Documentation Verification Report

Basic

📁 Source: Mathlib/CategoryTheory/Limits/ConcreteCategory/Basic.lean

Statistics

MetricCount
Definitions0
Theoremscolimit_exists_of_rep_eq, colimit_exists_rep, colimit_rep_eq_iff_exists, colimit_rep_eq_of_exists, from_union_surjective_of_isColimit, isColimit_exists_of_rep_eq, isColimit_exists_rep, isColimit_rep_eq_iff_exists, isColimit_rep_eq_of_exists, isLimit_ext, limit_ext, small_sections_of_hasLimit, surjective_π_app_zero_of_surjective_map, to_product_injective_of_isLimit, instFullForgetTypeHom, instIsCorepresentableForgetTypeHom, instIsEquivalenceForgetTypeHom, instPreservesColimitsOfSizeForgetTypeHom, instPreservesLimitsOfSizeForgetTypeHom, instReflectsColimitsOfSizeForgetTypeHom, instReflectsLimitsOfSizeForgetTypeHom
21
Total21

CategoryTheory.Limits.Concrete

Theorems

NameKindAssumesProvesValidatesDepends On
colimit_exists_of_rep_eq 📖mathematicalDFunLike.coe
CategoryTheory.Functor.obj
CategoryTheory.Limits.colimit
CategoryTheory.ConcreteCategory.hom
CategoryTheory.Limits.colimit.ι
CategoryTheory.Functor.mapisColimit_exists_of_rep_eq
colimit_exists_rep 📖mathematicalDFunLike.coe
CategoryTheory.Functor.obj
CategoryTheory.Limits.colimit
CategoryTheory.ConcreteCategory.hom
CategoryTheory.Limits.colimit.ι
isColimit_exists_rep
colimit_rep_eq_iff_exists 📖mathematicalDFunLike.coe
CategoryTheory.Functor.obj
CategoryTheory.Limits.colimit
CategoryTheory.ConcreteCategory.hom
CategoryTheory.Limits.colimit.ι
CategoryTheory.Functor.map
colimit_exists_of_rep_eq
colimit_rep_eq_of_exists
colimit_rep_eq_of_exists 📖mathematicalDFunLike.coe
CategoryTheory.Functor.obj
CategoryTheory.ConcreteCategory.hom
CategoryTheory.Functor.map
CategoryTheory.Limits.colimit
CategoryTheory.Limits.colimit.ι
isColimit_rep_eq_of_exists
from_union_surjective_of_isColimit 📖CategoryTheory.Limits.Types.jointly_surjective_of_isColimit
isColimit_exists_of_rep_eq 📖mathematicalDFunLike.coe
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.ConcreteCategory.hom
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ι
CategoryTheory.Functor.mapCategoryTheory.Limits.Types.FilteredColimit.isColimit_eq_iff
CategoryTheory.IsFiltered.toIsFilteredOrEmpty
isColimit_exists_rep 📖mathematicalDFunLike.coe
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.ConcreteCategory.hom
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ι
from_union_surjective_of_isColimit
isColimit_rep_eq_iff_exists 📖mathematicalDFunLike.coe
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.ConcreteCategory.hom
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ι
CategoryTheory.Functor.map
isColimit_exists_of_rep_eq
isColimit_rep_eq_of_exists
isColimit_rep_eq_of_exists 📖mathematicalDFunLike.coe
CategoryTheory.Functor.obj
CategoryTheory.ConcreteCategory.hom
CategoryTheory.Functor.map
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ι
CategoryTheory.NatTrans.naturality
CategoryTheory.types_comp_apply
isLimit_ext 📖DFunLike.coe
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.ConcreteCategory.hom
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cone.π
to_product_injective_of_isLimit
limit_ext 📖DFunLike.coe
CategoryTheory.Limits.limit
CategoryTheory.Functor.obj
CategoryTheory.ConcreteCategory.hom
CategoryTheory.Limits.limit.π
isLimit_ext
small_sections_of_hasLimit 📖mathematicalSmall
Set.Elem
CategoryTheory.Functor.sections
CategoryTheory.Functor.comp
CategoryTheory.types
CategoryTheory.forget
CategoryTheory.Limits.Types.hasLimit_iff_small_sections
CategoryTheory.Limits.instHasLimitCompOfPreservesLimit
CategoryTheory.Functor.corepresentable_preservesLimit
surjective_π_app_zero_of_surjective_map 📖mathematicalCategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
Nat.instPreorder
Opposite.op
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.homOfLE
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cone.π
CategoryTheory.Limits.Types.surjective_π_app_zero_of_surjective_map
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
to_product_injective_of_isLimit 📖mathematicalCategoryTheory.ToType
CategoryTheory.Limits.Cone.pt
DFunLike.coe
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.ConcreteCategory.hom
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cone.π
Equiv.injective

CategoryTheory.Types

Theorems

NameKindAssumesProvesValidatesDepends On
instFullForgetTypeHom 📖mathematicalCategoryTheory.Functor.Full
CategoryTheory.types
CategoryTheory.forget
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instFunLike
instConcreteCategory
CategoryTheory.Functor.Full.id
instIsCorepresentableForgetTypeHom 📖mathematicalCategoryTheory.Functor.IsCorepresentable
CategoryTheory.types
CategoryTheory.forget
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instFunLike
instConcreteCategory
CategoryTheory.instIsCorepresentableIdType
instIsEquivalenceForgetTypeHom 📖mathematicalCategoryTheory.Functor.IsEquivalence
CategoryTheory.types
CategoryTheory.forget
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instFunLike
instConcreteCategory
CategoryTheory.Functor.isEquivalence_refl
instPreservesColimitsOfSizeForgetTypeHom 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfSize
CategoryTheory.types
CategoryTheory.forget
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instFunLike
instConcreteCategory
CategoryTheory.Limits.id_preservesColimitsOfSize
instPreservesLimitsOfSizeForgetTypeHom 📖mathematicalCategoryTheory.Limits.PreservesLimitsOfSize
CategoryTheory.types
CategoryTheory.forget
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instFunLike
instConcreteCategory
CategoryTheory.Limits.id_preservesLimitsOfSize
instReflectsColimitsOfSizeForgetTypeHom 📖mathematicalCategoryTheory.Limits.ReflectsColimitsOfSize
CategoryTheory.types
CategoryTheory.forget
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instFunLike
instConcreteCategory
CategoryTheory.Limits.id_reflectsColimits
instReflectsLimitsOfSizeForgetTypeHom 📖mathematicalCategoryTheory.Limits.ReflectsLimitsOfSize
CategoryTheory.types
CategoryTheory.forget
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instFunLike
instConcreteCategory
CategoryTheory.Limits.id_reflectsLimits

---

← Back to Index