Documentation Verification Report

Opposites

📁 Source: Mathlib/CategoryTheory/Join/Opposites.lean

Statistics

MetricCount
DefinitionsInclLeftCompRightOpOpEquivFunctor, InclRightCompRightOpOpEquivFunctor, inclLeftCompOpEquivInverse, inclRightCompOpEquivInverse, opEquiv
5
TheoremsInclLeftCompRightOpOpEquivFunctor_hom_app, InclLeftCompRightOpOpEquivFunctor_inv_app, InclRightCompRightOpOpEquivFunctor_hom_app, InclRightCompRightOpOpEquivFunctor_inv_app, inclLeftCompOpEquivInverse_hom_app_op, inclLeftCompOpEquivInverse_inv_app_op, inclRightCompOpEquivInverse_hom_app_op, inclRightCompOpEquivInverse_inv_app_op, opEquiv_functor_map_op_edge, opEquiv_functor_map_op_inclLeft, opEquiv_functor_map_op_inclRight, opEquiv_functor_obj_op_left, opEquiv_functor_obj_op_right, opEquiv_inverse_map_edge_op, opEquiv_inverse_map_inclLeft_op, opEquiv_inverse_map_inclRight_op, opEquiv_inverse_obj_left_op, opEquiv_inverse_obj_right_op
18
Total23

CategoryTheory.Join

Definitions

NameCategoryTheorems
InclLeftCompRightOpOpEquivFunctor 📖CompOp
2 mathmath: InclLeftCompRightOpOpEquivFunctor_hom_app, InclLeftCompRightOpOpEquivFunctor_inv_app
InclRightCompRightOpOpEquivFunctor 📖CompOp
2 mathmath: InclRightCompRightOpOpEquivFunctor_inv_app, InclRightCompRightOpOpEquivFunctor_hom_app
inclLeftCompOpEquivInverse 📖CompOp
2 mathmath: inclLeftCompOpEquivInverse_inv_app_op, inclLeftCompOpEquivInverse_hom_app_op
inclRightCompOpEquivInverse 📖CompOp
2 mathmath: inclRightCompOpEquivInverse_inv_app_op, inclRightCompOpEquivInverse_hom_app_op
opEquiv 📖CompOp
18 mathmath: inclRightCompOpEquivInverse_inv_app_op, opEquiv_functor_obj_op_right, opEquiv_inverse_map_inclRight_op, opEquiv_functor_map_op_edge, opEquiv_functor_map_op_inclRight, opEquiv_inverse_obj_right_op, opEquiv_inverse_map_inclLeft_op, InclLeftCompRightOpOpEquivFunctor_hom_app, inclRightCompOpEquivInverse_hom_app_op, opEquiv_functor_obj_op_left, opEquiv_inverse_obj_left_op, inclLeftCompOpEquivInverse_inv_app_op, inclLeftCompOpEquivInverse_hom_app_op, opEquiv_inverse_map_edge_op, InclLeftCompRightOpOpEquivFunctor_inv_app, InclRightCompRightOpOpEquivFunctor_inv_app, opEquiv_functor_map_op_inclLeft, InclRightCompRightOpOpEquivFunctor_hom_app

Theorems

NameKindAssumesProvesValidatesDepends On
InclLeftCompRightOpOpEquivFunctor_hom_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
CategoryTheory.Join
CategoryTheory.Category.opposite
instCategory
CategoryTheory.Functor.comp
inclLeft
CategoryTheory.Functor.rightOp
CategoryTheory.Equivalence.functor
opEquiv
inclRight
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
InclLeftCompRightOpOpEquivFunctor
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Opposite.op
right
CategoryTheory.Category.comp_id
InclLeftCompRightOpOpEquivFunctor_inv_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
CategoryTheory.Join
CategoryTheory.Category.opposite
instCategory
CategoryTheory.Functor.rightOp
inclRight
CategoryTheory.Functor.comp
inclLeft
CategoryTheory.Equivalence.functor
opEquiv
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
InclLeftCompRightOpOpEquivFunctor
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Opposite.op
right
CategoryTheory.Category.comp_id
InclRightCompRightOpOpEquivFunctor_hom_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
CategoryTheory.Join
CategoryTheory.Category.opposite
instCategory
CategoryTheory.Functor.comp
inclRight
CategoryTheory.Functor.rightOp
CategoryTheory.Equivalence.functor
opEquiv
inclLeft
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
InclRightCompRightOpOpEquivFunctor
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Opposite.op
left
CategoryTheory.Category.comp_id
InclRightCompRightOpOpEquivFunctor_inv_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
CategoryTheory.Join
CategoryTheory.Category.opposite
instCategory
CategoryTheory.Functor.rightOp
inclLeft
CategoryTheory.Functor.comp
inclRight
CategoryTheory.Equivalence.functor
opEquiv
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
InclRightCompRightOpOpEquivFunctor
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Opposite.op
left
CategoryTheory.Category.comp_id
inclLeftCompOpEquivInverse_hom_app_op 📖mathematicalCategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Join
instCategory
CategoryTheory.Functor.comp
inclLeft
CategoryTheory.Equivalence.inverse
opEquiv
CategoryTheory.Functor.op
inclRight
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
inclLeftCompOpEquivInverse
Opposite.op
CategoryTheory.CategoryStruct.id
CategoryTheory.CategoryStruct.opposite
CategoryTheory.Category.toCategoryStruct
right
inclLeftCompOpEquivInverse_inv_app_op 📖mathematicalCategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Join
instCategory
CategoryTheory.Functor.op
inclRight
CategoryTheory.Functor.comp
inclLeft
CategoryTheory.Equivalence.inverse
opEquiv
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
inclLeftCompOpEquivInverse
Opposite.op
CategoryTheory.CategoryStruct.id
CategoryTheory.CategoryStruct.opposite
CategoryTheory.Category.toCategoryStruct
right
inclRightCompOpEquivInverse_hom_app_op 📖mathematicalCategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Join
instCategory
CategoryTheory.Functor.comp
inclRight
CategoryTheory.Equivalence.inverse
opEquiv
CategoryTheory.Functor.op
inclLeft
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
inclRightCompOpEquivInverse
Opposite.op
CategoryTheory.CategoryStruct.id
CategoryTheory.CategoryStruct.opposite
CategoryTheory.Category.toCategoryStruct
left
inclRightCompOpEquivInverse_inv_app_op 📖mathematicalCategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Join
instCategory
CategoryTheory.Functor.op
inclLeft
CategoryTheory.Functor.comp
inclRight
CategoryTheory.Equivalence.inverse
opEquiv
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
inclRightCompOpEquivInverse
Opposite.op
CategoryTheory.CategoryStruct.id
CategoryTheory.CategoryStruct.opposite
CategoryTheory.Category.toCategoryStruct
left
opEquiv_functor_map_op_edge 📖mathematicalCategoryTheory.Functor.map
Opposite
CategoryTheory.Join
CategoryTheory.Category.opposite
instCategory
CategoryTheory.Equivalence.functor
opEquiv
Opposite.op
right
left
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.unop
edge
opEquiv_functor_map_op_inclLeft 📖mathematicalCategoryTheory.Functor.map
Opposite
CategoryTheory.Join
CategoryTheory.Category.opposite
instCategory
CategoryTheory.Equivalence.functor
opEquiv
Opposite.op
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.unop
inclLeft
inclRight
opEquiv_functor_map_op_inclRight 📖mathematicalCategoryTheory.Functor.map
Opposite
CategoryTheory.Join
CategoryTheory.Category.opposite
instCategory
CategoryTheory.Equivalence.functor
opEquiv
Opposite.op
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.unop
inclRight
inclLeft
opEquiv_functor_obj_op_left 📖mathematicalCategoryTheory.Functor.obj
Opposite
CategoryTheory.Join
CategoryTheory.Category.opposite
instCategory
CategoryTheory.Equivalence.functor
opEquiv
Opposite.op
left
right
opEquiv_functor_obj_op_right 📖mathematicalCategoryTheory.Functor.obj
Opposite
CategoryTheory.Join
CategoryTheory.Category.opposite
instCategory
CategoryTheory.Equivalence.functor
opEquiv
Opposite.op
right
left
opEquiv_inverse_map_edge_op 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Join
Opposite
CategoryTheory.Category.opposite
instCategory
CategoryTheory.Equivalence.inverse
opEquiv
left
Opposite.op
right
edge
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
opEquiv_inverse_map_inclLeft_op 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Join
Opposite
CategoryTheory.Category.opposite
instCategory
CategoryTheory.Equivalence.inverse
opEquiv
CategoryTheory.Functor.obj
inclLeft
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
inclRight
opEquiv_inverse_map_inclRight_op 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Join
Opposite
CategoryTheory.Category.opposite
instCategory
CategoryTheory.Equivalence.inverse
opEquiv
CategoryTheory.Functor.obj
inclRight
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
inclLeft
opEquiv_inverse_obj_left_op 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Join
Opposite
CategoryTheory.Category.opposite
instCategory
CategoryTheory.Equivalence.inverse
opEquiv
left
Opposite.op
right
opEquiv_inverse_obj_right_op 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Join
Opposite
CategoryTheory.Category.opposite
instCategory
CategoryTheory.Equivalence.inverse
opEquiv
right
Opposite.op
left

---

← Back to Index