Documentation Verification Report

Basic

📁 Source: Mathlib/CategoryTheory/LiftingProperties/Basic.lean

Statistics

MetricCount
DefinitionsLiftStruct, HasLiftingProperty, HasLiftingPropertyFixedBot, HasLiftingPropertyFixedTop
4
TheoremshasLiftingProperty_iff, iff_of_arrow_iso_left, iff_of_arrow_iso_right, iff_op, iff_unop, of_arrow_iso_left, of_arrow_iso_right, of_comp_left, of_comp_right, of_left_iso, of_right_iso, op, sq_hasLift, unop, leftLiftingProperty, rightLiftingProperty, sq_hasLift_of_hasLiftingProperty
17
Total21

CategoryTheory

Definitions

NameCategoryTheorems
HasLiftingProperty 📖CompData
35 mathmath: instHasLiftingPropertyInl, HasLiftingProperty.unop, HomotopicalAlgebra.ModelCategory.cm4b, HasLiftingProperty.op, Injective.instHasLiftingPropertyOfMono, HasLiftingProperty.of_left_iso, StrongMono.rlp, Adjunction.hasLiftingProperty_iff, ParametrizedAdjunction.hasLiftingProperty_iff, SSet.modelCategoryQuillen.instHasLiftingPropertyιHornHAddNatOfNatOfFibration, MorphismProperty.hasLiftingProperty_of_wfs, HasLiftingProperty.iff_of_arrow_iso_right, Projective.hasLiftingProperty_of_isZero, RetractArrow.rightLiftingProperty, HasLiftingProperty.of_comp_left, HasLiftingProperty.iff_of_arrow_iso_left, SmallObject.hasRightLiftingProperty_πObj, Injective.hasLiftingProperty_of_isZero, instHasLiftingPropertyFst, HasLiftingProperty.over, instHasLiftingPropertyInr, instHasLiftingPropertySnd, IsPullback.hasLiftingProperty, HasLiftingProperty.iff_op, HasLiftingProperty.iff_unop, HasLiftingProperty.of_arrow_iso_right, HasLiftingProperty.of_arrow_iso_left, IsPushout.hasLiftingProperty, HasLiftingProperty.of_right_iso, Projective.instHasLiftingPropertyOfEpi, StrongEpi.llp, RetractArrow.leftLiftingProperty, HomotopicalAlgebra.ModelCategory.cm4a, Arrow.hasLiftingProperty_iff, HasLiftingProperty.of_comp_right
HasLiftingPropertyFixedBot 📖MathDef
HasLiftingPropertyFixedTop 📖MathDef

Theorems

NameKindAssumesProvesValidatesDepends On
sq_hasLift_of_hasLiftingProperty 📖mathematicalCommSqCommSq.HasLiftHasLiftingProperty.sq_hasLift

CategoryTheory.Arrow

Definitions

NameCategoryTheorems
LiftStruct 📖CompOp
1 mathmath: hasLiftingProperty_iff

Theorems

NameKindAssumesProvesValidatesDepends On
hasLiftingProperty_iff 📖mathematicalCategoryTheory.HasLiftingProperty
LiftStruct
CategoryTheory.CommaMorphism.w
CategoryTheory.sq_hasLift_of_hasLiftingProperty
CategoryTheory.CommSq.fac_left
CategoryTheory.CommSq.fac_right
CategoryTheory.CommSq.w

CategoryTheory.HasLiftingProperty

Theorems

NameKindAssumesProvesValidatesDepends On
iff_of_arrow_iso_left 📖mathematicalCategoryTheory.HasLiftingPropertyof_arrow_iso_left
iff_of_arrow_iso_right 📖mathematicalCategoryTheory.HasLiftingPropertyof_arrow_iso_right
iff_op 📖mathematicalCategoryTheory.HasLiftingProperty
Opposite
CategoryTheory.Category.opposite
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
op
unop
iff_unop 📖mathematicalCategoryTheory.HasLiftingProperty
Opposite
CategoryTheory.Category.opposite
Opposite.unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
unop
op
of_arrow_iso_left 📖mathematicalCategoryTheory.HasLiftingPropertyCategoryTheory.Arrow.iso_w'
of_comp_left
of_left_iso
CategoryTheory.Arrow.isIso_left
CategoryTheory.Iso.isIso_inv
CategoryTheory.Arrow.isIso_right
CategoryTheory.Iso.isIso_hom
of_arrow_iso_right 📖mathematicalCategoryTheory.HasLiftingPropertyCategoryTheory.Arrow.iso_w'
of_comp_right
of_right_iso
CategoryTheory.Arrow.isIso_left
CategoryTheory.Iso.isIso_inv
CategoryTheory.Arrow.isIso_right
CategoryTheory.Iso.isIso_hom
of_comp_left 📖mathematicalCategoryTheory.HasLiftingProperty
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CommSq.w
CategoryTheory.CommSq.HasLift.mk'
CategoryTheory.Category.assoc
CategoryTheory.sq_hasLift_of_hasLiftingProperty
CategoryTheory.CommSq.fac_right
CategoryTheory.CommSq.fac_left
of_comp_right 📖mathematicalCategoryTheory.HasLiftingProperty
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CommSq.w
CategoryTheory.Category.assoc
CategoryTheory.sq_hasLift_of_hasLiftingProperty
CategoryTheory.CommSq.fac_left
CategoryTheory.CommSq.HasLift.mk'
CategoryTheory.CommSq.fac_right_assoc
CategoryTheory.CommSq.fac_right
of_left_iso 📖mathematicalCategoryTheory.HasLiftingPropertyCategoryTheory.CommSq.HasLift.mk'
CategoryTheory.IsIso.hom_inv_id_assoc
CategoryTheory.Category.assoc
CategoryTheory.CommSq.w
CategoryTheory.IsIso.inv_hom_id_assoc
of_right_iso 📖mathematicalCategoryTheory.HasLiftingPropertyCategoryTheory.CommSq.HasLift.mk'
CategoryTheory.CommSq.w_assoc
CategoryTheory.IsIso.hom_inv_id
CategoryTheory.Category.comp_id
CategoryTheory.Category.assoc
CategoryTheory.IsIso.inv_hom_id
op 📖mathematicalCategoryTheory.HasLiftingProperty
Opposite
CategoryTheory.Category.opposite
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CommSq.unop
CategoryTheory.sq_hasLift_of_hasLiftingProperty
sq_hasLift 📖mathematicalCategoryTheory.CommSqCategoryTheory.CommSq.HasLift
unop 📖mathematicalCategoryTheory.HasLiftingProperty
Opposite.unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CommSq.op
CategoryTheory.CommSq.HasLift.iff_op
CategoryTheory.sq_hasLift_of_hasLiftingProperty

CategoryTheory.RetractArrow

Theorems

NameKindAssumesProvesValidatesDepends On
leftLiftingProperty 📖mathematicalCategoryTheory.HasLiftingPropertyCategoryTheory.Category.assoc
CategoryTheory.CommSq.w
CategoryTheory.Arrow.w_mk_right_assoc
CategoryTheory.sq_hasLift_of_hasLiftingProperty
i_w_assoc
CategoryTheory.CommSq.fac_left
retract_left_assoc
CategoryTheory.Category.id_comp
CategoryTheory.CommSq.fac_right
retract_right_assoc
rightLiftingProperty 📖mathematicalCategoryTheory.HasLiftingPropertyCategoryTheory.Category.assoc
CategoryTheory.CommSq.w
i_w
CategoryTheory.sq_hasLift_of_hasLiftingProperty
CategoryTheory.CommSq.fac_left_assoc
retract_left
CategoryTheory.Category.comp_id
CategoryTheory.Arrow.w_mk_right
CategoryTheory.CommSq.fac_right_assoc
retract_right

---

← Back to Index