Documentation Verification Report

Adjunction

📁 Source: Mathlib/CategoryTheory/LiftingProperties/Adjunction.lean

Statistics

MetricCount
DefinitionsleftAdjointLiftStructEquiv, rightAdjointLiftStructEquiv
2
TheoremshasLiftingProperty_iff, instHasLift, instHasLift_1, left_adjoint, left_adjoint_hasLift_iff, right_adjoint, right_adjoint_hasLift_iff
7
Total9

CategoryTheory.Adjunction

Theorems

NameKindAssumesProvesValidatesDepends On
hasLiftingProperty_iff 📖mathematicalCategoryTheory.HasLiftingProperty
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.CommSq.left_adjoint
CategoryTheory.CommSq.left_adjoint_hasLift_iff
CategoryTheory.sq_hasLift_of_hasLiftingProperty
CategoryTheory.CommSq.right_adjoint
CategoryTheory.CommSq.right_adjoint_hasLift_iff

CategoryTheory.CommSq

Definitions

NameCategoryTheorems
leftAdjointLiftStructEquiv 📖CompOp
rightAdjointLiftStructEquiv 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
instHasLift 📖mathematicalCategoryTheory.CommSq
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
HasLift
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.Adjunction.homEquiv
right_adjoint
right_adjoint
right_adjoint_hasLift_iff
instHasLift_1 📖mathematicalCategoryTheory.CommSq
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
HasLift
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.Adjunction.homEquiv
left_adjoint
left_adjoint
left_adjoint_hasLift_iff
left_adjoint 📖mathematicalCategoryTheory.CommSq
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.Adjunction.homEquiv
CategoryTheory.Adjunction.homEquiv_counit
CategoryTheory.Category.assoc
CategoryTheory.Functor.map_comp_assoc
w
CategoryTheory.Functor.map_comp
CategoryTheory.Adjunction.counit_naturality
left_adjoint_hasLift_iff 📖mathematicalCategoryTheory.CommSq
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
HasLift
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.Adjunction.homEquiv
left_adjoint
left_adjoint
Equiv.nonempty_congr
right_adjoint 📖mathematicalCategoryTheory.CommSq
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.Adjunction.homEquiv
CategoryTheory.Adjunction.homEquiv_unit
CategoryTheory.Category.assoc
CategoryTheory.Functor.map_comp
w
CategoryTheory.Adjunction.unit_naturality_assoc
right_adjoint_hasLift_iff 📖mathematicalCategoryTheory.CommSq
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
HasLift
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.Adjunction.homEquiv
right_adjoint
right_adjoint
Equiv.nonempty_congr

---

← Back to Index