📁 Source: Mathlib/CategoryTheory/Limits/ConcreteCategory/Basic.lean
colimit_exists_of_rep_eq
colimit_exists_rep
colimit_rep_eq_iff_exists
colimit_rep_eq_of_exists
from_union_surjective_of_isColimit
isColimit_exists_of_rep_eq
isColimit_exists_rep
isColimit_rep_eq_iff_exists
isColimit_rep_eq_of_exists
isLimit_ext
limit_ext
small_sections_of_hasLimit
surjective_π_app_zero_of_surjective_map
to_product_injective_of_isLimit
instFullForgetTypeHom
instIsCorepresentableForgetTypeHom
instIsEquivalenceForgetTypeHom
instPreservesColimitsOfSizeForgetTypeHom
instPreservesLimitsOfSizeForgetTypeHom
instReflectsColimitsOfSizeForgetTypeHom
instReflectsLimitsOfSizeForgetTypeHom
DFunLike.coe
CategoryTheory.Functor.obj
CategoryTheory.Limits.colimit
CategoryTheory.ConcreteCategory.hom
CategoryTheory.Limits.colimit.ι
CategoryTheory.Functor.map
CategoryTheory.Limits.Types.jointly_surjective_of_isColimit
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ι
CategoryTheory.Limits.Types.FilteredColimit.isColimit_eq_iff
CategoryTheory.IsFiltered.toIsFilteredOrEmpty
CategoryTheory.NatTrans.naturality
CategoryTheory.types_comp_apply
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.Cone.π
CategoryTheory.Limits.limit
CategoryTheory.Limits.limit.π
Small
Set.Elem
CategoryTheory.Functor.sections
CategoryTheory.Functor.comp
CategoryTheory.types
CategoryTheory.forget
CategoryTheory.Limits.Types.hasLimit_iff_small_sections
CategoryTheory.Limits.instHasLimitCompOfPreservesLimit
CategoryTheory.Functor.corepresentable_preservesLimit
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
Nat.instPreorder
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.homOfLE
CategoryTheory.Limits.Types.surjective_π_app_zero_of_surjective_map
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.ToType
Equiv.injective
CategoryTheory.Functor.Full
Quiver.Hom
instFunLike
instConcreteCategory
CategoryTheory.Functor.Full.id
CategoryTheory.Functor.IsCorepresentable
CategoryTheory.instIsCorepresentableIdType
CategoryTheory.Functor.IsEquivalence
CategoryTheory.Functor.isEquivalence_refl
CategoryTheory.Limits.PreservesColimitsOfSize
CategoryTheory.Limits.id_preservesColimitsOfSize
CategoryTheory.Limits.PreservesLimitsOfSize
CategoryTheory.Limits.id_preservesLimitsOfSize
CategoryTheory.Limits.ReflectsColimitsOfSize
CategoryTheory.Limits.id_reflectsColimits
CategoryTheory.Limits.ReflectsLimitsOfSize
CategoryTheory.Limits.id_reflectsLimits
---
← Back to Index