Documentation Verification Report

Basic

πŸ“ Source: Mathlib/CategoryTheory/Join/Basic.lean

Statistics

MetricCount
Definitionscomp, edge, edgeTransform, homInduction, id, inclLeft, inclLeftFullyFaithful, inclRight, inclRightFullyFaithful, instCategory, instUniqueHomLeftRight, isoMkFunctor, mapIsoWhiskerLeft, mapIsoWhiskerRight, mapPair, mapPairComp, mapPairEquiv, mapPairId, mapPairLeft, mapPairRight, mapWhiskerLeft, mapWhiskerRight, mkFunctor, mkFunctorLeft, mkFunctorRight, mkNatIso, mkNatTrans, Β«term_⋆_Β»
28
TheoremsedgeTransform_app, eq_mkNatTrans, false_of_right_to_left, homInduction_edge, homInduction_left, homInduction_right, id_left, id_right, inclLeftFaithful, inclLeftFull, inclLeft_obj, inclRightFaithful, inclRightFull, inclRight_obj, isEquivalenceMapPair, isoMkFunctor_hom_app, isoMkFunctor_inv_app, mapIsoWhiskerLeft_hom, mapIsoWhiskerLeft_hom_app, mapIsoWhiskerLeft_inv, mapIsoWhiskerLeft_inv_app, mapIsoWhiskerRight_hom, mapIsoWhiskerRight_hom_app, mapIsoWhiskerRight_inv, mapIsoWhiskerRight_inv_app, mapPairComp_hom_app_left, mapPairComp_hom_app_right, mapPairComp_inv_app_left, mapPairComp_inv_app_right, mapPairEquiv_counitIso, mapPairEquiv_functor, mapPairEquiv_inverse, mapPairEquiv_unitIso, mapPairId_hom_app, mapPairId_inv_app, mapPairLeft_hom_app, mapPairLeft_inv_app, mapPairRight_hom_app, mapPairRight_inv_app, mapPair_map_inclLeft, mapPair_map_inclRight, mapPair_obj_left, mapPair_obj_right, mapWhiskerLeft_app, mapWhiskerLeft_comp, mapWhiskerLeft_id, mapWhiskerRight_app, mapWhiskerRight_comp, mapWhiskerRight_id, mapWhisker_exchange, mkFunctorLeft_hom_app, mkFunctorLeft_inv_app, mkFunctorRight_hom_app, mkFunctorRight_inv_app, mkFunctor_edgeTransform, mkFunctor_map_edge, mkFunctor_map_inclLeft, mkFunctor_map_inclRight, mkFunctor_obj_left, mkFunctor_obj_right, mkNatIso_hom, mkNatIso_inv, mkNatTransComp, mkNatTrans_app_left, mkNatTrans_app_right, natTrans_ext, whiskerLeft_inclLeft_mkNatTrans, whiskerLeft_inclRight_mkNatTrans
68
Total96

CategoryTheory.Join

Definitions

NameCategoryTheorems
comp πŸ“–CompOp
12 mathmath: pseudofunctorLeft_mapId_inv_toNatTrans_app, pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_mapβ‚‚_toNatTrans_app, pseudofunctorRight_mapComp_inv_toNatTrans_app, pseudofunctorLeft_mapId_hom_toNatTrans_app, pseudofunctorLeft_mapComp_hom_toNatTrans_app, pseudofunctorLeft_mapComp_inv_toNatTrans_app, pseudofunctorRight_mapId_hom_toNatTrans_app, pseudofunctorRight_mapId_inv_toNatTrans_app, pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_comp, pseudofunctorRight_mapComp_hom_toNatTrans_app, pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_mapβ‚‚_toNatTrans_app, pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_comp
edge πŸ“–CompOp
11 mathmath: pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_map, homInduction_edge, opEquiv_functor_map_op_edge, mapPairLeft_inv_app, mkFunctor_map_edge, opEquiv_inverse_map_edge_op, mapPairLeft_hom_app, mapPairRight_hom_app, mapPairRight_inv_app, edgeTransform_app, pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_map
edgeTransform πŸ“–CompOp
4 mathmath: isoMkFunctor_hom_app, mkFunctor_edgeTransform, isoMkFunctor_inv_app, edgeTransform_app
homInduction πŸ“–CompOp
5 mathmath: pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_map, homInduction_edge, homInduction_left, homInduction_right, pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_map
id πŸ“–CompOp
12 mathmath: pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_id, pseudofunctorLeft_mapId_inv_toNatTrans_app, pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_mapβ‚‚_toNatTrans_app, pseudofunctorRight_mapComp_inv_toNatTrans_app, pseudofunctorLeft_mapId_hom_toNatTrans_app, pseudofunctorLeft_mapComp_hom_toNatTrans_app, pseudofunctorLeft_mapComp_inv_toNatTrans_app, pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_id, pseudofunctorRight_mapId_hom_toNatTrans_app, pseudofunctorRight_mapId_inv_toNatTrans_app, pseudofunctorRight_mapComp_hom_toNatTrans_app, pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_mapβ‚‚_toNatTrans_app
inclLeft πŸ“–CompOp
42 mathmath: pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_map, inlCompFromSum_hom_app, inclRightCompOpEquivInverse_inv_app_op, isoMkFunctor_hom_app, inrCompFromSum_hom_app, mkFunctor_edgeTransform, opEquiv_inverse_map_inclRight_op, mkFunctor_map_inclLeft, mapWhiskerRight_app, mapPair_map_inclLeft, isoMkFunctor_inv_app, mapIsoWhiskerRight_hom_app, opEquiv_functor_map_op_inclRight, mkFunctorLeft_hom_app, inclLeft_obj, mapPairLeft_inv_app, opEquiv_inverse_map_inclLeft_op, homInduction_left, InclLeftCompRightOpOpEquivFunctor_hom_app, inclRightCompOpEquivInverse_hom_app_op, inclLeftCompOpEquivInverse_inv_app_op, inclLeftCompOpEquivInverse_hom_app_op, pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_mapβ‚‚_toNatTrans_app, InclLeftCompRightOpOpEquivFunctor_inv_app, instInitialInclLeftOfIsConnected, InclRightCompRightOpOpEquivFunctor_inv_app, inrCompFromSum_inv_app, mkFunctorLeft_inv_app, mapPairLeft_hom_app, mapPairRight_hom_app, opEquiv_functor_map_op_inclLeft, id_left, eq_mkNatTrans, fromSum_map_inl, inclLeftFull, InclRightCompRightOpOpEquivFunctor_hom_app, mapPairRight_inv_app, inlCompFromSum_inv_app, inclLeftFaithful, edgeTransform_app, mapIsoWhiskerRight_inv_app, pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_map
inclLeftFullyFaithful πŸ“–CompOpβ€”
inclRight πŸ“–CompOp
42 mathmath: pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_mapβ‚‚_toNatTrans_app, pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_map, inlCompFromSum_hom_app, mapWhiskerLeft_app, inclRightCompOpEquivInverse_inv_app_op, id_right, isoMkFunctor_hom_app, inrCompFromSum_hom_app, mkFunctor_edgeTransform, mapPair_map_inclRight, instFinalInclRightOfIsConnected, opEquiv_inverse_map_inclRight_op, inclRightFaithful, mkFunctor_map_inclRight, isoMkFunctor_inv_app, fromSum_map_inr, opEquiv_functor_map_op_inclRight, mapPairLeft_inv_app, opEquiv_inverse_map_inclLeft_op, InclLeftCompRightOpOpEquivFunctor_hom_app, inclRightCompOpEquivInverse_hom_app_op, homInduction_right, inclRight_obj, inclLeftCompOpEquivInverse_inv_app_op, inclRightFull, inclLeftCompOpEquivInverse_hom_app_op, InclLeftCompRightOpOpEquivFunctor_inv_app, InclRightCompRightOpOpEquivFunctor_inv_app, mkFunctorRight_inv_app, inrCompFromSum_inv_app, mapPairLeft_hom_app, mapIsoWhiskerLeft_inv_app, mapPairRight_hom_app, opEquiv_functor_map_op_inclLeft, mapIsoWhiskerLeft_hom_app, eq_mkNatTrans, InclRightCompRightOpOpEquivFunctor_hom_app, mapPairRight_inv_app, mkFunctorRight_hom_app, inlCompFromSum_inv_app, edgeTransform_app, pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_map
inclRightFullyFaithful πŸ“–CompOpβ€”
instCategory πŸ“–CompOp
116 mathmath: pseudofunctorLeft_mapId_inv_toNatTrans_app, pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_mapβ‚‚_toNatTrans_app, pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_map, inlCompFromSum_hom_app, mapPairId_hom_app, mapWhiskerLeft_app, pseudofunctorRight_mapComp_inv_toNatTrans_app, mapPairEquiv_inverse, mapPairEquiv_unitIso, mapPairEquiv_counitIso, inclRightCompOpEquivInverse_inv_app_op, id_right, mapWhiskerRight_leftUnitor_hom, isoMkFunctor_hom_app, mapWhiskerLeft_whiskerRight, isEquivalenceMapPair, mkFunctor_obj_left, opEquiv_functor_obj_op_right, mapWhiskerLeft_whiskerLeft, inrCompFromSum_hom_app, mkFunctor_edgeTransform, mapPair_obj_right, mapIsoWhiskerLeft_hom, mapPair_map_inclRight, pseudofunctorLeft_mapId_hom_toNatTrans_app, instFinalInclRightOfIsConnected, opEquiv_inverse_map_inclRight_op, mkFunctor_map_inclLeft, mapWhiskerRight_comp, pseudofunctorLeft_mapComp_hom_toNatTrans_app, inclRightFaithful, mapWhiskerRight_whiskerRight, mkFunctor_map_inclRight, mapPairComp_hom_app_right, mapWhiskerRight_app, mapWhiskerLeft_whiskerRight_assoc, mapPair_map_inclLeft, isoMkFunctor_inv_app, mapIsoWhiskerRight_inv, pseudofunctorLeft_mapComp_inv_toNatTrans_app, fromSum_map_inr, opEquiv_functor_map_op_edge, mapIsoWhiskerRight_hom_app, opEquiv_functor_map_op_inclRight, opEquiv_inverse_obj_right_op, mkFunctorLeft_hom_app, mapWhiskerLeft_associator_hom, inclLeft_obj, mapPairComp_inv_app_right, mapPairLeft_inv_app, pseudofunctorRight_mapId_hom_toNatTrans_app, opEquiv_inverse_map_inclLeft_op, homInduction_left, InclLeftCompRightOpOpEquivFunctor_hom_app, mapWhiskerRight_associator_hom, inclRightCompOpEquivInverse_hom_app_op, pseudofunctorRight_mapId_inv_toNatTrans_app, homInduction_right, inclRight_obj, opEquiv_functor_obj_op_left, opEquiv_inverse_obj_left_op, instFaithfulSumFromSum, mapWhisker_exchange, inclLeftCompOpEquivInverse_inv_app_op, mapPairId_inv_app, mapWhiskerRight_whiskerLeft, inclRightFull, pseudofunctorRight_mapComp_hom_toNatTrans_app, mapWhiskerRight_whiskerLeft_assoc, mkFunctor_map_edge, mapPairComp_hom_app_left, inclLeftCompOpEquivInverse_hom_app_op, mapWhiskerLeft_associator_hom_assoc, mapWhiskerLeft_rightUnitor_hom, mapWhiskerRight_id, mapWhiskerRight_rightUnitor_hom, opEquiv_inverse_map_edge_op, mapPairComp_inv_app_left, pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_mapβ‚‚_toNatTrans_app, InclLeftCompRightOpOpEquivFunctor_inv_app, mapIsoWhiskerRight_hom, instInitialInclLeftOfIsConnected, mapPair_obj_left, InclRightCompRightOpOpEquivFunctor_inv_app, mkFunctorRight_inv_app, mapWhiskerLeft_whiskerLeft_assoc, mapWhiskerLeft_id, mapWhiskerRight_whiskerRight_assoc, mapWhiskerLeft_leftUnitor_hom, fromSum_obj, inrCompFromSum_inv_app, mkFunctorLeft_inv_app, mapPairLeft_hom_app, mapIsoWhiskerLeft_inv_app, mkFunctor_obj_right, mapPairRight_hom_app, opEquiv_functor_map_op_inclLeft, pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_obj, id_left, mapIsoWhiskerLeft_hom_app, eq_mkNatTrans, mapPairEquiv_functor, instEssSurjSumFromSum, fromSum_map_inl, mapIsoWhiskerLeft_inv, inclLeftFull, mapWhiskerLeft_comp, pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_obj, InclRightCompRightOpOpEquivFunctor_hom_app, mapPairRight_inv_app, mkFunctorRight_hom_app, inlCompFromSum_inv_app, inclLeftFaithful, edgeTransform_app, mapIsoWhiskerRight_inv_app, pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_map
instUniqueHomLeftRight πŸ“–CompOpβ€”
isoMkFunctor πŸ“–CompOp
2 mathmath: isoMkFunctor_hom_app, isoMkFunctor_inv_app
mapIsoWhiskerLeft πŸ“–CompOp
6 mathmath: mapPairEquiv_unitIso, mapPairEquiv_counitIso, mapIsoWhiskerLeft_hom, mapIsoWhiskerLeft_inv_app, mapIsoWhiskerLeft_hom_app, mapIsoWhiskerLeft_inv
mapIsoWhiskerRight πŸ“–CompOp
6 mathmath: mapPairEquiv_unitIso, mapPairEquiv_counitIso, mapIsoWhiskerRight_inv, mapIsoWhiskerRight_hom_app, mapIsoWhiskerRight_hom, mapIsoWhiskerRight_inv_app
mapPair πŸ“–CompOp
59 mathmath: pseudofunctorLeft_mapId_inv_toNatTrans_app, pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_mapβ‚‚_toNatTrans_app, mapPairId_hom_app, mapWhiskerLeft_app, pseudofunctorRight_mapComp_inv_toNatTrans_app, mapPairEquiv_inverse, mapPairEquiv_unitIso, mapPairEquiv_counitIso, mapWhiskerRight_leftUnitor_hom, mapWhiskerLeft_whiskerRight, isEquivalenceMapPair, mapWhiskerLeft_whiskerLeft, mapPair_obj_right, mapIsoWhiskerLeft_hom, mapPair_map_inclRight, pseudofunctorLeft_mapId_hom_toNatTrans_app, mapWhiskerRight_comp, pseudofunctorLeft_mapComp_hom_toNatTrans_app, mapWhiskerRight_whiskerRight, mapPairComp_hom_app_right, mapWhiskerRight_app, mapWhiskerLeft_whiskerRight_assoc, mapPair_map_inclLeft, mapIsoWhiskerRight_inv, pseudofunctorLeft_mapComp_inv_toNatTrans_app, mapIsoWhiskerRight_hom_app, mapWhiskerLeft_associator_hom, mapPairComp_inv_app_right, mapPairLeft_inv_app, pseudofunctorRight_mapId_hom_toNatTrans_app, mapWhiskerRight_associator_hom, pseudofunctorRight_mapId_inv_toNatTrans_app, mapWhisker_exchange, mapPairId_inv_app, mapWhiskerRight_whiskerLeft, pseudofunctorRight_mapComp_hom_toNatTrans_app, mapWhiskerRight_whiskerLeft_assoc, mapPairComp_hom_app_left, mapWhiskerLeft_associator_hom_assoc, mapWhiskerLeft_rightUnitor_hom, mapWhiskerRight_id, mapWhiskerRight_rightUnitor_hom, mapPairComp_inv_app_left, pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_mapβ‚‚_toNatTrans_app, mapIsoWhiskerRight_hom, mapPair_obj_left, mapWhiskerLeft_whiskerLeft_assoc, mapWhiskerLeft_id, mapWhiskerRight_whiskerRight_assoc, mapWhiskerLeft_leftUnitor_hom, mapPairLeft_hom_app, mapIsoWhiskerLeft_inv_app, mapPairRight_hom_app, mapIsoWhiskerLeft_hom_app, mapPairEquiv_functor, mapIsoWhiskerLeft_inv, mapWhiskerLeft_comp, mapPairRight_inv_app, mapIsoWhiskerRight_inv_app
mapPairComp πŸ“–CompOp
10 mathmath: pseudofunctorRight_mapComp_inv_toNatTrans_app, mapPairEquiv_unitIso, mapPairEquiv_counitIso, pseudofunctorLeft_mapComp_hom_toNatTrans_app, mapPairComp_hom_app_right, pseudofunctorLeft_mapComp_inv_toNatTrans_app, mapPairComp_inv_app_right, pseudofunctorRight_mapComp_hom_toNatTrans_app, mapPairComp_hom_app_left, mapPairComp_inv_app_left
mapPairEquiv πŸ“–CompOp
4 mathmath: mapPairEquiv_inverse, mapPairEquiv_unitIso, mapPairEquiv_counitIso, mapPairEquiv_functor
mapPairId πŸ“–CompOp
8 mathmath: mapPairId_hom_app, mapPairEquiv_unitIso, mapPairEquiv_counitIso, mapWhiskerRight_leftUnitor_hom, mapPairId_inv_app, mapWhiskerLeft_rightUnitor_hom, mapWhiskerRight_rightUnitor_hom, mapWhiskerLeft_leftUnitor_hom
mapPairLeft πŸ“–CompOp
2 mathmath: mapPairLeft_inv_app, mapPairLeft_hom_app
mapPairRight πŸ“–CompOp
2 mathmath: mapPairRight_hom_app, mapPairRight_inv_app
mapWhiskerLeft πŸ“–CompOp
14 mathmath: mapWhiskerLeft_app, mapWhiskerLeft_whiskerRight, mapWhiskerLeft_whiskerLeft, mapIsoWhiskerLeft_hom, mapWhiskerLeft_whiskerRight_assoc, mapWhiskerLeft_associator_hom, mapWhisker_exchange, mapWhiskerLeft_associator_hom_assoc, mapWhiskerLeft_rightUnitor_hom, mapWhiskerLeft_whiskerLeft_assoc, mapWhiskerLeft_id, mapWhiskerLeft_leftUnitor_hom, mapIsoWhiskerLeft_inv, mapWhiskerLeft_comp
mapWhiskerRight πŸ“–CompOp
13 mathmath: mapWhiskerRight_leftUnitor_hom, mapWhiskerRight_comp, mapWhiskerRight_whiskerRight, mapWhiskerRight_app, mapIsoWhiskerRight_inv, mapWhiskerRight_associator_hom, mapWhisker_exchange, mapWhiskerRight_whiskerLeft, mapWhiskerRight_whiskerLeft_assoc, mapWhiskerRight_id, mapWhiskerRight_rightUnitor_hom, mapIsoWhiskerRight_hom, mapWhiskerRight_whiskerRight_assoc
mkFunctor πŸ“–CompOp
16 mathmath: isoMkFunctor_hom_app, mkFunctor_obj_left, mkFunctor_edgeTransform, mkFunctor_map_inclLeft, mkFunctor_map_inclRight, isoMkFunctor_inv_app, mkFunctorLeft_hom_app, mapPairLeft_inv_app, mkFunctor_map_edge, mkFunctorRight_inv_app, mkFunctorLeft_inv_app, mapPairLeft_hom_app, mkFunctor_obj_right, mapPairRight_hom_app, mapPairRight_inv_app, mkFunctorRight_hom_app
mkFunctorLeft πŸ“–CompOp
2 mathmath: mkFunctorLeft_hom_app, mkFunctorLeft_inv_app
mkFunctorRight πŸ“–CompOp
2 mathmath: mkFunctorRight_inv_app, mkFunctorRight_hom_app
mkNatIso πŸ“–CompOp
2 mathmath: mkNatIso_inv, mkNatIso_hom
mkNatTrans πŸ“–CompOp
8 mathmath: mkNatIso_inv, mkNatTrans_app_right, whiskerLeft_inclRight_mkNatTrans, mkNatTrans_app_left, whiskerLeft_inclLeft_mkNatTrans, eq_mkNatTrans, mkNatTransComp, mkNatIso_hom
Β«term_⋆_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
edgeTransform_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.prod'
CategoryTheory.Join
instCategory
CategoryTheory.Functor.comp
CategoryTheory.Prod.fst
inclLeft
CategoryTheory.Prod.snd
inclRight
edgeTransform
edge
β€”β€”
eq_mkNatTrans πŸ“–mathematicalβ€”mkNatTrans
CategoryTheory.Functor.whiskerLeft
CategoryTheory.Join
instCategory
inclLeft
inclRight
β€”natTrans_ext
false_of_right_to_left πŸ“–β€”β€”β€”β€”β€”
homInduction_edge πŸ“–mathematicalβ€”homInduction
left
right
edge
β€”β€”
homInduction_left πŸ“–mathematicalβ€”homInduction
CategoryTheory.Functor.obj
CategoryTheory.Join
instCategory
inclLeft
CategoryTheory.Functor.map
β€”β€”
homInduction_right πŸ“–mathematicalβ€”homInduction
CategoryTheory.Functor.obj
CategoryTheory.Join
instCategory
inclRight
CategoryTheory.Functor.map
β€”β€”
id_left πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.id
CategoryTheory.Join
CategoryTheory.Category.toCategoryStruct
instCategory
left
CategoryTheory.Functor.map
inclLeft
β€”β€”
id_right πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.id
CategoryTheory.Join
CategoryTheory.Category.toCategoryStruct
instCategory
right
CategoryTheory.Functor.map
inclRight
β€”β€”
inclLeftFaithful πŸ“–mathematicalβ€”CategoryTheory.Functor.Faithful
CategoryTheory.Join
instCategory
inclLeft
β€”CategoryTheory.Functor.FullyFaithful.faithful
inclLeftFull πŸ“–mathematicalβ€”CategoryTheory.Functor.Full
CategoryTheory.Join
instCategory
inclLeft
β€”CategoryTheory.Functor.FullyFaithful.full
inclLeft_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.Join
instCategory
inclLeft
left
β€”β€”
inclRightFaithful πŸ“–mathematicalβ€”CategoryTheory.Functor.Faithful
CategoryTheory.Join
instCategory
inclRight
β€”CategoryTheory.Functor.FullyFaithful.faithful
inclRightFull πŸ“–mathematicalβ€”CategoryTheory.Functor.Full
CategoryTheory.Join
instCategory
inclRight
β€”CategoryTheory.Functor.FullyFaithful.full
inclRight_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.Join
instCategory
inclRight
right
β€”β€”
isEquivalenceMapPair πŸ“–mathematicalβ€”CategoryTheory.Functor.IsEquivalence
CategoryTheory.Join
instCategory
mapPair
β€”CategoryTheory.Equivalence.isEquivalence_functor
isoMkFunctor_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Join
instCategory
mkFunctor
CategoryTheory.Functor.comp
inclLeft
inclRight
CategoryTheory.Functor.whiskerRight
CategoryTheory.prod'
CategoryTheory.Prod.fst
CategoryTheory.Prod.snd
edgeTransform
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
isoMkFunctor
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.id
left
right
β€”β€”
isoMkFunctor_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Join
instCategory
mkFunctor
CategoryTheory.Functor.comp
inclLeft
inclRight
CategoryTheory.Functor.whiskerRight
CategoryTheory.prod'
CategoryTheory.Prod.fst
CategoryTheory.Prod.snd
edgeTransform
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
isoMkFunctor
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.id
left
right
β€”β€”
mapIsoWhiskerLeft_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Join
instCategory
CategoryTheory.Functor.category
mapPair
mapIsoWhiskerLeft
mapWhiskerLeft
β€”β€”
mapIsoWhiskerLeft_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Join
instCategory
mapPair
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
mapIsoWhiskerLeft
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.id
left
CategoryTheory.Functor.map
inclRight
β€”CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
mapIsoWhiskerLeft_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Join
instCategory
CategoryTheory.Functor.category
mapPair
mapIsoWhiskerLeft
mapWhiskerLeft
β€”CategoryTheory.NatTrans.ext'
CategoryTheory.Functor.isoWhiskerRight_refl
CategoryTheory.Iso.refl_trans
CategoryTheory.Category.assoc
mkNatIso.congr_simp
mkNatTrans.congr_simp
CategoryTheory.Category.comp_id
mapWhiskerLeft_app
CategoryTheory.Category.id_comp
mapIsoWhiskerLeft_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Join
instCategory
mapPair
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
mapIsoWhiskerLeft
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.id
left
CategoryTheory.Functor.map
inclRight
β€”CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
mapIsoWhiskerRight_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Join
instCategory
CategoryTheory.Functor.category
mapPair
mapIsoWhiskerRight
mapWhiskerRight
β€”β€”
mapIsoWhiskerRight_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Join
instCategory
mapPair
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
mapIsoWhiskerRight
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
inclLeft
CategoryTheory.CategoryStruct.id
right
β€”CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.Functor.map_id
mapIsoWhiskerRight_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Join
instCategory
CategoryTheory.Functor.category
mapPair
mapIsoWhiskerRight
mapWhiskerRight
β€”CategoryTheory.NatTrans.ext'
CategoryTheory.Functor.isoWhiskerRight_refl
CategoryTheory.Iso.refl_trans
CategoryTheory.Category.assoc
mkNatIso.congr_simp
mkNatTrans.congr_simp
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
mapWhiskerRight_app
mapIsoWhiskerRight_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Join
instCategory
mapPair
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
mapIsoWhiskerRight
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
inclLeft
CategoryTheory.CategoryStruct.id
right
β€”CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
CategoryTheory.Functor.map_id
mapPairComp_hom_app_left πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Join
instCategory
mapPair
CategoryTheory.Functor.comp
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
mapPairComp
left
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
β€”CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
mapPairComp_hom_app_right πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Join
instCategory
mapPair
CategoryTheory.Functor.comp
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
mapPairComp
right
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
β€”CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
mapPairComp_inv_app_left πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Join
instCategory
CategoryTheory.Functor.comp
mapPair
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
mapPairComp
left
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
β€”CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
mapPairComp_inv_app_right πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Join
instCategory
CategoryTheory.Functor.comp
mapPair
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
mapPairComp
right
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
β€”CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
mapPairEquiv_counitIso πŸ“–mathematicalβ€”CategoryTheory.Equivalence.counitIso
CategoryTheory.Join
instCategory
mapPairEquiv
CategoryTheory.Iso.trans
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
mapPair
CategoryTheory.Equivalence.inverse
CategoryTheory.Equivalence.functor
CategoryTheory.Functor.id
CategoryTheory.Iso.symm
mapPairComp
mapIsoWhiskerRight
mapIsoWhiskerLeft
mapPairId
β€”β€”
mapPairEquiv_functor πŸ“–mathematicalβ€”CategoryTheory.Equivalence.functor
CategoryTheory.Join
instCategory
mapPairEquiv
mapPair
β€”β€”
mapPairEquiv_inverse πŸ“–mathematicalβ€”CategoryTheory.Equivalence.inverse
CategoryTheory.Join
instCategory
mapPairEquiv
mapPair
β€”β€”
mapPairEquiv_unitIso πŸ“–mathematicalβ€”CategoryTheory.Equivalence.unitIso
CategoryTheory.Join
instCategory
mapPairEquiv
CategoryTheory.Iso.trans
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
mapPair
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.functor
CategoryTheory.Equivalence.inverse
CategoryTheory.Iso.symm
mapPairId
mapIsoWhiskerRight
mapIsoWhiskerLeft
mapPairComp
β€”β€”
mapPairId_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Join
instCategory
mapPair
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
mapPairId
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.id
left
right
β€”CategoryTheory.Category.comp_id
mapPairId_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Join
instCategory
CategoryTheory.Functor.id
mapPair
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
mapPairId
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.id
left
right
β€”CategoryTheory.Category.comp_id
mapPairLeft_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Join
instCategory
CategoryTheory.Functor.comp
inclLeft
mkFunctor
inclRight
CategoryTheory.prod'
CategoryTheory.Prod.fst
CategoryTheory.Prod.snd
edge
CategoryTheory.Functor.obj
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
mapPair
mapPairLeft
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
left
β€”β€”
mapPairLeft_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Join
instCategory
CategoryTheory.Functor.comp
inclLeft
mkFunctor
inclRight
CategoryTheory.prod'
CategoryTheory.Prod.fst
CategoryTheory.Prod.snd
edge
CategoryTheory.Functor.obj
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
mapPair
mapPairLeft
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
left
β€”β€”
mapPairRight_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Join
instCategory
CategoryTheory.Functor.comp
inclRight
mkFunctor
inclLeft
CategoryTheory.prod'
CategoryTheory.Prod.fst
CategoryTheory.Prod.snd
edge
CategoryTheory.Functor.obj
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
mapPair
mapPairRight
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
right
β€”β€”
mapPairRight_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Join
instCategory
CategoryTheory.Functor.comp
inclRight
mkFunctor
inclLeft
CategoryTheory.prod'
CategoryTheory.Prod.fst
CategoryTheory.Prod.snd
edge
CategoryTheory.Functor.obj
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
mapPair
mapPairRight
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
right
β€”β€”
mapPair_map_inclLeft πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.Join
instCategory
mapPair
CategoryTheory.Functor.obj
inclLeft
β€”β€”
mapPair_map_inclRight πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.Join
instCategory
mapPair
CategoryTheory.Functor.obj
inclRight
β€”β€”
mapPair_obj_left πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.Join
instCategory
mapPair
left
β€”β€”
mapPair_obj_right πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.Join
instCategory
mapPair
right
β€”β€”
mapWhiskerLeft_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Join
instCategory
mapPair
mapWhiskerLeft
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.id
left
CategoryTheory.Functor.map
inclRight
β€”CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
mapWhiskerLeft_comp πŸ“–mathematicalβ€”mapWhiskerLeft
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Join
instCategory
mapPair
β€”CategoryTheory.NatTrans.ext'
mapWhiskerLeft_app
CategoryTheory.Functor.map_comp
CategoryTheory.Category.comp_id
mapWhiskerLeft_id πŸ“–mathematicalβ€”mapWhiskerLeft
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Join
instCategory
mapPair
β€”CategoryTheory.NatTrans.ext'
mapWhiskerLeft_app
CategoryTheory.Functor.map_id
mapWhiskerRight_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Join
instCategory
mapPair
mapWhiskerRight
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
inclLeft
CategoryTheory.CategoryStruct.id
right
β€”CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.Functor.map_id
mapWhiskerRight_comp πŸ“–mathematicalβ€”mapWhiskerRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Join
instCategory
mapPair
β€”CategoryTheory.NatTrans.ext'
mapWhiskerRight_app
CategoryTheory.Functor.map_comp
CategoryTheory.Category.comp_id
mapWhiskerRight_id πŸ“–mathematicalβ€”mapWhiskerRight
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Join
instCategory
mapPair
β€”CategoryTheory.NatTrans.ext'
mapWhiskerRight_app
CategoryTheory.Functor.map_id
mapWhisker_exchange πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Join
instCategory
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
mapPair
mapWhiskerLeft
mapWhiskerRight
β€”CategoryTheory.NatTrans.ext'
mapWhiskerLeft_app
mapWhiskerRight_app
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
mkFunctorLeft_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Join
instCategory
inclLeft
mkFunctor
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
mkFunctorLeft
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
β€”β€”
mkFunctorLeft_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Join
instCategory
inclLeft
mkFunctor
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
mkFunctorLeft
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
β€”β€”
mkFunctorRight_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Join
instCategory
inclRight
mkFunctor
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
mkFunctorRight
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
β€”β€”
mkFunctorRight_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Join
instCategory
inclRight
mkFunctor
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
mkFunctorRight
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
β€”β€”
mkFunctor_edgeTransform πŸ“–mathematicalβ€”CategoryTheory.Functor.whiskerRight
CategoryTheory.prod'
CategoryTheory.Join
instCategory
CategoryTheory.Functor.comp
CategoryTheory.Prod.fst
inclLeft
CategoryTheory.Prod.snd
inclRight
edgeTransform
mkFunctor
β€”CategoryTheory.NatTrans.ext'
mkFunctor_map_edge πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.Join
instCategory
mkFunctor
left
right
edge
CategoryTheory.NatTrans.app
CategoryTheory.prod'
CategoryTheory.Functor.comp
CategoryTheory.Prod.fst
CategoryTheory.Prod.snd
β€”β€”
mkFunctor_map_inclLeft πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.Join
instCategory
mkFunctor
CategoryTheory.Functor.obj
inclLeft
β€”β€”
mkFunctor_map_inclRight πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.Join
instCategory
mkFunctor
CategoryTheory.Functor.obj
inclRight
β€”β€”
mkFunctor_obj_left πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.Join
instCategory
mkFunctor
left
β€”β€”
mkFunctor_obj_right πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.Join
instCategory
mkFunctor
right
β€”β€”
mkNatIso_hom πŸ“–mathematicalQuiver.Hom
CategoryTheory.Functor
CategoryTheory.prod'
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Join
instCategory
CategoryTheory.Prod.fst
inclLeft
CategoryTheory.Prod.snd
inclRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.whiskerRight
edgeTransform
CategoryTheory.Iso.hom
CategoryTheory.Functor.isoWhiskerLeft
mkNatIso
mkNatTrans
β€”β€”
mkNatIso_inv πŸ“–mathematicalQuiver.Hom
CategoryTheory.Functor
CategoryTheory.prod'
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Join
instCategory
CategoryTheory.Prod.fst
inclLeft
CategoryTheory.Prod.snd
inclRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.whiskerRight
edgeTransform
CategoryTheory.Iso.hom
CategoryTheory.Functor.isoWhiskerLeft
CategoryTheory.Iso.inv
mkNatIso
mkNatTrans
β€”β€”
mkNatTransComp πŸ“–mathematicalQuiver.Hom
CategoryTheory.Functor
CategoryTheory.prod'
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Join
instCategory
CategoryTheory.Prod.fst
inclLeft
CategoryTheory.Prod.snd
inclRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.whiskerRight
edgeTransform
CategoryTheory.Functor.whiskerLeft
mkNatTransβ€”natTrans_ext
mkNatTrans_app_left πŸ“–mathematicalQuiver.Hom
CategoryTheory.Functor
CategoryTheory.prod'
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Join
instCategory
CategoryTheory.Prod.fst
inclLeft
CategoryTheory.Prod.snd
inclRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.whiskerRight
edgeTransform
CategoryTheory.Functor.whiskerLeft
CategoryTheory.NatTrans.app
mkNatTrans
left
β€”β€”
mkNatTrans_app_right πŸ“–mathematicalQuiver.Hom
CategoryTheory.Functor
CategoryTheory.prod'
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Join
instCategory
CategoryTheory.Prod.fst
inclLeft
CategoryTheory.Prod.snd
inclRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.whiskerRight
edgeTransform
CategoryTheory.Functor.whiskerLeft
CategoryTheory.NatTrans.app
mkNatTrans
right
β€”β€”
natTrans_ext πŸ“–β€”CategoryTheory.Functor.whiskerLeft
CategoryTheory.Join
instCategory
inclLeft
inclRight
β€”β€”CategoryTheory.NatTrans.ext'
whiskerLeft_inclLeft_mkNatTrans πŸ“–mathematicalQuiver.Hom
CategoryTheory.Functor
CategoryTheory.prod'
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Join
instCategory
CategoryTheory.Prod.fst
inclLeft
CategoryTheory.Prod.snd
inclRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.whiskerRight
edgeTransform
CategoryTheory.Functor.whiskerLeft
mkNatTransβ€”β€”
whiskerLeft_inclRight_mkNatTrans πŸ“–mathematicalQuiver.Hom
CategoryTheory.Functor
CategoryTheory.prod'
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Join
instCategory
CategoryTheory.Prod.fst
inclLeft
CategoryTheory.Prod.snd
inclRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.whiskerRight
edgeTransform
CategoryTheory.Functor.whiskerLeft
mkNatTransβ€”β€”

---

← Back to Index