Documentation Verification Report

ParametrizedAdjunction

📁 Source: Mathlib/CategoryTheory/LiftingProperties/ParametrizedAdjunction.lean

Statistics

MetricCount
DefinitionsParametrizedAdjunction, arrowHomEquiv, liftStructEquiv
3
TheoremsarrowHomEquiv_apply_left, arrowHomEquiv_apply_right_fst, arrowHomEquiv_apply_right_fst_assoc, arrowHomEquiv_apply_right_snd, arrowHomEquiv_apply_right_snd_assoc, arrowHomEquiv_symm_apply_right, hasLiftingProperty_iff, inl_arrowHomEquiv_symm_apply_left, inl_arrowHomEquiv_symm_apply_left_assoc, inr_arrowHomEquiv_symm_apply_left, inr_arrowHomEquiv_symm_apply_left_assoc
11
Total14

CategoryTheory

Definitions

NameCategoryTheorems
ParametrizedAdjunction 📖CompData

CategoryTheory.ParametrizedAdjunction

Definitions

NameCategoryTheorems
arrowHomEquiv 📖CompOp
10 mathmath: inr_arrowHomEquiv_symm_apply_left, inl_arrowHomEquiv_symm_apply_left, arrowHomEquiv_apply_left, arrowHomEquiv_apply_right_snd, arrowHomEquiv_symm_apply_right, inr_arrowHomEquiv_symm_apply_left_assoc, arrowHomEquiv_apply_right_fst_assoc, inl_arrowHomEquiv_symm_apply_left_assoc, arrowHomEquiv_apply_right_fst, arrowHomEquiv_apply_right_snd_assoc
liftStructEquiv 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
arrowHomEquiv_apply_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
CategoryTheory.Functor.PullbackObjObj.pt
CategoryTheory.Functor.PullbackObjObj.π
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Arrow
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.PushoutObjObj.pt
CategoryTheory.Functor.PushoutObjObj.ι
EquivLike.toFunLike
Equiv.instEquivLike
arrowHomEquiv
homEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.PushoutObjObj.inl
arrowHomEquiv_apply_right_fst 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
CategoryTheory.Functor.PullbackObjObj.pt
CategoryTheory.Functor.PullbackObjObj.π
CategoryTheory.CommaMorphism.right
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Arrow
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.PushoutObjObj.pt
CategoryTheory.Functor.PushoutObjObj.ι
EquivLike.toFunLike
Equiv.instEquivLike
arrowHomEquiv
CategoryTheory.Functor.PullbackObjObj.fst
CategoryTheory.Comma.left
homEquiv
CategoryTheory.Functor.PushoutObjObj.inr
CategoryTheory.CommaMorphism.left
CategoryTheory.IsPullback.lift_fst
CategoryTheory.Functor.PullbackObjObj.isPullback
arrowHomEquiv_apply_right_fst_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
CategoryTheory.Functor.PullbackObjObj.pt
CategoryTheory.Functor.PullbackObjObj.π
CategoryTheory.CommaMorphism.right
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Arrow
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.PushoutObjObj.pt
CategoryTheory.Functor.PushoutObjObj.ι
EquivLike.toFunLike
Equiv.instEquivLike
arrowHomEquiv
CategoryTheory.Functor.PullbackObjObj.fst
CategoryTheory.Comma.left
homEquiv
CategoryTheory.Functor.PushoutObjObj.inr
CategoryTheory.CommaMorphism.left
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
arrowHomEquiv_apply_right_fst
arrowHomEquiv_apply_right_snd 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
CategoryTheory.Functor.PullbackObjObj.pt
CategoryTheory.Functor.PullbackObjObj.π
CategoryTheory.CommaMorphism.right
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Arrow
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.PushoutObjObj.pt
CategoryTheory.Functor.PushoutObjObj.ι
EquivLike.toFunLike
Equiv.instEquivLike
arrowHomEquiv
CategoryTheory.Functor.PullbackObjObj.snd
homEquiv
CategoryTheory.IsPullback.lift_snd
CategoryTheory.Functor.PullbackObjObj.isPullback
arrowHomEquiv_apply_right_snd_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
CategoryTheory.Functor.PullbackObjObj.pt
CategoryTheory.Functor.PullbackObjObj.π
CategoryTheory.CommaMorphism.right
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Arrow
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.PushoutObjObj.pt
CategoryTheory.Functor.PushoutObjObj.ι
EquivLike.toFunLike
Equiv.instEquivLike
arrowHomEquiv
CategoryTheory.Functor.PullbackObjObj.snd
homEquiv
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
arrowHomEquiv_apply_right_snd
arrowHomEquiv_symm_apply_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Functor.id
CategoryTheory.Functor.PushoutObjObj.pt
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.PushoutObjObj.ι
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Arrow
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryArrow
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Functor.PullbackObjObj.pt
CategoryTheory.Functor.PullbackObjObj.π
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
arrowHomEquiv
homEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.PullbackObjObj.snd
hasLiftingProperty_iff 📖mathematicalCategoryTheory.HasLiftingProperty
CategoryTheory.Functor.PushoutObjObj.pt
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.PushoutObjObj.ι
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Functor.PullbackObjObj.pt
CategoryTheory.Functor.PullbackObjObj.π
Equiv.surjective
inl_arrowHomEquiv_symm_apply_left 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.PushoutObjObj.pt
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Functor.PushoutObjObj.inl
CategoryTheory.CommaMorphism.left
CategoryTheory.Functor.PushoutObjObj.ι
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Arrow
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.instCategoryArrow
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Functor.PullbackObjObj.pt
CategoryTheory.Functor.PullbackObjObj.π
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
arrowHomEquiv
homEquiv
CategoryTheory.IsPushout.inl_desc
CategoryTheory.Functor.PushoutObjObj.isPushout
inl_arrowHomEquiv_symm_apply_left_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.PushoutObjObj.pt
CategoryTheory.Functor.PushoutObjObj.inl
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.CommaMorphism.left
CategoryTheory.Functor.PushoutObjObj.ι
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Arrow
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.instCategoryArrow
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Functor.PullbackObjObj.pt
CategoryTheory.Functor.PullbackObjObj.π
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
arrowHomEquiv
homEquiv
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
inl_arrowHomEquiv_symm_apply_left
inr_arrowHomEquiv_symm_apply_left 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.PushoutObjObj.pt
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Functor.PushoutObjObj.inr
CategoryTheory.CommaMorphism.left
CategoryTheory.Functor.PushoutObjObj.ι
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Arrow
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.instCategoryArrow
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Functor.PullbackObjObj.pt
CategoryTheory.Functor.PullbackObjObj.π
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
arrowHomEquiv
CategoryTheory.Comma.right
homEquiv
CategoryTheory.CommaMorphism.right
CategoryTheory.Functor.PullbackObjObj.fst
CategoryTheory.IsPushout.inr_desc
CategoryTheory.Functor.PushoutObjObj.isPushout
inr_arrowHomEquiv_symm_apply_left_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.PushoutObjObj.pt
CategoryTheory.Functor.PushoutObjObj.inr
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.CommaMorphism.left
CategoryTheory.Functor.PushoutObjObj.ι
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Arrow
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.instCategoryArrow
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Functor.PullbackObjObj.pt
CategoryTheory.Functor.PullbackObjObj.π
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
arrowHomEquiv
CategoryTheory.Comma.right
homEquiv
CategoryTheory.CommaMorphism.right
CategoryTheory.Functor.PullbackObjObj.fst
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
inr_arrowHomEquiv_symm_apply_left

---

← Back to Index