightToLeft_left, SimplicialObject.opFunctorCompOpFunctorIso_inv_app_app, SimplicialObject.Augmented.ExtraDegeneracy.s_comp_δ₀, SimplicialObject.Augmented.ExtraDegeneracy.const_s, simplicialCosimplicialEquiv_unitIso_inv_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_right, AlgebraicTopology.DoldKan.homotopyEquivNormalizedMooreComplexAlternatingFaceMapComplex_homotopyInvHomId, Preadditive.DoldKan.equivalence_inverse, AlgebraicTopology.DoldKan.map_Q, SimplicialObject.Truncated.cosk_reflective, AlgebraicTopology.DoldKan.N₂_obj_p_f, AlgebraicTopology.DoldKan.N₂_obj_X_X, Idempotents.DoldKan.isoN₁_hom_app_f, AlgebraicTopology.DoldKan.N₁Γ₀_hom_app, AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_comp_inclusionOfMooreComplexMap_assoc, SimplicialObject.Augmented.rightOp_hom_app, SimplicialObject.Augmented.point_obj, SimplicialObject.Split.natTransCofanInj_app, CosimplicialObject.Augmented.leftOp_left_obj, SimplicialObject.Augmented.rightOp_left, SimplicialObject.Truncated.sk_coreflective, SSet.Augmented.stdSimplex_map_left, Idempotents.DoldKan.equivalence_functor, SimplicialObject.Truncated.sk.faithful, AlgebraicTopology.DoldKan.N₂_obj_X_d, SimplicialObject.Augmented.toArrow_obj_hom, SimplicialObject.opEquivalence_inverse, Abelian.DoldKan.equivalence_functor, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_right, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompDropIso_inv_app_app, AlgebraicTopology.DoldKan.karoubi_PInfty_f, simplicialCosimplicialEquiv_functor_obj_obj, Idempotents.DoldKan.Γ_map_app, AlgebraicTopology.DoldKan.Γ₂N₁.natTrans_app_f_app, SimplicialObject.id_right, SimplicialObject.instIsLeftKanExtensionOppositeTruncatedSimplexCategoryObjSkAppTruncatedUnitSkAdjTruncation, simplicialToCosimplicialAugmented_map_right, CosimplicialObject.Augmented.leftOp_hom_app, AlgebraicTopology.DoldKan.N₁Γ₀_inv_app, cosimplicialToSimplicialAugmented_map, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_left_map, Abelian.DoldKan.comparisonN_hom_app_f, SimplicialObject.Augmented.drop_map, SimplicialObject.Split.toKaroubiNondegComplexFunctorIsoN₁_inv_app_f_f, cosimplicialSimplicialEquiv_inverse_map, AlgebraicTopology.DoldKan.Γ₂_obj_X_obj, AlgebraicTopology.DoldKan.Γ₂_map_f_app, SimplicialObject.isCoskeletal_iff_isIso, SimplicialObject.augmentedCechNerve_obj_right, SimplicialObject.augmentedCechNerve_map_left_app, AlgebraicTopology.DoldKan.Γ₂N₁_inv, SimplicialObject.augmentedCechNerve_obj_left_map, AlgebraicTopology.DoldKan.instReflectsIsomorphismsKaroubiSimplicialObjectChainComplexNatN₂, SimplicialObject.opEquivalence_functor, AlgebraicTopology.DoldKan.identity_N₂_objectwise, AlgebraicTopology.inclusionOfMooreComplexMap_f, Idempotents.DoldKan.hη, SimplicialObject.augmentedCechNerve_obj_left_obj, AlgebraicTopology.DoldKan.N₁Γ₀_inv_app_f_f, AlgebraicTopology.alternatingFaceMapComplex_obj_X, SimplicialObject.Splitting.toKaroubiNondegComplexIsoN₁_hom_f_f, SimplicialObject.Split.id_F, AlgebraicTopology.DoldKan.map_hσ', AlgebraicTopology.DoldKan.N₂_map_f_f, SimplicialObject.instHasLimits, AlgebraicTopology.DoldKan.homotopyEquivNormalizedMooreComplexAlternatingFaceMapComplex_hom, AlgebraicTopology.DoldKan.N₁Γ₀_app, cosimplicialSimplicialEquiv_functor_obj_map, Idempotents.DoldKan.N_map, Abelian.DoldKan.comparisonN_inv_app_f, SimplicialObject.equivalenceLeftToRight_left_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_left_obj, SimplicialObject.augmentedCechNerve_obj_hom_app, SimplicialObject.augmentedCechNerve_map_right, Arrow.mapAugmentedCechNerve_right, AlgebraicTopology.DoldKan.Γ₂N₂_inv, Idempotents.DoldKan.η_hom_app_f, AlgebraicTopology.normalizedMooreComplex_obj, simplicialCosimplicialEquiv_functor_obj_map, AlgebraicTopology.DoldKan.natTransQ_app, AlgebraicTopology.DoldKan.Γ₂N₂.natTrans_app_f_app, SimplicialObject.instHasColimits, SimplicialObject.equivalenceLeftToRight_right, Idempotents.DoldKan.equivalence_unitIso

CategoryTheory.Idempotents

Theorems

NameKindAssumesProvesValidatesDepends On
instIsIdempotentCompleteCosimplicialObject 📖mathematical—CategoryTheory.IsIdempotentComplete
CategoryTheory.CosimplicialObject
CategoryTheory.CosimplicialObject.instCategory
—functor_category_isIdempotentComplete
instIsIdempotentCompleteSimplicialObject 📖mathematical—CategoryTheory.IsIdempotentComplete
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
—functor_category_isIdempotentComplete

---

← Back to Index