Documentation Verification Report

ConeCategory

📁 Source: Mathlib/CategoryTheory/Limits/ConeCategory.lean

Statistics

MetricCount
DefinitionstoCostructuredArrowIsoToCostructuredArrow, toStructuredArrowIsoToStructuredArrow, equivStructuredArrow, fromCostructuredArrow, fromStructuredArrow, isColimitEquivIsInitial, mapCoconeToOver, toCostructuredArrow, toCostructuredArrowCocone, toCostructuredArrowCompProj, toCostructuredArrowCompToOverCompForget, toCostructuredArrowIsoToCostructuredArrow, toOver, toStructuredArrow, equivCostructuredArrow, fromCostructuredArrow, fromStructuredArrow, isLimitEquivIsTerminal, mapConeToUnder, toCostructuredArrow, toStructuredArrow, toStructuredArrowCompProj, toStructuredArrowCompToUnderCompForget, toStructuredArrowCone, toStructuredArrowIsoToStructuredArrow, toUnder, ofPreservesCoconeInitial, ofReflectsCoconeInitial, ofPreservesConeTerminal, ofReflectsConeTerminal, toCostructuredArrow, toOver, toStructuredArrow, toUnder
34
TheoremsequivStructuredArrow_counitIso, equivStructuredArrow_functor, equivStructuredArrow_inverse, equivStructuredArrow_unitIso, fromCostructuredArrow_pt, fromCostructuredArrow_ι_app, fromStructuredArrow_map_hom, fromStructuredArrow_obj_pt, fromStructuredArrow_obj_ι, mapCoconeToOver_hom_hom, mapCoconeToOver_inv_hom, toCostructuredArrowCocone_pt, toCostructuredArrowCocone_ι_app, toCostructuredArrowCompProj_hom_app, toCostructuredArrowCompProj_inv_app, toCostructuredArrowCompToOverCompForget_hom_app, toCostructuredArrowCompToOverCompForget_inv_app, toCostructuredArrow_comp_proj, toCostructuredArrow_comp_toOver_comp_forget, toCostructuredArrow_map, toCostructuredArrow_obj, toOver_pt, toOver_ι_app, toStructuredArrow_map, toStructuredArrow_obj, equivCostructuredArrow_counitIso, equivCostructuredArrow_functor, equivCostructuredArrow_inverse, equivCostructuredArrow_unitIso, fromCostructuredArrow_map_hom, fromCostructuredArrow_obj_pt, fromCostructuredArrow_obj_π, fromStructuredArrow_pt, fromStructuredArrow_π_app, mapConeToUnder_hom_hom, mapConeToUnder_inv_hom, toCostructuredArrow_map, toCostructuredArrow_obj, toStructuredArrowCompProj_hom_app, toStructuredArrowCompProj_inv_app, toStructuredArrowCompToUnderCompForget_hom_app, toStructuredArrowCompToUnderCompForget_inv_app, toStructuredArrowCone_pt, toStructuredArrowCone_π_app, toStructuredArrow_comp_proj, toStructuredArrow_comp_toUnder_comp_forget, toStructuredArrow_map, toStructuredArrow_obj, toUnder_pt, toUnder_π_app, descCoconeMorphism_eq_isInitial_to, to_eq_descCoconeMorphism, liftConeMorphism_eq_isTerminal_from, from_eq_liftConeMorphism, toCostructuredArrow_map, toCostructuredArrow_obj, toOver_pt, toOver_ι_app, hasColimit_iff_hasInitial_cocone, hasColimitsOfShape_iff_isRightAdjoint_const, hasLimit_iff_hasTerminal_cone, hasLimitsOfShape_iff_isLeftAdjoint_const, toStructuredArrow_map, toStructuredArrow_obj
64
Total98

CategoryTheory.Functor

Definitions

NameCategoryTheorems
toCostructuredArrowIsoToCostructuredArrow 📖CompOp
toStructuredArrowIsoToStructuredArrow 📖CompOp

CategoryTheory.Limits

Theorems

NameKindAssumesProvesValidatesDepends On
hasColimit_iff_hasInitial_cocone 📖mathematicalHasColimit
HasInitial
Cocone
Cocone.category
IsInitial.hasInitial
hasColimitsOfShape_iff_isRightAdjoint_const 📖mathematicalHasColimitsOfShape
CategoryTheory.Functor.IsRightAdjoint
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
HasColimitsOfShape.has_colimit
hasColimit_iff_hasInitial_cocone
CategoryTheory.Equivalence.hasInitial_iff
CategoryTheory.isRightAdjoint_iff_hasInitial_structuredArrow
hasLimit_iff_hasTerminal_cone 📖mathematicalHasLimit
HasTerminal
Cone
Cone.category
IsTerminal.hasTerminal
hasLimitsOfShape_iff_isLeftAdjoint_const 📖mathematicalHasLimitsOfShape
CategoryTheory.Functor.IsLeftAdjoint
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
HasLimitsOfShape.has_limit
hasLimit_iff_hasTerminal_cone
CategoryTheory.Equivalence.hasTerminal_iff
CategoryTheory.isLeftAdjoint_iff_hasTerminal_costructuredArrow

CategoryTheory.Limits.Cocone

Definitions

NameCategoryTheorems
equivStructuredArrow 📖CompOp
4 mathmath: equivStructuredArrow_unitIso, equivStructuredArrow_inverse, equivStructuredArrow_functor, equivStructuredArrow_counitIso
fromCostructuredArrow 📖CompOp
2 mathmath: fromCostructuredArrow_ι_app, fromCostructuredArrow_pt
fromStructuredArrow 📖CompOp
6 mathmath: equivStructuredArrow_unitIso, fromStructuredArrow_obj_pt, fromStructuredArrow_map_hom, equivStructuredArrow_inverse, fromStructuredArrow_obj_ι, equivStructuredArrow_counitIso
isColimitEquivIsInitial 📖CompOp
2 mathmath: CategoryTheory.Limits.IsInitial.to_eq_descCoconeMorphism, CategoryTheory.Limits.IsColimit.descCoconeMorphism_eq_isInitial_to
mapCoconeToOver 📖CompOp
2 mathmath: mapCoconeToOver_inv_hom, mapCoconeToOver_hom_hom
toCostructuredArrow 📖CompOp
16 mathmath: toOver_ι_app, toCostructuredArrow_comp_proj, toCostructuredArrow_comp_toOver_comp_forget, toCostructuredArrow_map, toCostructuredArrowCompProj_hom_app, toCostructuredArrowCompToOverCompForget_inv_app, CategoryTheory.Presheaf.final_toCostructuredArrow_comp_pre, toOver_pt, CategoryTheory.Limits.IndObjectPresentation.toCostructuredArrow_map_left, toCostructuredArrowCocone_ι_app, toCostructuredArrowCompToOverCompForget_hom_app, toCostructuredArrow_obj, mapCoconeToOver_inv_hom, toCostructuredArrowCompProj_inv_app, toCostructuredArrowCocone_pt, mapCoconeToOver_hom_hom
toCostructuredArrowCocone 📖CompOp
2 mathmath: toCostructuredArrowCocone_ι_app, toCostructuredArrowCocone_pt
toCostructuredArrowCompProj 📖CompOp
2 mathmath: toCostructuredArrowCompProj_hom_app, toCostructuredArrowCompProj_inv_app
toCostructuredArrowCompToOverCompForget 📖CompOp
2 mathmath: toCostructuredArrowCompToOverCompForget_inv_app, toCostructuredArrowCompToOverCompForget_hom_app
toCostructuredArrowIsoToCostructuredArrow 📖CompOp
toOver 📖CompOp
4 mathmath: toOver_ι_app, toOver_pt, mapCoconeToOver_inv_hom, mapCoconeToOver_hom_hom
toStructuredArrow 📖CompOp
5 mathmath: toStructuredArrow_obj, equivStructuredArrow_unitIso, toStructuredArrow_map, equivStructuredArrow_functor, equivStructuredArrow_counitIso

Theorems

NameKindAssumesProvesValidatesDepends On
equivStructuredArrow_counitIso 📖mathematicalCategoryTheory.Equivalence.counitIso
CategoryTheory.Limits.Cocone
CategoryTheory.StructuredArrow
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
category
CategoryTheory.instCategoryStructuredArrow
equivStructuredArrow
CategoryTheory.NatIso.ofComponents
CategoryTheory.Functor.comp
fromStructuredArrow
toStructuredArrow
CategoryTheory.Functor.id
CategoryTheory.Iso.symm
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.hom
CategoryTheory.StructuredArrow.eta
equivStructuredArrow_functor 📖mathematicalCategoryTheory.Equivalence.functor
CategoryTheory.Limits.Cocone
CategoryTheory.StructuredArrow
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
category
CategoryTheory.instCategoryStructuredArrow
equivStructuredArrow
toStructuredArrow
equivStructuredArrow_inverse 📖mathematicalCategoryTheory.Equivalence.inverse
CategoryTheory.Limits.Cocone
CategoryTheory.StructuredArrow
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
category
CategoryTheory.instCategoryStructuredArrow
equivStructuredArrow
fromStructuredArrow
equivStructuredArrow_unitIso 📖mathematicalCategoryTheory.Equivalence.unitIso
CategoryTheory.Limits.Cocone
CategoryTheory.StructuredArrow
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
category
CategoryTheory.instCategoryStructuredArrow
equivStructuredArrow
CategoryTheory.NatIso.ofComponents
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
toStructuredArrow
fromStructuredArrow
CategoryTheory.Limits.Cocones.eta
fromCostructuredArrow_pt 📖mathematicalpt
CategoryTheory.Functor.comp
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.CostructuredArrow.proj
fromCostructuredArrow
fromCostructuredArrow_ι_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.CostructuredArrow.proj
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
ι
fromCostructuredArrow
CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
fromStructuredArrow_map_hom 📖mathematicalCategoryTheory.Limits.CoconeMorphism.hom
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.const
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Limits.Cocone
category
fromStructuredArrow
CategoryTheory.CommaMorphism.right
fromStructuredArrow_obj_pt 📖mathematicalpt
CategoryTheory.Functor.obj
CategoryTheory.StructuredArrow
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Limits.Cocone
category
fromStructuredArrow
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
fromStructuredArrow_obj_ι 📖mathematicalι
CategoryTheory.Functor.obj
CategoryTheory.StructuredArrow
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Limits.Cocone
category
fromStructuredArrow
CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
mapCoconeToOver_hom_hom 📖mathematicalCategoryTheory.Limits.CoconeMorphism.hom
CategoryTheory.Functor.comp
CategoryTheory.Over
pt
CategoryTheory.instCategoryOver
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
toCostructuredArrow
CategoryTheory.CostructuredArrow.toOver
CategoryTheory.Over.forget
CategoryTheory.Functor.mapCocone
toOver
CategoryTheory.Iso.hom
CategoryTheory.Limits.Cocone
category
mapCoconeToOver
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
mapCoconeToOver_inv_hom 📖mathematicalCategoryTheory.Limits.CoconeMorphism.hom
CategoryTheory.Functor.comp
CategoryTheory.Over
pt
CategoryTheory.instCategoryOver
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
toCostructuredArrow
CategoryTheory.CostructuredArrow.toOver
CategoryTheory.Over.forget
CategoryTheory.Functor.mapCocone
toOver
CategoryTheory.Iso.inv
CategoryTheory.Limits.Cocone
category
mapCoconeToOver
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
toCostructuredArrowCocone_pt 📖mathematicalpt
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.Functor.mapCocone
toCostructuredArrow
CategoryTheory.CostructuredArrow.map
CategoryTheory.CostructuredArrow.pre
toCostructuredArrowCocone
toCostructuredArrowCocone_ι_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.comp
pt
CategoryTheory.Functor.mapCocone
toCostructuredArrow
CategoryTheory.CostructuredArrow.map
CategoryTheory.CostructuredArrow.pre
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
ι
toCostructuredArrowCocone
CategoryTheory.CostructuredArrow.homMk
toCostructuredArrowCompProj_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.CostructuredArrow
pt
CategoryTheory.instCategoryCostructuredArrow
toCostructuredArrow
CategoryTheory.CostructuredArrow.proj
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
toCostructuredArrowCompProj
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
toCostructuredArrowCompProj_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.CostructuredArrow
pt
CategoryTheory.instCategoryCostructuredArrow
toCostructuredArrow
CategoryTheory.CostructuredArrow.proj
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
toCostructuredArrowCompProj
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
toCostructuredArrowCompToOverCompForget_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.CostructuredArrow
pt
CategoryTheory.instCategoryCostructuredArrow
toCostructuredArrow
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.CostructuredArrow.toOver
CategoryTheory.Over.forget
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
toCostructuredArrowCompToOverCompForget
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
toCostructuredArrowCompToOverCompForget_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.CostructuredArrow
pt
CategoryTheory.instCategoryCostructuredArrow
toCostructuredArrow
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.CostructuredArrow.toOver
CategoryTheory.Over.forget
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
toCostructuredArrowCompToOverCompForget
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
toCostructuredArrow_comp_proj 📖mathematicalCategoryTheory.Functor.comp
CategoryTheory.CostructuredArrow
pt
CategoryTheory.instCategoryCostructuredArrow
toCostructuredArrow
CategoryTheory.CostructuredArrow.proj
CategoryTheory.Functor.id
toCostructuredArrow_comp_toOver_comp_forget 📖mathematicalCategoryTheory.Functor.comp
CategoryTheory.CostructuredArrow
pt
CategoryTheory.instCategoryCostructuredArrow
toCostructuredArrow
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.CostructuredArrow.toOver
CategoryTheory.Over.forget
toCostructuredArrow_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.CostructuredArrow
pt
CategoryTheory.instCategoryCostructuredArrow
toCostructuredArrow
CategoryTheory.CostructuredArrow.homMk
CategoryTheory.NatTrans.app
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
ι
toCostructuredArrow_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
pt
CategoryTheory.instCategoryCostructuredArrow
toCostructuredArrow
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
ι
toOver_pt 📖mathematicalpt
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.comp
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
toCostructuredArrow
CategoryTheory.CostructuredArrow.toOver
toOver
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
toOver_ι_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Over
pt
CategoryTheory.instCategoryOver
CategoryTheory.Functor.comp
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
toCostructuredArrow
CategoryTheory.CostructuredArrow.toOver
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
ι
toOver
CategoryTheory.Over.homMk
toStructuredArrow_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Limits.Cocone
category
CategoryTheory.StructuredArrow
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.instCategoryStructuredArrow
toStructuredArrow
CategoryTheory.StructuredArrow.homMk
pt
ι
CategoryTheory.Limits.CoconeMorphism.hom
toStructuredArrow_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Limits.Cocone
category
CategoryTheory.StructuredArrow
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.instCategoryStructuredArrow
toStructuredArrow
pt
ι

CategoryTheory.Limits.Cone

Definitions

NameCategoryTheorems
equivCostructuredArrow 📖CompOp
4 mathmath: equivCostructuredArrow_inverse, equivCostructuredArrow_functor, equivCostructuredArrow_counitIso, equivCostructuredArrow_unitIso
fromCostructuredArrow 📖CompOp
6 mathmath: fromCostructuredArrow_map_hom, fromCostructuredArrow_obj_π, equivCostructuredArrow_inverse, equivCostructuredArrow_counitIso, fromCostructuredArrow_obj_pt, equivCostructuredArrow_unitIso
fromStructuredArrow 📖CompOp
2 mathmath: fromStructuredArrow_π_app, fromStructuredArrow_pt
isLimitEquivIsTerminal 📖CompOp
2 mathmath: CategoryTheory.Limits.IsLimit.liftConeMorphism_eq_isTerminal_from, CategoryTheory.Limits.IsTerminal.from_eq_liftConeMorphism
mapConeToUnder 📖CompOp
2 mathmath: mapConeToUnder_inv_hom, mapConeToUnder_hom_hom
toCostructuredArrow 📖CompOp
5 mathmath: toCostructuredArrow_obj, toCostructuredArrow_map, equivCostructuredArrow_functor, equivCostructuredArrow_counitIso, equivCostructuredArrow_unitIso
toStructuredArrow 📖CompOp
14 mathmath: toUnder_pt, toStructuredArrowCompProj_inv_app, toStructuredArrowCompToUnderCompForget_hom_app, toStructuredArrow_comp_toUnder_comp_forget, toStructuredArrowCone_π_app, mapConeToUnder_inv_hom, toStructuredArrowCompProj_hom_app, toStructuredArrow_obj, toUnder_π_app, toStructuredArrow_comp_proj, mapConeToUnder_hom_hom, toStructuredArrow_map, toStructuredArrowCompToUnderCompForget_inv_app, toStructuredArrowCone_pt
toStructuredArrowCompProj 📖CompOp
2 mathmath: toStructuredArrowCompProj_inv_app, toStructuredArrowCompProj_hom_app
toStructuredArrowCompToUnderCompForget 📖CompOp
2 mathmath: toStructuredArrowCompToUnderCompForget_hom_app, toStructuredArrowCompToUnderCompForget_inv_app
toStructuredArrowCone 📖CompOp
2 mathmath: toStructuredArrowCone_π_app, toStructuredArrowCone_pt
toStructuredArrowIsoToStructuredArrow 📖CompOp
toUnder 📖CompOp
4 mathmath: toUnder_pt, mapConeToUnder_inv_hom, toUnder_π_app, mapConeToUnder_hom_hom

Theorems

NameKindAssumesProvesValidatesDepends On
equivCostructuredArrow_counitIso 📖mathematicalCategoryTheory.Equivalence.counitIso
CategoryTheory.Limits.Cone
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
category
CategoryTheory.instCategoryCostructuredArrow
equivCostructuredArrow
CategoryTheory.NatIso.ofComponents
CategoryTheory.Functor.comp
fromCostructuredArrow
toCostructuredArrow
CategoryTheory.Functor.id
CategoryTheory.Iso.symm
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.hom
CategoryTheory.CostructuredArrow.eta
equivCostructuredArrow_functor 📖mathematicalCategoryTheory.Equivalence.functor
CategoryTheory.Limits.Cone
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
category
CategoryTheory.instCategoryCostructuredArrow
equivCostructuredArrow
toCostructuredArrow
equivCostructuredArrow_inverse 📖mathematicalCategoryTheory.Equivalence.inverse
CategoryTheory.Limits.Cone
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
category
CategoryTheory.instCategoryCostructuredArrow
equivCostructuredArrow
fromCostructuredArrow
equivCostructuredArrow_unitIso 📖mathematicalCategoryTheory.Equivalence.unitIso
CategoryTheory.Limits.Cone
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
category
CategoryTheory.instCategoryCostructuredArrow
equivCostructuredArrow
CategoryTheory.NatIso.ofComponents
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
toCostructuredArrow
fromCostructuredArrow
CategoryTheory.Limits.Cones.eta
fromCostructuredArrow_map_hom 📖mathematicalCategoryTheory.Limits.ConeMorphism.hom
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Limits.Cone
category
fromCostructuredArrow
CategoryTheory.CommaMorphism.left
fromCostructuredArrow_obj_pt 📖mathematicalpt
CategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Limits.Cone
category
fromCostructuredArrow
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
fromCostructuredArrow_obj_π 📖mathematicalπ
CategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Limits.Cone
category
fromCostructuredArrow
CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
fromStructuredArrow_pt 📖mathematicalpt
CategoryTheory.Functor.comp
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.StructuredArrow.proj
fromStructuredArrow
fromStructuredArrow_π_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Functor.comp
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.StructuredArrow.proj
π
fromStructuredArrow
CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
mapConeToUnder_hom_hom 📖mathematicalCategoryTheory.Limits.ConeMorphism.hom
CategoryTheory.Functor.comp
CategoryTheory.Under
pt
CategoryTheory.instCategoryUnder
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
toStructuredArrow
CategoryTheory.StructuredArrow.toUnder
CategoryTheory.Under.forget
CategoryTheory.Functor.mapCone
toUnder
CategoryTheory.Iso.hom
CategoryTheory.Limits.Cone
category
mapConeToUnder
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
mapConeToUnder_inv_hom 📖mathematicalCategoryTheory.Limits.ConeMorphism.hom
CategoryTheory.Functor.comp
CategoryTheory.Under
pt
CategoryTheory.instCategoryUnder
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
toStructuredArrow
CategoryTheory.StructuredArrow.toUnder
CategoryTheory.Under.forget
CategoryTheory.Functor.mapCone
toUnder
CategoryTheory.Iso.inv
CategoryTheory.Limits.Cone
category
mapConeToUnder
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
toCostructuredArrow_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Limits.Cone
category
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.instCategoryCostructuredArrow
toCostructuredArrow
CategoryTheory.CostructuredArrow.homMk
pt
π
CategoryTheory.Limits.ConeMorphism.hom
toCostructuredArrow_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Limits.Cone
category
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.instCategoryCostructuredArrow
toCostructuredArrow
pt
π
toStructuredArrowCompProj_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.StructuredArrow
pt
CategoryTheory.instCategoryStructuredArrow
toStructuredArrow
CategoryTheory.StructuredArrow.proj
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
toStructuredArrowCompProj
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
toStructuredArrowCompProj_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.StructuredArrow
pt
CategoryTheory.instCategoryStructuredArrow
toStructuredArrow
CategoryTheory.StructuredArrow.proj
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
toStructuredArrowCompProj
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
toStructuredArrowCompToUnderCompForget_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.StructuredArrow
pt
CategoryTheory.instCategoryStructuredArrow
toStructuredArrow
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.StructuredArrow.toUnder
CategoryTheory.Under.forget
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
toStructuredArrowCompToUnderCompForget
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
toStructuredArrowCompToUnderCompForget_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.StructuredArrow
pt
CategoryTheory.instCategoryStructuredArrow
toStructuredArrow
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.StructuredArrow.toUnder
CategoryTheory.Under.forget
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
toStructuredArrowCompToUnderCompForget
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
toStructuredArrowCone_pt 📖mathematicalpt
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.Functor.mapCone
toStructuredArrow
CategoryTheory.StructuredArrow.map
CategoryTheory.StructuredArrow.pre
toStructuredArrowCone
toStructuredArrowCone_π_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
pt
CategoryTheory.Functor.comp
CategoryTheory.Functor.mapCone
toStructuredArrow
CategoryTheory.StructuredArrow.map
CategoryTheory.StructuredArrow.pre
π
toStructuredArrowCone
CategoryTheory.StructuredArrow.homMk
toStructuredArrow_comp_proj 📖mathematicalCategoryTheory.Functor.comp
CategoryTheory.StructuredArrow
pt
CategoryTheory.instCategoryStructuredArrow
toStructuredArrow
CategoryTheory.StructuredArrow.proj
CategoryTheory.Functor.id
toStructuredArrow_comp_toUnder_comp_forget 📖mathematicalCategoryTheory.Functor.comp
CategoryTheory.StructuredArrow
pt
CategoryTheory.instCategoryStructuredArrow
toStructuredArrow
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.StructuredArrow.toUnder
CategoryTheory.Under.forget
toStructuredArrow_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.StructuredArrow
pt
CategoryTheory.instCategoryStructuredArrow
toStructuredArrow
CategoryTheory.StructuredArrow.homMk
CategoryTheory.NatTrans.app
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
π
toStructuredArrow_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.StructuredArrow
pt
CategoryTheory.instCategoryStructuredArrow
toStructuredArrow
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
π
toUnder_pt 📖mathematicalpt
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.comp
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
toStructuredArrow
CategoryTheory.StructuredArrow.toUnder
toUnder
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
toUnder_π_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Under
pt
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.comp
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
toStructuredArrow
CategoryTheory.StructuredArrow.toUnder
π
toUnder
CategoryTheory.Under.homMk

CategoryTheory.Limits.IsColimit

Definitions

NameCategoryTheorems
ofPreservesCoconeInitial 📖CompOp
ofReflectsCoconeInitial 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
descCoconeMorphism_eq_isInitial_to 📖mathematicaldescCoconeMorphism
CategoryTheory.Limits.IsInitial.to
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
DFunLike.coe
Equiv
CategoryTheory.Limits.IsColimit
CategoryTheory.Limits.IsInitial
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.Limits.Cocone.isColimitEquivIsInitial

CategoryTheory.Limits.IsInitial

Theorems

NameKindAssumesProvesValidatesDepends On
to_eq_descCoconeMorphism 📖mathematicalto
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
CategoryTheory.Limits.IsColimit.descCoconeMorphism
DFunLike.coe
Equiv
CategoryTheory.Limits.IsInitial
CategoryTheory.Limits.IsColimit
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.Limits.Cocone.isColimitEquivIsInitial
CategoryTheory.Limits.IsColimit.descCoconeMorphism_eq_isInitial_to

CategoryTheory.Limits.IsLimit

Definitions

NameCategoryTheorems
ofPreservesConeTerminal 📖CompOp
ofReflectsConeTerminal 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
liftConeMorphism_eq_isTerminal_from 📖mathematicalliftConeMorphism
CategoryTheory.Limits.IsTerminal.from
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
DFunLike.coe
Equiv
CategoryTheory.Limits.IsLimit
CategoryTheory.Limits.IsTerminal
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.Limits.Cone.isLimitEquivIsTerminal

CategoryTheory.Limits.IsTerminal

Theorems

NameKindAssumesProvesValidatesDepends On
from_eq_liftConeMorphism 📖mathematicalfrom
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
CategoryTheory.Limits.IsLimit.liftConeMorphism
DFunLike.coe
Equiv
CategoryTheory.Limits.IsTerminal
CategoryTheory.Limits.IsLimit
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.Limits.Cone.isLimitEquivIsTerminal
CategoryTheory.Limits.IsLimit.liftConeMorphism_eq_isTerminal_from

CategoryTheory.Limits.colimit

Definitions

NameCategoryTheorems
toCostructuredArrow 📖CompOp
4 mathmath: toOver_ι_app, toCostructuredArrow_map, toCostructuredArrow_obj, toOver_pt
toOver 📖CompOp
2 mathmath: toOver_ι_app, toOver_pt

Theorems

NameKindAssumesProvesValidatesDepends On
toCostructuredArrow_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.CostructuredArrow
CategoryTheory.Limits.colimit
CategoryTheory.instCategoryCostructuredArrow
toCostructuredArrow
CategoryTheory.CostructuredArrow.homMk
ι
toCostructuredArrow_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
CategoryTheory.Limits.colimit
CategoryTheory.instCategoryCostructuredArrow
toCostructuredArrow
ι
toOver_pt 📖mathematicalCategoryTheory.Limits.Cocone.pt
CategoryTheory.Over
CategoryTheory.Limits.colimit
CategoryTheory.instCategoryOver
CategoryTheory.Functor.comp
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
toCostructuredArrow
CategoryTheory.CostructuredArrow.toOver
toOver
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
toOver_ι_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Over
CategoryTheory.Limits.colimit
CategoryTheory.instCategoryOver
CategoryTheory.Functor.comp
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
toCostructuredArrow
CategoryTheory.CostructuredArrow.toOver
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cocone.ι
toOver
CategoryTheory.Over.homMk
ι

CategoryTheory.Limits.limit

Definitions

NameCategoryTheorems
toStructuredArrow 📖CompOp
2 mathmath: toStructuredArrow_obj, toStructuredArrow_map
toUnder 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
toStructuredArrow_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.StructuredArrow
CategoryTheory.Limits.limit
CategoryTheory.instCategoryStructuredArrow
toStructuredArrow
CategoryTheory.StructuredArrow.homMk
π
toStructuredArrow_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.StructuredArrow
CategoryTheory.Limits.limit
CategoryTheory.instCategoryStructuredArrow
toStructuredArrow
π

---

← Back to Index