📁 Source: Mathlib/CategoryTheory/Join/Opposites.lean
InclLeftCompRightOpOpEquivFunctor
InclRightCompRightOpOpEquivFunctor
inclLeftCompOpEquivInverse
inclRightCompOpEquivInverse
opEquiv
InclLeftCompRightOpOpEquivFunctor_hom_app
InclLeftCompRightOpOpEquivFunctor_inv_app
InclRightCompRightOpOpEquivFunctor_hom_app
InclRightCompRightOpOpEquivFunctor_inv_app
inclLeftCompOpEquivInverse_hom_app_op
inclLeftCompOpEquivInverse_inv_app_op
inclRightCompOpEquivInverse_hom_app_op
inclRightCompOpEquivInverse_inv_app_op
opEquiv_functor_map_op_edge
opEquiv_functor_map_op_inclLeft
opEquiv_functor_map_op_inclRight
opEquiv_functor_obj_op_left
opEquiv_functor_obj_op_right
opEquiv_inverse_map_edge_op
opEquiv_inverse_map_inclLeft_op
opEquiv_inverse_map_inclRight_op
opEquiv_inverse_obj_left_op
opEquiv_inverse_obj_right_op
CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Join
CategoryTheory.Category.opposite
instCategory
CategoryTheory.Functor.comp
inclLeft
CategoryTheory.Functor.rightOp
CategoryTheory.Equivalence.functor
inclRight
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Opposite.op
right
CategoryTheory.Category.comp_id
CategoryTheory.Iso.inv
left
CategoryTheory.Equivalence.inverse
CategoryTheory.Functor.op
CategoryTheory.CategoryStruct.opposite
CategoryTheory.Functor.map
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
Opposite.unop
edge
CategoryTheory.Functor.obj
Quiver.Hom.op
---
← Back to Index