Documentation Verification Report

Cones

📁 Source: Mathlib/CategoryTheory/Limits/Cones.lean

Statistics

MetricCount
Definitionscocones, cones, functorialityCompPostcompose, functorialityCompPrecompose, mapCocone, mapCoconeInv, mapCoconeInvMapCocone, mapCoconeMapCocone, mapCoconeMapCoconeInv, mapCoconeMorphism, mapCoconeOp, mapCoconePrecompose, mapCoconePrecomposeEquivalenceFunctor, mapCoconeWhisker, mapCone, mapConeInv, mapConeInvMapCone, mapConeMapCone, mapConeMapConeInv, mapConeMorphism, mapConeOp, mapConePostcompose, mapConePostcomposeEquivalenceFunctor, mapConeWhisker, postcomposeWhiskerLeftMapCone, precomposeWhiskerLeftMapCocone, Cocone, category, equiv, extend, extensions, op, pt, unop, whisker, ι, CoconeMorphism, hom, equivalenceOfReindexing, eta, ext, extend, extendComp, extendId, extendIso, forget, functoriality, functorialityCompFunctoriality, functorialityEquivalence, precompose, precomposeComp, precomposeEquivalence, precomposeId, whiskering, whiskeringEquivalence, category, equiv, extend, extensions, op, pt, unop, whisker, π, ConeMorphism, hom, equivalenceOfReindexing, eta, ext, extend, extendComp, extendId, extendIso, forget, functoriality, functorialityCompFunctoriality, functorialityEquivalence, postcompose, postcomposeComp, postcomposeEquivalence, postcomposeId, whiskering, whiskeringEquivalence, coconeEquivalenceOpConeOp, coconeLeftOpOfCone, coconeOfConeLeftOp, coconeOfConeRightOp, coconeOfConeUnop, coconeRightOpOfCone, coconeUnopOfCone, coneLeftOpOfCocone, coneOfCoconeLeftOp, coneOfCoconeRightOp, coneOfCoconeUnop, coneRightOpOfCocone, coneUnopOfCocone, inhabitedCocone, inhabitedCoconeMorphism, inhabitedCone, inhabitedConeMorphism, cocones, cones
102
Theoremscocones_map_app, cocones_obj, cones_map_app, cones_obj, functorialityCompPostcompose_hom_app_hom, functorialityCompPostcompose_inv_app_hom, functorialityCompPrecompose_hom_app_hom, functorialityCompPrecompose_inv_app_hom, mapCoconeMapCocone_hom_hom, mapCoconeMapCocone_inv_hom, mapCoconeOp_hom_hom, mapCoconeOp_inv_hom, mapCoconePrecomposeEquivalenceFunctor_hom_hom, mapCoconePrecomposeEquivalenceFunctor_inv_hom, mapCoconePrecompose_hom_hom, mapCoconePrecompose_inv_hom, mapCoconeWhisker_hom_hom, mapCoconeWhisker_inv_hom, mapCocone_pt, mapCocone_ι_app, mapConeMapCone_hom_hom, mapConeMapCone_inv_hom, mapConeOp_hom_hom, mapConeOp_inv_hom, mapConePostcomposeEquivalenceFunctor_hom_hom, mapConePostcomposeEquivalenceFunctor_inv_hom, mapConePostcompose_hom_hom, mapConePostcompose_inv_hom, mapConeWhisker_hom_hom, mapConeWhisker_inv_hom, mapCone_pt, mapCone_π_app, postcomposeWhiskerLeftMapCone_hom_hom, postcomposeWhiskerLeftMapCone_inv_hom, precomposeWhiskerLeftMapCocone_hom_hom, precomposeWhiskerLeftMapCocone_inv_hom, category_comp_hom, category_id_hom, extend_pt, extend_ι, extensions_app, op_pt, op_π, unop_pt, unop_π, w, w_assoc, whisker_pt, whisker_ι, ext, ext_iff, hom_inv_id, hom_inv_id_assoc, inv_hom_id, inv_hom_id_assoc, map_w, map_w_assoc, w, w_assoc, cocone_iso_of_hom_iso, equivalenceOfReindexing_functor_obj, eta_hom_hom, eta_inv_hom, ext_hom_hom, ext_inv_hom, extendComp_hom_hom, extendComp_inv_hom, extendId_hom_hom, extendId_inv_hom, extendIso_hom_hom, extendIso_inv_hom, extend_hom, forget_map, forget_obj, functorialityEquivalence_counitIso, functorialityEquivalence_functor, functorialityEquivalence_inverse, functorialityEquivalence_unitIso, functoriality_faithful, functoriality_full, functoriality_map_hom, functoriality_obj_pt, functoriality_obj_ι_app, instIsIsoCoconeExtend, precomposeEquivalence_counitIso, precomposeEquivalence_functor, precomposeEquivalence_inverse, precomposeEquivalence_unitIso, precompose_map_hom, precompose_obj_pt, precompose_obj_ι, reflects_cocone_isomorphism, whiskeringEquivalence_counitIso, whiskeringEquivalence_functor, whiskeringEquivalence_inverse, whiskeringEquivalence_unitIso, whiskering_map_hom, whiskering_obj, category_comp_hom, category_id_hom, equiv_hom_fst, equiv_hom_snd, equiv_inv_pt, equiv_inv_π, extend_pt, extend_π, extensions_app, op_pt, op_ι, unop_pt, unop_ι, w, w_assoc, whisker_pt, whisker_π, ext, ext_iff, hom_inv_id, hom_inv_id_assoc, inv_hom_id, inv_hom_id_assoc, map_w, map_w_assoc, w, w_assoc, cone_iso_of_hom_iso, equivalenceOfReindexing_counitIso, equivalenceOfReindexing_functor, equivalenceOfReindexing_inverse, equivalenceOfReindexing_unitIso, eta_hom_hom, eta_inv_hom, ext_hom_hom, ext_inv_hom, extendComp_hom_hom, extendComp_inv_hom, extendId_hom_hom, extendId_inv_hom, extendIso_hom_hom, extendIso_inv_hom, extend_hom, forget_map, forget_obj, functorialityEquivalence_counitIso, functorialityEquivalence_functor, functorialityEquivalence_inverse, functorialityEquivalence_unitIso, functoriality_faithful, functoriality_full, functoriality_map_hom, functoriality_obj_pt, functoriality_obj_π_app, instIsIsoConeExtend, postcomposeComp_hom_app_hom, postcomposeComp_inv_app_hom, postcomposeEquivalence_counitIso, postcomposeEquivalence_functor, postcomposeEquivalence_inverse, postcomposeEquivalence_unitIso, postcomposeId_hom_app_hom, postcomposeId_inv_app_hom, postcompose_map_hom, postcompose_obj_pt, postcompose_obj_π, reflects_cone_isomorphism, whiskeringEquivalence_counitIso, whiskeringEquivalence_functor, whiskeringEquivalence_inverse, whiskeringEquivalence_unitIso, whiskering_map_hom, whiskering_obj, coconeEquivalenceOpConeOp_counitIso, coconeEquivalenceOpConeOp_functor_map, coconeEquivalenceOpConeOp_functor_obj, coconeEquivalenceOpConeOp_inverse_map_hom, coconeEquivalenceOpConeOp_inverse_obj, coconeEquivalenceOpConeOp_unitIso, coconeLeftOpOfCone_pt, coconeLeftOpOfCone_ι_app, coconeOfConeLeftOp_pt, coconeOfConeLeftOp_ι_app, coconeOfConeRightOp_pt, coconeOfConeRightOp_ι, coconeOfConeUnop_pt, coconeOfConeUnop_ι, coconeRightOpOfCone_pt, coconeRightOpOfCone_ι, coconeUnopOfCone_pt, coconeUnopOfCone_ι, coneLeftOpOfCocone_pt, coneLeftOpOfCocone_π_app, coneOfCoconeLeftOp_pt, coneOfCoconeLeftOp_π_app, coneOfCoconeRightOp_pt, coneOfCoconeRightOp_π, coneOfCoconeUnop_pt, coneOfCoconeUnop_π, coneRightOpOfCocone_pt, coneRightOpOfCocone_π, coneUnopOfCocone_pt, coneUnopOfCocone_π, instIsIsoHomHomCocone, instIsIsoHomHomCone, instIsIsoHomInvCocone, instIsIsoHomInvCone, cocones_map_app_app, cocones_obj_map_app, cocones_obj_obj, cones_map_app_app, cones_obj_map_app, cones_obj_obj
211
Total313

CategoryTheory

Definitions

NameCategoryTheorems
cocones 📖CompOp
5 mathmath: cocones_map_app_app, Limits.opHomCompWhiskeringLimYonedaIsoCocones_hom_app_app_app, cocones_obj_map_app, cocones_obj_obj, Limits.opHomCompWhiskeringLimYonedaIsoCocones_inv_app_app
cones 📖CompOp
5 mathmath: Limits.whiskeringLimYonedaIsoCones_inv_app_app, cones_obj_map_app, Limits.whiskeringLimYonedaIsoCones_hom_app_app_app, cones_map_app_app, cones_obj_obj

Theorems

NameKindAssumesProvesValidatesDepends On
cocones_map_app_app 📖mathematicalNatTrans.app
Opposite.unop
Functor
Opposite.op
Functor.obj
Functor.category
Functor.const
types
Functor.comp
Opposite
Category.opposite
coyoneda
Functor.map
cocones
CategoryStruct.comp
Category.toCategoryStruct
Quiver.Hom.unop
CategoryStruct.toQuiver
cocones_obj_map_app 📖mathematicalNatTrans.app
Opposite.unop
Functor
Opposite.op
Functor.obj
Functor.category
Functor.const
Functor.map
types
Opposite
Category.opposite
cocones
CategoryStruct.comp
Category.toCategoryStruct
cocones_obj_obj 📖mathematicalFunctor.obj
types
Opposite
Functor
Category.opposite
Functor.category
cocones
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
Opposite.unop
Functor.const
cones_map_app_app 📖mathematicalNatTrans.app
Opposite.unop
Functor
Functor.obj
Opposite
Category.opposite
Functor.category
Functor.op
Functor.const
types
Functor.comp
yoneda
Functor.map
cones
CategoryStruct.comp
Category.toCategoryStruct
cones_obj_map_app 📖mathematicalNatTrans.app
Opposite.unop
Functor
Functor.obj
Opposite
Category.opposite
Functor.category
Functor.op
Functor.const
Functor.map
types
cones
CategoryStruct.comp
Category.toCategoryStruct
Quiver.Hom.unop
CategoryStruct.toQuiver
cones_obj_obj 📖mathematicalFunctor.obj
Opposite
Category.opposite
types
Functor
Functor.category
cones
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
Functor.const
Opposite.unop

CategoryTheory.Functor

Definitions

NameCategoryTheorems
cocones 📖CompOp
7 mathmath: CategoryTheory.Limits.yonedaCompLimIsoCocones_inv_app, CategoryTheory.Limits.colimit.homIso_hom, CategoryTheory.Limits.yonedaCompLimIsoCocones_hom_app_app, cocones_obj, CategoryTheory.Limits.Cocone.extend_ι, cocones_map_app, CategoryTheory.Limits.Cocone.extensions_app
cones 📖CompOp
11 mathmath: CategoryTheory.Limits.Cone.equiv_inv_pt, cones_map_app, CategoryTheory.Limits.coyonedaCompLimIsoCones_inv_app, CategoryTheory.Limits.Cone.extend_π, cones_obj, CategoryTheory.Limits.Cone.equiv_hom_fst, CategoryTheory.Limits.Cone.equiv_inv_π, CategoryTheory.Limits.Cone.equiv_hom_snd, CategoryTheory.Limits.limit.homIso_hom, CategoryTheory.Limits.Cone.extensions_app, CategoryTheory.Limits.coyonedaCompLimIsoCones_hom_app_app
functorialityCompPostcompose 📖CompOp
2 mathmath: functorialityCompPostcompose_hom_app_hom, functorialityCompPostcompose_inv_app_hom
functorialityCompPrecompose 📖CompOp
2 mathmath: functorialityCompPrecompose_hom_app_hom, functorialityCompPrecompose_inv_app_hom
mapCocone 📖CompOp
46 mathmath: mapCocone_ι_app, mapCoconePrecomposeEquivalenceFunctor_inv_hom, mapCoconePrecompose_inv_hom, mapCoconeWhisker_hom_hom, LeftExtension.coconeAtWhiskerRightIso_inv_hom, mapCoconeOp_inv_hom, CategoryTheory.preservesColimitIso_inv_comp_desc, mapCoconeMapCocone_hom_hom, LightCondensed.isColimitLocallyConstantPresheafDiagram_desc_apply, Condensed.isColimitLocallyConstantPresheaf_desc_apply, AlgebraicGeometry.PresheafedSpace.ColimitCoconeIsColimit.desc_c_naturality, CategoryTheory.TransfiniteCompositionOfShape.map_isColimit, CategoryTheory.Limits.PreservesColimit.preserves, CategoryTheory.IsVanKampenColimit.map_reflective, CategoryTheory.IsUniversalColimit.map_reflective, CategoryTheory.Comma.coconeOfPreserves_ι_app_right, precomposeWhiskerLeftMapCocone_hom_hom, CategoryTheory.Comma.coconeOfPreserves_pt_hom, precomposeWhiskerLeftMapCocone_inv_hom, mapCoconePrecomposeEquivalenceFunctor_hom_hom, Accessible.Limits.isColimitMapCocone.surjective, CategoryTheory.Limits.Cocone.toCostructuredArrowCocone_ι_app, CategoryTheory.preservesColimitIso_inv_comp_desc_assoc, CategoryTheory.Comma.coconeOfPreserves_ι_app_left, LeftExtension.coconeAtWhiskerRightIso_hom_hom, SheafOfModules.Presentation.map_relations_I, mapCoconeWhisker_inv_hom, Condensed.isColimitLocallyConstantPresheafDiagram_desc_apply, CategoryTheory.Limits.Cocone.mapCoconeToOver_inv_hom, mapConeOp_inv_hom, CategoryTheory.Comonad.ForgetCreatesColimits'.liftedCoconeIsColimit_desc_f, mapCoconeOp_hom_hom, AddCommGrpCat.Colimits.Quot.desc_quotQuotUliftAddEquiv, LightCondensed.isColimitLocallyConstantPresheaf_desc_apply, CategoryTheory.Limits.colimit.post_desc, mapCoconePrecompose_hom_hom, CategoryTheory.IsVanKampenColimit.mapCocone_iff, mapConeOp_hom_hom, CategoryTheory.Limits.Cocone.toCostructuredArrowCocone_pt, mapCocone_pt, CategoryTheory.Limits.Cocone.mapCoconeToOver_hom_hom, CategoryTheory.preserves_desc_mapCocone, mapCoconeMapCocone_inv_hom, CategoryTheory.Comma.colimitAuxiliaryCocone_ι_app, AlgebraicGeometry.nonempty_isColimit_Γ_mapCocone, CategoryTheory.Monad.ForgetCreatesColimits.liftedCoconeIsColimit_desc_f
mapCoconeInv 📖CompOp
mapCoconeInvMapCocone 📖CompOp
mapCoconeMapCocone 📖CompOp
2 mathmath: mapCoconeMapCocone_hom_hom, mapCoconeMapCocone_inv_hom
mapCoconeMapCoconeInv 📖CompOp
mapCoconeMorphism 📖CompOp
mapCoconeOp 📖CompOp
2 mathmath: mapCoconeOp_inv_hom, mapCoconeOp_hom_hom
mapCoconePrecompose 📖CompOp
2 mathmath: mapCoconePrecompose_inv_hom, mapCoconePrecompose_hom_hom
mapCoconePrecomposeEquivalenceFunctor 📖CompOp
2 mathmath: mapCoconePrecomposeEquivalenceFunctor_inv_hom, mapCoconePrecomposeEquivalenceFunctor_hom_hom
mapCoconeWhisker 📖CompOp
2 mathmath: mapCoconeWhisker_hom_hom, mapCoconeWhisker_inv_hom
mapCone 📖CompOp
56 mathmath: mapConeMapCone_hom_hom, CategoryTheory.Monad.ForgetCreatesLimits.liftedConeIsLimit_lift_f, CategoryTheory.Limits.PreservesLimit.preserves, CategoryTheory.Presheaf.isSheaf_iff_isLimit_coverage, CategoryTheory.CostructuredArrow.CreatesConnected.mapCone_raiseCone, mapConePostcompose_inv_hom, CategoryTheory.Comma.coneOfPreserves_π_app_right, CategoryTheory.Mon.limitConeIsLimit_lift_hom, CategoryTheory.Limits.limit.lift_post, CategoryTheory.Presheaf.isLimit_iff_isSheafFor_presieve, mapCoconeOp_inv_hom, CategoryTheory.regularTopology.equalizerConditionMap_iff_nonempty_isLimit, CategoryTheory.Presheaf.isSeparated_iff_subsingleton, CategoryTheory.Limits.colimitLimitToLimitColimitCone_hom, CategoryTheory.lift_comp_preservesLimitIso_hom_assoc, CategoryTheory.Limits.Cone.toStructuredArrowCone_π_app, TopCat.Presheaf.whiskerIsoMapGenerateCocone_inv_hom, RightExtension.coneAtWhiskerRightIso_inv_hom, postcomposeWhiskerLeftMapCone_inv_hom, CategoryTheory.lift_comp_preservesLimitIso_hom, CategoryTheory.Limits.Cone.mapConeToUnder_inv_hom, CategoryTheory.Comma.limitAuxiliaryCone_π_app, CategoryTheory.Presheaf.isSheaf_iff_isLimit, mapCone_pt, CategoryTheory.Limits.colimitLimitToLimitColimitCone_iso, CategoryTheory.liftedLimitMapsToOriginal_inv_map_π, mapConePostcomposeEquivalenceFunctor_inv_hom, mapConePostcomposeEquivalenceFunctor_hom_hom, mapCone_π_app, TopCat.Presheaf.whiskerIsoMapGenerateCocone_hom_hom, mapConeWhisker_hom_hom, CategoryTheory.Comma.coneOfPreserves_pt_hom, postcomposeWhiskerLeftMapCone_hom_hom, mapConeOp_inv_hom, TopCat.Presheaf.IsSheaf.isSheafPairwiseIntersections, mapConePostcompose_hom_hom, TopCat.Presheaf.isGluing_iff_pairwise, RightExtension.coneAtWhiskerRightIso_hom_hom, mapCoconeOp_hom_hom, CategoryTheory.Limits.Cone.mapConeToUnder_hom_hom, mapConeOp_hom_hom, mapConeMapCone_inv_hom, CategoryTheory.Presheaf.isLimit_iff_isSheafFor, CategoryTheory.Comonad.ForgetCreatesLimits'.commuting, CategoryTheory.preserves_lift_mapCone, mapConeWhisker_inv_hom, TopCat.Presheaf.IsSheaf.isSheafOpensLeCover, CategoryTheory.liftedLimitMapsToOriginal_hom_π, CategoryTheory.CategoryOfElements.CreatesLimitsAux.map_lift_mapCone, CategoryTheory.PreservesFiniteLimitsOfFlat.fac, CategoryTheory.Comonad.ForgetCreatesLimits'.liftedConeIsLimit_lift_f, CategoryTheory.Presheaf.subsingleton_iff_isSeparatedFor, CategoryTheory.Limits.Cone.toStructuredArrowCone_pt, FundamentalGroupoidFunctor.coneDiscreteComp_obj_mapCone, CategoryTheory.Presheaf.isSheaf_iff_isLimit_pretopology, CategoryTheory.Comma.coneOfPreserves_π_app_left
mapConeInv 📖CompOp
mapConeInvMapCone 📖CompOp
mapConeMapCone 📖CompOp
2 mathmath: mapConeMapCone_hom_hom, mapConeMapCone_inv_hom
mapConeMapConeInv 📖CompOp
mapConeMorphism 📖CompOp
mapConeOp 📖CompOp
2 mathmath: mapConeOp_inv_hom, mapConeOp_hom_hom
mapConePostcompose 📖CompOp
2 mathmath: mapConePostcompose_inv_hom, mapConePostcompose_hom_hom
mapConePostcomposeEquivalenceFunctor 📖CompOp
2 mathmath: mapConePostcomposeEquivalenceFunctor_inv_hom, mapConePostcomposeEquivalenceFunctor_hom_hom
mapConeWhisker 📖CompOp
2 mathmath: mapConeWhisker_hom_hom, mapConeWhisker_inv_hom
postcomposeWhiskerLeftMapCone 📖CompOp
2 mathmath: postcomposeWhiskerLeftMapCone_inv_hom, postcomposeWhiskerLeftMapCone_hom_hom
precomposeWhiskerLeftMapCocone 📖CompOp
2 mathmath: precomposeWhiskerLeftMapCocone_hom_hom, precomposeWhiskerLeftMapCocone_inv_hom

Theorems

NameKindAssumesProvesValidatesDepends On
cocones_map_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite.unop
CategoryTheory.Functor
Opposite.op
obj
category
const
map
CategoryTheory.types
cocones
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cocones_obj 📖mathematicalobj
CategoryTheory.types
cocones
Quiver.Hom
CategoryTheory.Functor
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
category
const
cones_map_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite.unop
CategoryTheory.Functor
obj
Opposite
CategoryTheory.Category.opposite
category
op
const
map
CategoryTheory.types
cones
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
cones_obj 📖mathematicalobj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
cones
Quiver.Hom
CategoryTheory.Functor
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
category
const
Opposite.unop
functorialityCompPostcompose_hom_app_hom 📖mathematicalCategoryTheory.Limits.ConeMorphism.hom
comp
obj
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
CategoryTheory.Limits.Cones.functoriality
CategoryTheory.Limits.Cones.postcompose
whiskerLeft
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
CategoryTheory.NatTrans.app
functorialityCompPostcompose
CategoryTheory.Limits.Cone.pt
functorialityCompPostcompose_inv_app_hom 📖mathematicalCategoryTheory.Limits.ConeMorphism.hom
comp
obj
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
CategoryTheory.Limits.Cones.functoriality
CategoryTheory.Limits.Cones.postcompose
whiskerLeft
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
functorialityCompPostcompose
CategoryTheory.Limits.Cone.pt
functorialityCompPrecompose_hom_app_hom 📖mathematicalCategoryTheory.Limits.CoconeMorphism.hom
comp
obj
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
CategoryTheory.Limits.Cocones.functoriality
CategoryTheory.Limits.Cocones.precompose
whiskerLeft
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
functorialityCompPrecompose
CategoryTheory.Limits.Cocone.pt
functorialityCompPrecompose_inv_app_hom 📖mathematicalCategoryTheory.Limits.CoconeMorphism.hom
comp
obj
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
CategoryTheory.Limits.Cocones.functoriality
CategoryTheory.Limits.Cocones.precompose
whiskerLeft
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
CategoryTheory.NatTrans.app
functorialityCompPrecompose
CategoryTheory.Limits.Cocone.pt
mapCoconeMapCocone_hom_hom 📖mathematicalCategoryTheory.Limits.CoconeMorphism.hom
comp
mapCocone
CategoryTheory.Iso.hom
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
mapCoconeMapCocone
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.Limits.Cocone.pt
mapCoconeMapCocone_inv_hom 📖mathematicalCategoryTheory.Limits.CoconeMorphism.hom
comp
mapCocone
CategoryTheory.Iso.inv
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
mapCoconeMapCocone
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.Limits.Cocone.pt
mapCoconeOp_hom_hom 📖mathematicalCategoryTheory.Limits.ConeMorphism.hom
Opposite
CategoryTheory.Category.opposite
op
comp
CategoryTheory.Limits.Cocone.op
mapCocone
mapCone
CategoryTheory.Iso.hom
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
mapCoconeOp
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Opposite.op
obj
CategoryTheory.Limits.Cocone.pt
mapCoconeOp_inv_hom 📖mathematicalCategoryTheory.Limits.ConeMorphism.hom
Opposite
CategoryTheory.Category.opposite
op
comp
mapCone
CategoryTheory.Limits.Cocone.op
mapCocone
CategoryTheory.Iso.inv
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
mapCoconeOp
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Opposite.op
obj
CategoryTheory.Limits.Cocone.pt
mapCoconePrecomposeEquivalenceFunctor_hom_hom 📖mathematicalCategoryTheory.Limits.CoconeMorphism.hom
comp
mapCocone
obj
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
CategoryTheory.Equivalence.functor
CategoryTheory.Limits.Cocones.precomposeEquivalence
isoWhiskerRight
CategoryTheory.Iso.hom
mapCoconePrecomposeEquivalenceFunctor
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cocone.pt
mapCoconePrecomposeEquivalenceFunctor_inv_hom 📖mathematicalCategoryTheory.Limits.CoconeMorphism.hom
comp
obj
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
CategoryTheory.Equivalence.functor
CategoryTheory.Limits.Cocones.precomposeEquivalence
isoWhiskerRight
mapCocone
CategoryTheory.Iso.inv
mapCoconePrecomposeEquivalenceFunctor
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cocone.pt
mapCoconePrecompose_hom_hom 📖mathematicalCategoryTheory.Limits.CoconeMorphism.hom
comp
mapCocone
obj
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
CategoryTheory.Limits.Cocones.precompose
whiskerRight
CategoryTheory.Iso.hom
mapCoconePrecompose
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cocone.pt
mapCoconePrecompose_inv_hom 📖mathematicalCategoryTheory.Limits.CoconeMorphism.hom
comp
obj
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
CategoryTheory.Limits.Cocones.precompose
whiskerRight
mapCocone
CategoryTheory.Iso.inv
mapCoconePrecompose
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cocone.pt
mapCoconeWhisker_hom_hom 📖mathematicalCategoryTheory.Limits.CoconeMorphism.hom
comp
mapCocone
CategoryTheory.Limits.Cocone.whisker
CategoryTheory.Iso.hom
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
mapCoconeWhisker
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.Limits.Cocone.pt
mapCoconeWhisker_inv_hom 📖mathematicalCategoryTheory.Limits.CoconeMorphism.hom
comp
CategoryTheory.Limits.Cocone.whisker
mapCocone
CategoryTheory.Iso.inv
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
mapCoconeWhisker
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.Limits.Cocone.pt
mapCocone_pt 📖mathematicalCategoryTheory.Limits.Cocone.pt
comp
mapCocone
obj
mapCocone_ι_app 📖mathematicalCategoryTheory.NatTrans.app
comp
obj
CategoryTheory.Functor
category
const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.Cocone.ι
mapCocone
map
mapConeMapCone_hom_hom 📖mathematicalCategoryTheory.Limits.ConeMorphism.hom
comp
mapCone
CategoryTheory.Iso.hom
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
mapConeMapCone
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.Limits.Cone.pt
mapConeMapCone_inv_hom 📖mathematicalCategoryTheory.Limits.ConeMorphism.hom
comp
mapCone
CategoryTheory.Iso.inv
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
mapConeMapCone
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.Limits.Cone.pt
mapConeOp_hom_hom 📖mathematicalCategoryTheory.Limits.CoconeMorphism.hom
Opposite
CategoryTheory.Category.opposite
op
comp
CategoryTheory.Limits.Cone.op
mapCone
mapCocone
CategoryTheory.Iso.hom
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
mapConeOp
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Opposite.op
obj
CategoryTheory.Limits.Cone.pt
mapConeOp_inv_hom 📖mathematicalCategoryTheory.Limits.CoconeMorphism.hom
Opposite
CategoryTheory.Category.opposite
op
comp
mapCocone
CategoryTheory.Limits.Cone.op
mapCone
CategoryTheory.Iso.inv
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
mapConeOp
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Opposite.op
obj
CategoryTheory.Limits.Cone.pt
mapConePostcomposeEquivalenceFunctor_hom_hom 📖mathematicalCategoryTheory.Limits.ConeMorphism.hom
comp
mapCone
obj
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
CategoryTheory.Equivalence.functor
CategoryTheory.Limits.Cones.postcomposeEquivalence
isoWhiskerRight
CategoryTheory.Iso.hom
mapConePostcomposeEquivalenceFunctor
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
mapConePostcomposeEquivalenceFunctor_inv_hom 📖mathematicalCategoryTheory.Limits.ConeMorphism.hom
comp
obj
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
CategoryTheory.Equivalence.functor
CategoryTheory.Limits.Cones.postcomposeEquivalence
isoWhiskerRight
mapCone
CategoryTheory.Iso.inv
mapConePostcomposeEquivalenceFunctor
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
mapConePostcompose_hom_hom 📖mathematicalCategoryTheory.Limits.ConeMorphism.hom
comp
mapCone
obj
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
CategoryTheory.Limits.Cones.postcompose
whiskerRight
CategoryTheory.Iso.hom
mapConePostcompose
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
mapConePostcompose_inv_hom 📖mathematicalCategoryTheory.Limits.ConeMorphism.hom
comp
obj
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
CategoryTheory.Limits.Cones.postcompose
whiskerRight
mapCone
CategoryTheory.Iso.inv
mapConePostcompose
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
mapConeWhisker_hom_hom 📖mathematicalCategoryTheory.Limits.ConeMorphism.hom
comp
mapCone
CategoryTheory.Limits.Cone.whisker
CategoryTheory.Iso.hom
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
mapConeWhisker
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.Limits.Cone.pt
mapConeWhisker_inv_hom 📖mathematicalCategoryTheory.Limits.ConeMorphism.hom
comp
CategoryTheory.Limits.Cone.whisker
mapCone
CategoryTheory.Iso.inv
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
mapConeWhisker
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.Limits.Cone.pt
mapCone_pt 📖mathematicalCategoryTheory.Limits.Cone.pt
comp
mapCone
obj
mapCone_π_app 📖mathematicalCategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
category
const
CategoryTheory.Limits.Cone.pt
comp
CategoryTheory.Limits.Cone.π
mapCone
map
postcomposeWhiskerLeftMapCone_hom_hom 📖mathematicalCategoryTheory.Limits.ConeMorphism.hom
comp
obj
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
CategoryTheory.Limits.Cones.functoriality
CategoryTheory.Limits.Cones.postcompose
whiskerLeft
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
mapCone
postcomposeWhiskerLeftMapCone
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cone.pt
postcomposeWhiskerLeftMapCone_inv_hom 📖mathematicalCategoryTheory.Limits.ConeMorphism.hom
comp
obj
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
CategoryTheory.Limits.Cones.functoriality
CategoryTheory.Limits.Cones.postcompose
whiskerLeft
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
CategoryTheory.Iso.inv
mapCone
postcomposeWhiskerLeftMapCone
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cone.pt
precomposeWhiskerLeftMapCocone_hom_hom 📖mathematicalCategoryTheory.Limits.CoconeMorphism.hom
comp
obj
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
CategoryTheory.Limits.Cocones.functoriality
CategoryTheory.Limits.Cocones.precompose
whiskerLeft
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
CategoryTheory.Iso.hom
mapCocone
precomposeWhiskerLeftMapCocone
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.pt
precomposeWhiskerLeftMapCocone_inv_hom 📖mathematicalCategoryTheory.Limits.CoconeMorphism.hom
comp
obj
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
CategoryTheory.Limits.Cocones.functoriality
CategoryTheory.Limits.Cocones.precompose
whiskerLeft
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
mapCocone
precomposeWhiskerLeftMapCocone
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.pt

CategoryTheory.Limits

Definitions

NameCategoryTheorems
Cocone 📖CompData
149 mathmath: Cocones.precompose_obj_ι, CategoryTheory.Functor.LeftExtension.coconeAtFunctor_map_hom, Cocone.category_id_hom, IsColimit.uniqueUpToIso_hom, coconeEquivalenceOpConeOp_unitIso, CategoryTheory.WithInitial.isColimitEquiv_apply_desc_right, CategoryTheory.WithInitial.coconeEquiv_functor_obj_pt, CategoryTheory.Functor.mapCoconePrecomposeEquivalenceFunctor_inv_hom, Cocones.ext_inv_hom, CategoryTheory.Functor.mapCoconePrecompose_inv_hom, PushoutCocone.unop_π_app, Cocones.cocone_iso_of_hom_iso, Types.isColimit_iff_coconeTypesIsColimit, CategoryTheory.Functor.mapCoconeWhisker_hom_hom, Cocones.precomposeEquivalence_functor, CategoryTheory.WithInitial.coconeEquiv_inverse_obj_pt_right, CategoryTheory.Functor.Final.colimitCoconeOfComp_isColimit, CategoryTheory.Functor.Final.coconesEquiv_unitIso, CategoryTheory.WithInitial.isColimitEquiv_symm_apply_desc, Cocones.whiskeringEquivalence_unitIso, Cocones.eta_inv_hom, instIsIsoHomHomCocone, Cocones.whiskeringEquivalence_inverse, PushoutCocone.isoMk_inv_hom, colimit.map_desc, CategoryTheory.Functor.LeftExtension.coconeAtWhiskerRightIso_inv_hom, Cocones.precompose_obj_pt, CategoryTheory.Functor.Final.extendCocone_obj_ι_app, CategoryTheory.Functor.Final.coconesEquiv_functor, CategoryTheory.WithInitial.coconeEquiv_inverse_obj_pt_hom, CoconeMorphism.hom_inv_id_assoc, Cocones.precomposeEquivalence_unitIso, Cocones.whiskering_obj, Cocones.equivalenceOfReindexing_functor_obj, CategoryTheory.Functor.coconeTypesEquiv_apply_pt, Cocone.category_comp_hom, CategoryTheory.IsUniversalColimit.precompose_isIso, HasColimit.isoOfNatIso_inv_desc_assoc, IsColimit.ofCoconeEquiv_symm_apply_desc, HasColimit.isoOfNatIso_hom_desc, Cocones.extendId_hom_hom, IsInitial.to_eq_descCoconeMorphism, DiagramOfCocones.coconePoints_map, CategoryTheory.WithInitial.coconeEquiv_counitIso_inv_app_hom, CategoryTheory.Functor.coconeTypesEquiv_symm_apply_pt, CategoryTheory.WithInitial.coconeEquiv_functor_obj_ι_app_star, Cocones.functoriality_obj_pt, CategoryTheory.Adjunction.functorialityUnit_app_hom, CategoryTheory.WithInitial.coconeEquiv_unitIso_hom_app_hom_right, CategoryTheory.Functor.mapCoconeMapCocone_hom_hom, Cocones.forget_obj, CategoryTheory.IsFiltered.cocone_nonempty, coconeEquivalenceOpConeOp_functor_obj, CategoryTheory.Functor.functorialityCompPrecompose_hom_app_hom, Cocone.toStructuredArrow_obj, CategoryTheory.IsCardinalFiltered.nonempty_cocone, CategoryTheory.IsVanKampenColimit.precompose_isIso, CategoryTheory.WithInitial.coconeEquiv_functor_map_hom, IsColimit.coconePointsIsoOfEquivalence_hom, DiagramOfCocones.comp, CategoryTheory.WithInitial.coconeEquiv_inverse_obj_pt_left_as, Cofork.π_precompose, Cocone.equivStructuredArrow_unitIso, Cocones.extendComp_hom_hom, Cocones.reflects_cocone_isomorphism, CategoryTheory.Functor.precomposeWhiskerLeftMapCocone_hom_hom, CategoryTheory.IsFiltered.iff_cocone_nonempty, Cocone.fromStructuredArrow_obj_pt, DiagramOfCocones.mkOfHasColimits_map_hom, CategoryTheory.WithInitial.coconeEquiv_inverse_obj_ι_app_right, CategoryTheory.Functor.precomposeWhiskerLeftMapCocone_inv_hom, CategoryTheory.Functor.mapCoconePrecomposeEquivalenceFunctor_hom_hom, CategoryTheory.Adjunction.functorialityCounit_app_hom, IsColimit.coconePointsIsoOfEquivalence_inv, CategoryTheory.WithInitial.coconeEquiv_functor_obj_ι_app_of, CategoryTheory.Functor.coconeTypesEquiv_symm_apply_ι, reflexiveCoforkEquivCofork_functor_obj_pt, IsColimit.descCoconeMorphism_eq_isInitial_to, CategoryTheory.Functor.Final.extendCocone_obj_ι_app', Cocones.functoriality_obj_ι_app, CategoryTheory.IsVanKampenColimit.precompose_isIso_iff, CategoryTheory.Functor.LeftExtension.coconeAtFunctor_obj, CategoryTheory.Functor.LeftExtension.coconeAtWhiskerRightIso_hom_hom, SheafOfModules.Presentation.map_relations_I, reflexiveCoforkEquivCofork_inverse_obj_pt, Cocones.functorialityEquivalence_counitIso, Cocones.extendComp_inv_hom, Cocones.eta_hom_hom, IsColimit.ofCoconeEquiv_apply_desc, CategoryTheory.Functor.coconeTypesEquiv_apply_ι_app, Cocones.functoriality_faithful, CategoryTheory.Functor.mapCoconeWhisker_inv_hom, Cocone.fromStructuredArrow_map_hom, CoconeMorphism.hom_inv_id, HasColimit.isoOfNatIso_hom_desc_assoc, Cocones.functoriality_full, Cocones.whiskeringEquivalence_functor, Cocone.equivStructuredArrow_inverse, CategoryTheory.WithInitial.coconeEquiv_inverse_map_hom_right, Cocone.mapCoconeToOver_inv_hom, IsColimit.equivIsoColimit_symm_apply, colimit.map_desc_assoc, Cocones.extendIso_hom_hom, CategoryTheory.Functor.mapConeOp_inv_hom, CategoryTheory.Functor.Final.coconesEquiv_counitIso, IsColimit.hom_isIso, IsColimit.uniqueUpToIso_inv, Cocones.functoriality_map_hom, CoconeMorphism.inv_hom_id, CategoryTheory.WithInitial.coconeEquiv_counitIso_hom_app_hom, CategoryTheory.Functor.functorialityCompPrecompose_inv_app_hom, DiagramOfCocones.id, IsColimit.ofIsoColimit_desc, Cocones.ext_hom_hom, coconeEquivalenceOpConeOp_inverse_obj, PushoutCocone.isoMk_hom_hom, coconeEquivalenceOpConeOp_counitIso, Cocones.precomposeEquivalence_inverse, Cocones.extendId_inv_hom, CategoryTheory.Functor.mapCoconePrecompose_hom_hom, hasColimit_iff_hasInitial_cocone, CategoryTheory.Functor.mapConeOp_hom_hom, Cocones.functorialityEquivalence_inverse, Cocones.forget_map, Cocone.toStructuredArrow_map, CategoryTheory.Functor.Final.extendCocone_obj_pt, coconeEquivalenceOpConeOp_inverse_map_hom, instIsIsoHomInvCocone, CategoryTheory.Functor.Final.extendCocone_map_hom, Cocone.mapCoconeToOver_hom_hom, CoconeMorphism.inv_hom_id_assoc, coconeEquivalenceOpConeOp_functor_map, CategoryTheory.Functor.CoconeTypes.isColimit_iff, Cocones.precompose_map_hom, Cocone.equivStructuredArrow_functor, Cocone.fromStructuredArrow_obj_ι, Cocone.equivStructuredArrow_counitIso, CategoryTheory.Functor.mapCoconeMapCocone_inv_hom, Cocones.whiskering_map_hom, Cocones.functorialityEquivalence_functor, HasColimit.isoOfNatIso_inv_desc, CategoryTheory.WithInitial.coconeEquiv_unitIso_inv_app_hom_right, Cocones.instIsIsoCoconeExtend, Cocones.whiskeringEquivalence_counitIso, Cocones.functorialityEquivalence_unitIso, CategoryTheory.Functor.Final.coconesEquiv_inverse, Cocones.extendIso_inv_hom, Cocones.precomposeEquivalence_counitIso, CategoryTheory.Functor.Final.colimitCoconeOfComp_cocone
CoconeMorphism 📖CompData
ConeMorphism 📖CompData
coconeEquivalenceOpConeOp 📖CompOp
6 mathmath: coconeEquivalenceOpConeOp_unitIso, coconeEquivalenceOpConeOp_functor_obj, coconeEquivalenceOpConeOp_inverse_obj, coconeEquivalenceOpConeOp_counitIso, coconeEquivalenceOpConeOp_inverse_map_hom, coconeEquivalenceOpConeOp_functor_map
coconeLeftOpOfCone 📖CompOp
5 mathmath: isColimitCoconeLeftOpOfCone_desc, isLimitOfCoconeLeftOpOfCone_lift, isLimitConeOfCoconeLeftOp_lift, coconeLeftOpOfCone_ι_app, coconeLeftOpOfCone_pt
coconeOfConeLeftOp 📖CompOp
5 mathmath: coconeOfConeLeftOp_pt, isLimitOfCoconeOfConeLeftOp_lift, isLimitConeLeftOpOfCocone_lift, coconeOfConeLeftOp_ι_app, isColimitCoconeOfConeLeftOp_desc
coconeOfConeRightOp 📖CompOp
5 mathmath: isLimitConeRightOpOfCocone_lift, isLimitOfCoconeOfConeRightOp_lift, coconeOfConeRightOp_ι, coconeOfConeRightOp_pt, isColimitCoconeOfConeRightOp_desc
coconeOfConeUnop 📖CompOp
5 mathmath: coconeOfConeUnop_pt, isLimitConeUnopOfCocone_lift, isLimitOfCoconeOfConeUnop_lift, coconeOfConeUnop_ι, isColimitCoconeOfConeUnop_desc
coconeRightOpOfCone 📖CompOp
6 mathmath: LightCondensed.isColimitLocallyConstantPresheafDiagram_desc_apply, isLimitOfCoconeRightOpOfCone_lift, isLimitConeOfCoconeRightOp_lift, isColimitCoconeRightOpOfCone_desc, coconeRightOpOfCone_ι, coconeRightOpOfCone_pt
coconeUnopOfCone 📖CompOp
5 mathmath: isLimitConeOfCoconeUnop_lift, isColimitCoconeUnopOfCone_desc, coconeUnopOfCone_pt, isLimitOfCoconeUnopOfCone_lift, coconeUnopOfCone_ι
coneLeftOpOfCocone 📖CompOp
5 mathmath: coneLeftOpOfCocone_π_app, isColimitOfConeLeftOpOfCocone_desc, coneLeftOpOfCocone_pt, isLimitConeLeftOpOfCocone_lift, isColimitCoconeOfConeLeftOp_desc
coneOfCoconeLeftOp 📖CompOp
5 mathmath: isColimitCoconeLeftOpOfCone_desc, coneOfCoconeLeftOp_π_app, isColimitOfConeOfCoconeLeftOp_desc, coneOfCoconeLeftOp_pt, isLimitConeOfCoconeLeftOp_lift
coneOfCoconeRightOp 📖CompOp
5 mathmath: coneOfCoconeRightOp_π, isLimitConeOfCoconeRightOp_lift, coneOfCoconeRightOp_pt, isColimitCoconeRightOpOfCone_desc, isColimitOfConeOfCoconeRightOp_desc
coneOfCoconeUnop 📖CompOp
5 mathmath: coneOfCoconeUnop_π, isLimitConeOfCoconeUnop_lift, isColimitCoconeUnopOfCone_desc, isColimitOfConeOfCoconeUnop_desc, coneOfCoconeUnop_pt
coneRightOpOfCocone 📖CompOp
5 mathmath: isLimitConeRightOpOfCocone_lift, isColimitOfConeRightOpOfCocone_desc, coneRightOpOfCocone_π, coneRightOpOfCocone_pt, isColimitCoconeOfConeRightOp_desc
coneUnopOfCocone 📖CompOp
5 mathmath: coneUnopOfCocone_pt, isColimitOfConeUnopOfCocone_desc, isLimitConeUnopOfCocone_lift, coneUnopOfCocone_π, isColimitCoconeOfConeUnop_desc
inhabitedCocone 📖CompOp
inhabitedCoconeMorphism 📖CompOp
inhabitedCone 📖CompOp
inhabitedConeMorphism 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
coconeEquivalenceOpConeOp_counitIso 📖mathematicalCategoryTheory.Equivalence.counitIso
Cocone
Opposite
Cone
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
Cocone.category
Cone.category
coconeEquivalenceOpConeOp
CategoryTheory.NatIso.ofComponents
CategoryTheory.Functor.comp
Cone.unop
Opposite.unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Cone.pt
ConeMorphism.hom
Opposite.op
Cocone.op
Quiver.Hom.op
Cocone.pt
CoconeMorphism.hom
CategoryTheory.Functor.id
CategoryTheory.Iso.op
Cones.ext
CategoryTheory.Iso.refl
coconeEquivalenceOpConeOp_functor_map 📖mathematicalCategoryTheory.Functor.map
Cocone
Cocone.category
Opposite
Cone
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
Cone.category
CategoryTheory.Equivalence.functor
coconeEquivalenceOpConeOp
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Cocone.op
Cocone.pt
CoconeMorphism.hom
coconeEquivalenceOpConeOp_functor_obj 📖mathematicalCategoryTheory.Functor.obj
Cocone
Cocone.category
Opposite
Cone
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
Cone.category
CategoryTheory.Equivalence.functor
coconeEquivalenceOpConeOp
Opposite.op
Cocone.op
coconeEquivalenceOpConeOp_inverse_map_hom 📖mathematicalCoconeMorphism.hom
Cone.unop
Opposite.unop
Cone
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
CategoryTheory.Functor.map
Cone.category
Cocone
Cocone.category
CategoryTheory.Equivalence.inverse
coconeEquivalenceOpConeOp
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Cone.pt
ConeMorphism.hom
coconeEquivalenceOpConeOp_inverse_obj 📖mathematicalCategoryTheory.Functor.obj
Opposite
Cone
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
Cone.category
Cocone
Cocone.category
CategoryTheory.Equivalence.inverse
coconeEquivalenceOpConeOp
Cone.unop
Opposite.unop
coconeEquivalenceOpConeOp_unitIso 📖mathematicalCategoryTheory.Equivalence.unitIso
Cocone
Opposite
Cone
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
Cocone.category
Cone.category
coconeEquivalenceOpConeOp
CategoryTheory.NatIso.ofComponents
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
Opposite.op
Cocone.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Cocone.pt
CoconeMorphism.hom
Cone.unop
Opposite.unop
Quiver.Hom.unop
Cone.pt
ConeMorphism.hom
Cocones.ext
CategoryTheory.Functor.obj
CategoryTheory.Iso.refl
coconeLeftOpOfCone_pt 📖mathematicalCocone.pt
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.leftOp
coconeLeftOpOfCone
Opposite.unop
Cone.pt
coconeLeftOpOfCone_ι_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.leftOp
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
Cone.pt
Cocone.ι
coconeLeftOpOfCone
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.unop
Cone.π
coconeOfConeLeftOp_pt 📖mathematicalCocone.pt
Opposite
CategoryTheory.Category.opposite
coconeOfConeLeftOp
Opposite.op
Cone.pt
CategoryTheory.Functor.leftOp
coconeOfConeLeftOp_ι_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
Cocone.pt
coconeOfConeLeftOp
Cocone.ι
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Cone.pt
CategoryTheory.Functor.leftOp
Opposite.op
Cone.π
coconeOfConeRightOp_pt 📖mathematicalCocone.pt
Opposite
CategoryTheory.Category.opposite
coconeOfConeRightOp
Opposite.unop
Cone.pt
CategoryTheory.Functor.rightOp
coconeOfConeRightOp_ι 📖mathematicalCocone.ι
Opposite
CategoryTheory.Category.opposite
coconeOfConeRightOp
CategoryTheory.NatTrans.removeRightOp
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
Opposite.unop
Cone.pt
CategoryTheory.Functor.rightOp
Cone.π
coconeOfConeUnop_pt 📖mathematicalCocone.pt
Opposite
CategoryTheory.Category.opposite
coconeOfConeUnop
Opposite.op
Cone.pt
CategoryTheory.Functor.unop
coconeOfConeUnop_ι 📖mathematicalCocone.ι
Opposite
CategoryTheory.Category.opposite
coconeOfConeUnop
CategoryTheory.NatTrans.removeUnop
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
Opposite.op
Cone.pt
CategoryTheory.Functor.unop
Cone.π
coconeRightOpOfCone_pt 📖mathematicalCocone.pt
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.rightOp
coconeRightOpOfCone
Opposite.op
Cone.pt
coconeRightOpOfCone_ι 📖mathematicalCocone.ι
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.rightOp
coconeRightOpOfCone
CategoryTheory.NatTrans.rightOp
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
Cone.pt
Cone.π
coconeUnopOfCone_pt 📖mathematicalCocone.pt
CategoryTheory.Functor.unop
coconeUnopOfCone
Opposite.unop
Cone.pt
Opposite
CategoryTheory.Category.opposite
coconeUnopOfCone_ι 📖mathematicalCocone.ι
CategoryTheory.Functor.unop
coconeUnopOfCone
CategoryTheory.NatTrans.unop
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
Cone.pt
Cone.π
coneLeftOpOfCocone_pt 📖mathematicalCone.pt
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.leftOp
coneLeftOpOfCocone
Opposite.unop
Cocone.pt
coneLeftOpOfCocone_π_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.leftOp
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
Cocone.pt
Cone.π
coneLeftOpOfCocone
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.unop
Cocone.ι
coneOfCoconeLeftOp_pt 📖mathematicalCone.pt
Opposite
CategoryTheory.Category.opposite
coneOfCoconeLeftOp
Opposite.op
Cocone.pt
CategoryTheory.Functor.leftOp
coneOfCoconeLeftOp_π_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
Opposite.op
Cocone.pt
CategoryTheory.Functor.leftOp
Cone.π
coneOfCoconeLeftOp
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.unop
Cocone.ι
coneOfCoconeRightOp_pt 📖mathematicalCone.pt
Opposite
CategoryTheory.Category.opposite
coneOfCoconeRightOp
Opposite.unop
Cocone.pt
CategoryTheory.Functor.rightOp
coneOfCoconeRightOp_π 📖mathematicalCone.π
Opposite
CategoryTheory.Category.opposite
coneOfCoconeRightOp
CategoryTheory.NatTrans.removeRightOp
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
Opposite.unop
Cocone.pt
CategoryTheory.Functor.rightOp
Cocone.ι
coneOfCoconeUnop_pt 📖mathematicalCone.pt
Opposite
CategoryTheory.Category.opposite
coneOfCoconeUnop
Opposite.op
Cocone.pt
CategoryTheory.Functor.unop
coneOfCoconeUnop_π 📖mathematicalCone.π
Opposite
CategoryTheory.Category.opposite
coneOfCoconeUnop
CategoryTheory.NatTrans.removeUnop
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
Opposite.op
Cocone.pt
CategoryTheory.Functor.unop
Cocone.ι
coneRightOpOfCocone_pt 📖mathematicalCone.pt
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.rightOp
coneRightOpOfCocone
Opposite.op
Cocone.pt
coneRightOpOfCocone_π 📖mathematicalCone.π
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.rightOp
coneRightOpOfCocone
CategoryTheory.NatTrans.rightOp
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
Cocone.pt
Cocone.ι
coneUnopOfCocone_pt 📖mathematicalCone.pt
CategoryTheory.Functor.unop
coneUnopOfCocone
Opposite.unop
Cocone.pt
Opposite
CategoryTheory.Category.opposite
coneUnopOfCocone_π 📖mathematicalCone.π
CategoryTheory.Functor.unop
coneUnopOfCocone
CategoryTheory.NatTrans.unop
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
Cocone.pt
Cocone.ι
instIsIsoHomHomCocone 📖mathematicalCategoryTheory.IsIso
Cocone.pt
CoconeMorphism.hom
CategoryTheory.Iso.hom
Cocone
Cocone.category
CoconeMorphism.hom_inv_id
CoconeMorphism.inv_hom_id
instIsIsoHomHomCone 📖mathematicalCategoryTheory.IsIso
Cone.pt
ConeMorphism.hom
CategoryTheory.Iso.hom
Cone
Cone.category
ConeMorphism.hom_inv_id
ConeMorphism.inv_hom_id
instIsIsoHomInvCocone 📖mathematicalCategoryTheory.IsIso
Cocone.pt
CoconeMorphism.hom
CategoryTheory.Iso.inv
Cocone
Cocone.category
CoconeMorphism.inv_hom_id
CoconeMorphism.hom_inv_id
instIsIsoHomInvCone 📖mathematicalCategoryTheory.IsIso
Cone.pt
ConeMorphism.hom
CategoryTheory.Iso.inv
Cone
Cone.category
ConeMorphism.inv_hom_id
ConeMorphism.hom_inv_id

CategoryTheory.Limits.Cocone

Definitions

NameCategoryTheorems
category 📖CompOp
180 mathmath: CategoryTheory.Limits.Cocones.precompose_obj_ι, CategoryTheory.Functor.LeftExtension.coconeAtFunctor_map_hom, category_id_hom, CategoryTheory.Limits.IsColimit.uniqueUpToIso_hom, CategoryTheory.Limits.coconeEquivalenceOpConeOp_unitIso, CategoryTheory.WithInitial.isColimitEquiv_apply_desc_right, CategoryTheory.WithInitial.coconeEquiv_functor_obj_pt, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCoforkOfIsColimit_counitIso, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_functor_obj_ι_app, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_counitIso_inv_app_hom, CategoryTheory.Functor.mapCoconePrecomposeEquivalenceFunctor_inv_hom, CategoryTheory.Limits.Cocones.ext_inv_hom, CategoryTheory.Functor.mapCoconePrecompose_inv_hom, CategoryTheory.Limits.PushoutCocone.unop_π_app, CategoryTheory.Limits.Cocones.cocone_iso_of_hom_iso, CategoryTheory.Functor.mapCoconeWhisker_hom_hom, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_inverse_obj, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_functor_obj, CategoryTheory.Limits.Cocones.precomposeEquivalence_functor, CategoryTheory.WithInitial.coconeEquiv_inverse_obj_pt_right, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_unitIso, CategoryTheory.Functor.Final.colimitCoconeOfComp_isColimit, CategoryTheory.Functor.Final.coconesEquiv_unitIso, CategoryTheory.WithInitial.isColimitEquiv_symm_apply_desc, CategoryTheory.Limits.Cocones.whiskeringEquivalence_unitIso, CategoryTheory.Limits.Cocones.eta_inv_hom, CategoryTheory.Limits.instIsIsoHomHomCocone, CategoryTheory.Limits.Cocones.whiskeringEquivalence_inverse, CategoryTheory.Limits.PushoutCocone.isoMk_inv_hom, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_counitIso_hom_app_hom, CategoryTheory.Limits.colimit.map_desc, CategoryTheory.Functor.LeftExtension.coconeAtWhiskerRightIso_inv_hom, CategoryTheory.Limits.Cocones.precompose_obj_pt, CategoryTheory.Functor.Final.extendCocone_obj_ι_app, CategoryTheory.Functor.Final.coconesEquiv_functor, CategoryTheory.WithInitial.coconeEquiv_inverse_obj_pt_hom, CategoryTheory.Limits.CoconeMorphism.hom_inv_id_assoc, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_inverse_map_hom, CategoryTheory.Limits.Cocones.precomposeEquivalence_unitIso, CategoryTheory.Limits.Cocones.whiskering_obj, CategoryTheory.Limits.Cocones.equivalenceOfReindexing_functor_obj, category_comp_hom, CategoryTheory.IsUniversalColimit.precompose_isIso, CategoryTheory.Limits.HasColimit.isoOfNatIso_inv_desc_assoc, CategoryTheory.Limits.IsColimit.ofCoconeEquiv_symm_apply_desc, CategoryTheory.Limits.Cofan.ext_inv_hom, CategoryTheory.Limits.HasColimit.isoOfNatIso_hom_desc, CategoryTheory.Limits.Cocones.extendId_hom_hom, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_functor_map_hom, CategoryTheory.Limits.IsInitial.to_eq_descCoconeMorphism, CategoryTheory.Limits.DiagramOfCocones.coconePoints_map, CategoryTheory.WithInitial.coconeEquiv_counitIso_inv_app_hom, CategoryTheory.WithInitial.coconeEquiv_functor_obj_ι_app_star, CategoryTheory.Limits.Cocones.functoriality_obj_pt, CategoryTheory.Adjunction.functorialityUnit_app_hom, CategoryTheory.Limits.Multicofork.ext_hom_hom, CategoryTheory.WithInitial.coconeEquiv_unitIso_hom_app_hom_right, CategoryTheory.Functor.mapCoconeMapCocone_hom_hom, CategoryTheory.Limits.Cocones.forget_obj, CategoryTheory.Limits.PushoutCocone.eta_inv_hom, CategoryTheory.Limits.BinaryCofan.ext_hom_hom, CategoryTheory.Limits.coconeEquivalenceOpConeOp_functor_obj, CategoryTheory.Functor.functorialityCompPrecompose_hom_app_hom, toStructuredArrow_obj, CategoryTheory.Limits.MultispanIndex.ofSigmaCoforkFunctor_obj, CategoryTheory.IsVanKampenColimit.precompose_isIso, CategoryTheory.WithInitial.coconeEquiv_functor_map_hom, CategoryTheory.Limits.IsColimit.coconePointsIsoOfEquivalence_hom, CategoryTheory.Limits.DiagramOfCocones.comp, CategoryTheory.WithInitial.coconeEquiv_inverse_obj_pt_left_as, CategoryTheory.Limits.Cofork.π_precompose, equivStructuredArrow_unitIso, CategoryTheory.Limits.Cocones.extendComp_hom_hom, CategoryTheory.Limits.Cofan.ext_hom_hom, CategoryTheory.Limits.Cowedge.ext_hom_hom, CategoryTheory.Limits.Cocones.reflects_cocone_isomorphism, CategoryTheory.Functor.precomposeWhiskerLeftMapCocone_hom_hom, fromStructuredArrow_obj_pt, CategoryTheory.Limits.DiagramOfCocones.mkOfHasColimits_map_hom, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_functor_map_hom, CategoryTheory.WithInitial.coconeEquiv_inverse_obj_ι_app_right, CategoryTheory.Functor.precomposeWhiskerLeftMapCocone_inv_hom, CategoryTheory.Functor.mapCoconePrecomposeEquivalenceFunctor_hom_hom, CategoryTheory.Adjunction.functorialityCounit_app_hom, CategoryTheory.Limits.IsColimit.coconePointsIsoOfEquivalence_inv, CategoryTheory.WithInitial.coconeEquiv_functor_obj_ι_app_of, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_functor_obj_pt, CategoryTheory.Limits.reflexiveCoforkEquivCofork_functor_obj_pt, CategoryTheory.Limits.IsColimit.descCoconeMorphism_eq_isInitial_to, CategoryTheory.Functor.Final.extendCocone_obj_ι_app', CategoryTheory.Limits.Cocones.functoriality_obj_ι_app, CategoryTheory.IsVanKampenColimit.precompose_isIso_iff, CategoryTheory.Limits.reflexiveCoforkEquivCofork_functor_obj_π, CategoryTheory.Functor.LeftExtension.coconeAtFunctor_obj, CategoryTheory.Functor.LeftExtension.coconeAtWhiskerRightIso_hom_hom, CategoryTheory.Limits.Multicofork.isoOfπ_hom_hom, SheafOfModules.Presentation.map_relations_I, CategoryTheory.Limits.reflexiveCoforkEquivCofork_inverse_obj_pt, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_inverse_obj_pt, CategoryTheory.Limits.Cocones.functorialityEquivalence_counitIso, CategoryTheory.Limits.Cofork.ext_inv, CategoryTheory.Limits.Cocones.extendComp_inv_hom, CategoryTheory.Limits.Cocones.eta_hom_hom, CategoryTheory.Limits.IsColimit.ofCoconeEquiv_apply_desc, CategoryTheory.Limits.Cocones.functoriality_faithful, CategoryTheory.Functor.mapCoconeWhisker_inv_hom, fromStructuredArrow_map_hom, CategoryTheory.Limits.CoconeMorphism.hom_inv_id, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_inverse_obj_ι_app, CategoryTheory.Limits.HasColimit.isoOfNatIso_hom_desc_assoc, CategoryTheory.Limits.Cocones.functoriality_full, CategoryTheory.Limits.Cocones.whiskeringEquivalence_functor, CategoryTheory.Limits.Multicofork.ext_inv_hom, CategoryTheory.Limits.MultispanIndex.toSigmaCoforkFunctor_obj, CategoryTheory.Limits.IsColimit.pushoutCoconeEquivBinaryCofanFunctor_desc_right, CategoryTheory.Limits.Cowedge.ext_inv_hom, CategoryTheory.Limits.Cofork.ext_hom, equivStructuredArrow_inverse, CategoryTheory.WithInitial.coconeEquiv_inverse_map_hom_right, mapCoconeToOver_inv_hom, CategoryTheory.Limits.IsColimit.equivIsoColimit_symm_apply, CategoryTheory.Limits.colimit.map_desc_assoc, CategoryTheory.Limits.Cocones.extendIso_hom_hom, CategoryTheory.Functor.mapConeOp_inv_hom, CategoryTheory.Limits.reflexiveCoforkEquivCofork_inverse_obj_π, CategoryTheory.Functor.Final.coconesEquiv_counitIso, CategoryTheory.Limits.IsColimit.hom_isIso, CategoryTheory.Limits.IsColimit.uniqueUpToIso_inv, CategoryTheory.Limits.Cocones.functoriality_map_hom, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCoforkOfIsColimit_inverse, CategoryTheory.Limits.CoconeMorphism.inv_hom_id, CategoryTheory.WithInitial.coconeEquiv_counitIso_hom_app_hom, CategoryTheory.Functor.functorialityCompPrecompose_inv_app_hom, CategoryTheory.Limits.DiagramOfCocones.id, CategoryTheory.Limits.IsColimit.ofIsoColimit_desc, CategoryTheory.Limits.Cocones.ext_hom_hom, CategoryTheory.Limits.coconeEquivalenceOpConeOp_inverse_obj, CategoryTheory.Limits.PushoutCocone.isoMk_hom_hom, CategoryTheory.Limits.MultispanIndex.toSigmaCoforkFunctor_map_hom, CategoryTheory.Limits.coconeEquivalenceOpConeOp_counitIso, CategoryTheory.Limits.Cocones.precomposeEquivalence_inverse, CategoryTheory.Limits.Cocones.extendId_inv_hom, CategoryTheory.Functor.mapCoconePrecompose_hom_hom, CategoryTheory.Limits.hasColimit_iff_hasInitial_cocone, CategoryTheory.Functor.mapConeOp_hom_hom, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_inverse_map_hom, CategoryTheory.Limits.Cocones.functorialityEquivalence_inverse, CategoryTheory.Limits.Cocones.forget_map, toStructuredArrow_map, CategoryTheory.Functor.Final.extendCocone_obj_pt, CategoryTheory.Limits.PushoutCocone.eta_hom_hom, CategoryTheory.Limits.Multicofork.isoOfπ_inv_hom, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_counitIso, CategoryTheory.Limits.coconeEquivalenceOpConeOp_inverse_map_hom, CategoryTheory.Limits.instIsIsoHomInvCocone, CategoryTheory.Functor.Final.extendCocone_map_hom, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_unitIso_hom_app_hom, mapCoconeToOver_hom_hom, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCoforkOfIsColimit_unitIso, CategoryTheory.Limits.CoconeMorphism.inv_hom_id_assoc, CategoryTheory.Limits.coconeEquivalenceOpConeOp_functor_map, CategoryTheory.Limits.Cocones.precompose_map_hom, CategoryTheory.Limits.MultispanIndex.ofSigmaCoforkFunctor_map_hom, equivStructuredArrow_functor, fromStructuredArrow_obj_ι, equivStructuredArrow_counitIso, CategoryTheory.Functor.mapCoconeMapCocone_inv_hom, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_unitIso_inv_app_hom, CategoryTheory.Limits.Cocones.whiskering_map_hom, CategoryTheory.Limits.Cocones.functorialityEquivalence_functor, CategoryTheory.Limits.HasColimit.isoOfNatIso_inv_desc, CategoryTheory.WithInitial.coconeEquiv_unitIso_inv_app_hom_right, CategoryTheory.Limits.Cocones.instIsIsoCoconeExtend, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCoforkOfIsColimit_functor, CategoryTheory.Limits.Cocones.whiskeringEquivalence_counitIso, CategoryTheory.Limits.Cocones.functorialityEquivalence_unitIso, CategoryTheory.Functor.Final.coconesEquiv_inverse, CategoryTheory.Limits.Cocones.extendIso_inv_hom, CategoryTheory.Limits.Cocones.precomposeEquivalence_counitIso, CategoryTheory.Functor.Final.colimitCoconeOfComp_cocone
equiv 📖CompOp
extend 📖CompOp
17 mathmath: CategoryTheory.Limits.IndObjectPresentation.extend_ι_app_app, CategoryTheory.Limits.colimit.desc_extend, CategoryTheory.Limits.IsColimit.homIso_hom, CategoryTheory.Limits.IsColimit.homEquiv_apply, CategoryTheory.Limits.Cocones.extendId_hom_hom, CategoryTheory.Limits.IsColimit.OfNatIso.cocone_fac, CategoryTheory.Limits.Cocones.extendComp_hom_hom, CategoryTheory.Limits.Cocones.extend_hom, CategoryTheory.Limits.Cocones.extendComp_inv_hom, CategoryTheory.Limits.IndObjectPresentation.extend_isColimit_desc_app, CategoryTheory.Limits.Cocones.extendIso_hom_hom, CategoryTheory.Limits.Cocones.extendId_inv_hom, extend_ι, CategoryTheory.Limits.IsColimit.OfNatIso.coconeOfHom_fac, extend_pt, CategoryTheory.Limits.Cocones.instIsIsoCoconeExtend, CategoryTheory.Limits.Cocones.extendIso_inv_hom
extensions 📖CompOp
2 mathmath: extend_ι, extensions_app
op 📖CompOp
22 mathmath: CategoryTheory.Limits.coconeEquivalenceOpConeOp_unitIso, CategoryTheory.Presheaf.isSheaf_iff_isLimit_coverage, CategoryTheory.Presheaf.isLimit_iff_isSheafFor_presieve, CategoryTheory.Functor.mapCoconeOp_inv_hom, op_pt, CategoryTheory.regularTopology.equalizerConditionMap_iff_nonempty_isLimit, CategoryTheory.Presheaf.isSeparated_iff_subsingleton, CategoryTheory.Limits.coconeEquivalenceOpConeOp_functor_obj, TopCat.Presheaf.whiskerIsoMapGenerateCocone_inv_hom, CategoryTheory.Presheaf.isSheaf_iff_isLimit, CategoryTheory.Limits.PushoutCocone.op_π_app, TopCat.Presheaf.whiskerIsoMapGenerateCocone_hom_hom, TopCat.Presheaf.IsSheaf.isSheafPairwiseIntersections, TopCat.Presheaf.isGluing_iff_pairwise, CategoryTheory.Functor.mapCoconeOp_hom_hom, op_π, CategoryTheory.Limits.coconeEquivalenceOpConeOp_counitIso, CategoryTheory.Presheaf.isLimit_iff_isSheafFor, TopCat.Presheaf.IsSheaf.isSheafOpensLeCover, CategoryTheory.Limits.coconeEquivalenceOpConeOp_functor_map, CategoryTheory.Presheaf.subsingleton_iff_isSeparatedFor, CategoryTheory.Presheaf.isSheaf_iff_isLimit_pretopology
pt 📖CompOp
837 mathmath: ModuleCat.HasColimit.colimitCocone_pt_isAddCommGroup, CategoryTheory.Limits.Cocones.precompose_obj_ι, TopCat.binaryCofan_isColimit_iff, SimplicialObject.Splitting.cofan_inj_πSummand_eq_id_assoc, category_id_hom, CategoryTheory.PreOneHypercover.forkOfIsColimit_ι_map_inj_assoc, CategoryTheory.Limits.IsColimit.isZero_pt, CategoryTheory.Monad.ForgetCreatesColimits.commuting, CategoryTheory.Limits.pushoutCoconeOfLeftIso_ι_app_right, CategoryTheory.Limits.FormalCoproduct.isColimitCofan_desc_φ, CategoryTheory.ComposableArrows.Exact.cokerIsoKer'_hom_inv_id_assoc, CategoryTheory.Limits.Bicone.toCocone_ι_app_mk, CategoryTheory.Limits.isLimitConeRightOpOfCocone_lift, CategoryTheory.ShortComplex.pOpcycles_π_isoOpcyclesOfIsColimit_inv_assoc, CategoryTheory.Limits.coconeEquivalenceOpConeOp_unitIso, CategoryTheory.Limits.Types.binaryCofan_isColimit_iff, CategoryTheory.Limits.PushoutCocone.flip_pt, CategoryTheory.Limits.Cotrident.ofCocone_ι, whisker_pt, CategoryTheory.Limits.colimit.isoColimitCocone_ι_inv, CategoryTheory.Monad.ForgetCreatesColimits.liftedCocone_pt, CategoryTheory.Limits.IsColimit.fac, CategoryTheory.Over.forgetCocone_pt, Profinite.Extend.cocone_pt, CategoryTheory.Limits.ReflexiveCofork.app_one_eq_π, CommRingCat.pushoutCocone_pt, CategoryTheory.Limits.isIso_app_coconePt_of_preservesColimit, PartOrdEmb.Limits.cocone_pt_coe, toOver_ι_app, CategoryTheory.Limits.MultispanIndex.inj_sndSigmaMapOfIsColimit, CategoryTheory.Functor.mapCocone_ι_app, CategoryTheory.PreOneHypercover.forkOfIsColimit_pt, CategoryTheory.Limits.colimit.cocone_ι, CategoryTheory.IsGrothendieckAbelian.IsPresentable.surjectivity.hf, CategoryTheory.WithInitial.isColimitEquiv_apply_desc_right, CategoryTheory.Limits.Fork.π_comp_hom, CategoryTheory.Limits.CoconeMorphism.w, CategoryTheory.WithInitial.coconeEquiv_functor_obj_pt, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCoforkOfIsColimit_counitIso, CategoryTheory.Limits.BinaryBicone.ofColimitCocone_inl, CategoryTheory.Limits.PushoutCocone.mk_ι_app_zero, CategoryTheory.Limits.FormalCoproduct.coproductIsoSelf_inv_f, CategoryTheory.Limits.IsColimit.comp_coconePointsIsoOfNatIso_hom_assoc, CategoryTheory.Comonad.ForgetCreatesColimits'.liftedCocone_pt, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_functor_obj_ι_app, CategoryTheory.PreOneHypercover.p₁_sigmaOfIsColimit_assoc, CategoryTheory.Functor.isColimitCoconeOfIsLeftKanExtension_desc, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_counitIso_inv_app_hom, CategoryTheory.Presheaf.coconeOfRepresentable_pt, whisker_ι, AlgebraicTopology.DoldKan.Γ₀.Obj.map_epi_on_summand_id_assoc, CategoryTheory.PreZeroHypercover.sigmaOfIsColimit_X, CategoryTheory.Limits.FormalCoproduct.cofanHomEquiv_apply_f, CategoryTheory.Functor.mapCoconePrecomposeEquivalenceFunctor_inv_hom, CategoryTheory.Functor.IsEventuallyConstantFrom.isIso_ι_of_isColimit', CategoryTheory.Limits.Cocones.ext_inv_hom, CategoryTheory.Functor.mapCoconePrecompose_inv_hom, CategoryTheory.Limits.PushoutCocone.unop_π_app, CategoryTheory.Limits.IndObjectPresentation.extend_ι_app_app, CategoryTheory.Limits.Fork.unop_ι_app_zero, ofCotrident_ι, ModuleCat.directLimitCocone_pt_carrier, unop_π, CategoryTheory.Limits.Multicofork.π_comp_hom_assoc, SimplicialObject.Splitting.cofan_inj_epi_naturality_assoc, CategoryTheory.Functor.mapCoconeWhisker_hom_hom, CategoryTheory.Limits.asEmptyCocone_pt, CategoryTheory.Limits.BinaryCofan.mk_pt, CategoryTheory.Limits.MonoCoprod.mono_of_injective_aux, CategoryTheory.Limits.Cofork.ofCocone_ι, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.pullbackGluedIso_inv_snd_assoc, CategoryTheory.Functor.IsEventuallyConstantFrom.cocone_pt, CategoryTheory.Limits.MonoCoprod.binaryCofan_inl, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_inverse_obj, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_functor_obj, CategoryTheory.Limits.IsColimit.existsUnique, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.isPullback, CategoryTheory.WithInitial.coconeEquiv_inverse_obj_pt_right, CategoryTheory.Monad.beckCoequalizer_desc, toCostructuredArrow_comp_proj, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_unitIso, CategoryTheory.Limits.FormalCoproduct.ι_comp_coproductIsoCofanPt_assoc, CategoryTheory.Mono.of_coproductDisjoint, CategoryTheory.Limits.coconeOfCoconeCurry_pt, CategoryTheory.Limits.desc_op_comp_opCoproductIsoProduct'_hom, skyscraperPresheafCocone_pt, SimplicialObject.Splitting.ι_desc_assoc, CategoryTheory.Limits.colimit.desc_extend, CategoryTheory.Limits.colimit.homIso_hom, AddCommGrpCat.isColimit_iff_bijective_desc, CategoryTheory.IsGrothendieckAbelian.IsPresentable.surjectivity.F_map, CategoryTheory.Limits.CoproductsFromFiniteFiltered.finiteSubcoproductsCocone_pt, CategoryTheory.FinitaryExtensive.mono_ι, CategoryTheory.FinitaryExtensive.isPullback_initial_to_binaryCofan, CategoryTheory.Functor.Final.coconesEquiv_unitIso, CategoryTheory.Limits.IsColimit.homIso_hom, toCostructuredArrow_comp_toOver_comp_forget, underPost_ι_app, CategoryTheory.IsSplitCoequalizer.asCofork_pt, CategoryTheory.Limits.Types.pUnitCocone_pt, CategoryTheory.Limits.Cotrident.π_eq_app_one, CategoryTheory.Limits.PushoutCocone.condition_assoc, CategoryTheory.Limits.coconeOfConeLeftOp_pt, CategoryTheory.Limits.Cofan.isColimit_iff_isIso_sigmaDesc, CategoryTheory.Limits.Cocones.whiskeringEquivalence_unitIso, toCostructuredArrow_map, CategoryTheory.Limits.Cocones.eta_inv_hom, SemiRingCat.FilteredColimits.colimitCoconeIsColimit.descMonoidHom_quotMk, CategoryTheory.Limits.IsColimit.mono_ι_app_of_isFiltered, CategoryTheory.Limits.CoproductsFromFiniteFiltered.liftToFinsetColimIso_aux_assoc, CategoryTheory.Limits.PushoutCocone.op_snd, CategoryTheory.Limits.isColimitOfConeRightOpOfCocone_desc, HasCardinalLT.Set.cocone_pt, CategoryTheory.Limits.instIsIsoHomHomCocone, CategoryTheory.ComposableArrows.Exact.cokerIsoKer'_hom, CategoryTheory.Limits.PushoutCocone.isoMk_inv_hom, CategoryTheory.Limits.IsColimit.ι_map, CategoryTheory.BinaryCofan.isVanKampen_iff, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_counitIso_hom_app_hom, Preorder.coconePt_mem_upperBounds, CategoryTheory.Functor.costructuredArrowMapCocone_pt, CategoryTheory.Limits.Multicofork.ofSigmaCofork_ι_app_right', CategoryTheory.Limits.colimit.map_desc, CategoryTheory.Limits.PullbackCone.op_pt, w_assoc, CategoryTheory.GradedObject.CofanMapObjFun.inj_iso_hom, CategoryTheory.Limits.PushoutCocone.epi_inl_of_is_pushout_of_epi, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand_assoc, CategoryTheory.Limits.CokernelCofork.π_mapOfIsColimit, CategoryTheory.Limits.coneUnopOfCocone_pt, CategoryTheory.Limits.Cofork.unop_π_app_one, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.cocone_ι_transitionMap, CategoryTheory.Comonad.ForgetCreatesColimits'.newCocone_ι_app, CategoryTheory.Limits.Cofork.IsColimit.epi, toCostructuredArrowCompProj_hom_app, CategoryTheory.Limits.Types.FilteredColimit.colimit_eq_iff_aux, CategoryTheory.isPullback_of_cofan_isVanKampen, CategoryTheory.Limits.Cocones.precompose_obj_pt, CategoryTheory.Limits.Types.binaryCoproductColimit_desc, CategoryTheory.Limits.opCoproductIsoProduct'_comp_self, CategoryTheory.Functor.Final.extendCocone_obj_ι_app, CategoryTheory.Limits.opCoproductIsoProduct'_hom_comp_proj, CategoryTheory.MorphismProperty.TransfiniteCompositionOfShape.ofComposableArrows_isColimit_desc, CategoryTheory.WithInitial.coconeEquiv_inverse_obj_pt_hom, CategoryTheory.Limits.Cowedge.IsColimit.π_desc_assoc, CategoryTheory.Limits.CoconeMorphism.hom_inv_id_assoc, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_inverse_map_hom, CategoryTheory.Limits.coconeOfCoconeFiberwiseColimit_pt, CategoryTheory.Limits.Cocones.precomposeEquivalence_unitIso, CategoryTheory.Limits.Cotrident.IsColimit.homIso_natural, CategoryTheory.Limits.IsColimit.nonempty_isColimit_iff_isIso_desc, CategoryTheory.Limits.BinaryBicone.toCocone_ι_app_right, HomotopicalAlgebra.AttachCells.ofArrowIso_g₂, CategoryTheory.Limits.Types.FilteredColimit.isColimit_eq_iff, CategoryTheory.Limits.Multicofork.snd_app_right_assoc, CategoryTheory.Limits.coneOfCoconeRightOp_π, HomologicalComplex.coconeOfHasColimitEval_pt_d, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.pullbackGluedIso_inv_fst_assoc, SSet.horn₃₁.desc.multicofork_pt, CategoryTheory.Limits.PushoutCocone.condition, CategoryTheory.Limits.Cofork.condition_assoc, CategoryTheory.Limits.IsColimit.comp_coconePointUniqueUpToIso_inv, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.transitionCocone_pt, CategoryTheory.Limits.Bicone.toCocone_pt, CategoryTheory.Limits.coconeOfConeUnop_pt, CategoryTheory.Limits.FormalCoproduct.cofan_inj, CategoryTheory.HasLiftingProperty.transfiniteComposition.hasLiftingProperty_ι_app_bot, AlgebraicTopology.DoldKan.PInfty_on_Γ₀_splitting_summand_eq_self_assoc, CategoryTheory.Limits.Types.FilteredColimit.jointly_surjective_of_isColimit₂, ModuleCat.HasColimit.colimitCocone_pt_isModule, CategoryTheory.Functor.mapCoconeOp_inv_hom, CategoryTheory.MorphismProperty.colimitsOfShape.of_isColimit, op_pt, CategoryTheory.Limits.CoproductsFromFiniteFiltered.liftToFinsetColimitCocone_isColimit_desc, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.transitionMap_id, CategoryTheory.Limits.IsColimit.ι_map_assoc, CategoryTheory.Limits.CokernelCofork.IsColimit.isIso_π, CategoryTheory.Limits.Cofan.IsColimit.inj_desc, CategoryTheory.Limits.Concrete.isColimit_rep_eq_iff_exists, CompHausLike.sigmaComparison_eq_comp_isos, CategoryTheory.Functor.coconeTypesEquiv_apply_pt, CategoryTheory.Limits.Multicofork.toSigmaCofork_pt, CategoryTheory.ObjectProperty.isStrongGenerator_iff_exists_extremalEpi, CategoryTheory.Limits.Cotrident.ofπ_pt, CategoryTheory.Limits.Multicofork.condition_assoc, CategoryTheory.ShortComplex.RightHomologyData.wι_assoc, CategoryTheory.preservesColimitIso_inv_comp_desc, category_comp_hom, CategoryTheory.Limits.IsColimit.homEquiv_apply, CategoryTheory.Limits.HasColimit.isoOfNatIso_inv_desc_assoc, CategoryTheory.Limits.IsColimit.desc_self, HomotopicalAlgebra.AttachCells.cell_def, CategoryTheory.Limits.IsColimit.ofCoconeEquiv_symm_apply_desc, CategoryTheory.Limits.PullbackCone.op_ι_app, CategoryTheory.Limits.Cofan.ext_inv_hom, CategoryTheory.Limits.HasColimit.isoOfNatIso_hom_desc, CategoryTheory.FinitaryExtensive.mono_inl_of_isColimit, CategoryTheory.Limits.IsColimit.coconePointsIsoOfNatIso_hom_desc_assoc, CategoryTheory.Limits.Cocones.extendId_hom_hom, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_functor_map_hom, CategoryTheory.Limits.Cowedge.IsColimit.π_desc, CategoryTheory.Limits.IsColimit.isIso_colimMap_ι, CategoryTheory.Limits.FormalCoproduct.isColimitCofan_desc_f, CategoryTheory.Limits.Fork.unop_ι_app_one, CategoryTheory.ShortComplex.HomologyData.ofEpiMonoFactorisation.g'_eq, CategoryTheory.Limits.Types.Colimit.ι_desc_apply', CategoryTheory.Limits.CokernelCofork.condition, CategoryTheory.Limits.IsColimit.coconePointUniqueUpToIso_inv_desc_assoc, CategoryTheory.ShortComplex.RightHomologyData.ofIsColimitCokernelCofork_Q, CategoryTheory.PreZeroHypercover.inj_sigmaOfIsColimit_f_assoc, PartOrdEmb.Limits.CoconePt.fac_apply, CategoryTheory.Limits.binaryBiconeOfIsSplitMonoOfCokernel_inr, toCostructuredArrowCompToOverCompForget_inv_app, CategoryTheory.Monad.beckAlgebraCofork_pt, CategoryTheory.Limits.Cowedge.condition_assoc, CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_left, CategoryTheory.Limits.CompleteLattice.colimitCocone_cocone_pt, CategoryTheory.ShortComplex.RightHomologyData.ofIsColimitCokernelCofork_H, CategoryTheory.WithInitial.coconeEquiv_counitIso_inv_app_hom, HomotopicalAlgebra.AttachCells.hm_assoc, CategoryTheory.Limits.IsColimit.coconePointsIsoOfNatIso_hom, CategoryTheory.Limits.FormalCoproduct.coproductIsoSelf_hom_f, CategoryTheory.Limits.colimit.comp_coconePointUniqueUpToIso_inv_assoc, CategoryTheory.Limits.Cotrident.condition_assoc, CategoryTheory.ComposableArrows.IsComplex.mono_cokerToKer', CategoryTheory.Limits.CoconeMorphism.w_assoc, CategoryTheory.Limits.coneOfCoconeLeftOp_π_app, CategoryTheory.Limits.coneOfCoconeUnop_π, CategoryTheory.Limits.isColimitOfConeOfCoconeLeftOp_desc, CategoryTheory.Functor.coconeTypesEquiv_symm_apply_pt, CategoryTheory.WithInitial.coconeEquiv_functor_obj_ι_app_star, CategoryTheory.Limits.IsColimit.comp_coconePointUniqueUpToIso_inv_assoc, CategoryTheory.Limits.FormalCoproduct.cofan_inj_φ, CategoryTheory.Limits.Cocones.functoriality_obj_pt, CategoryTheory.Limits.colimit.comp_coconePointUniqueUpToIso_hom_assoc, CategoryTheory.Limits.Cofork.IsColimit.homIso_apply_coe, CategoryTheory.Limits.isLimitConeOfCoconeUnop_lift, CommAlgCat.binaryCofan_pt, SSet.horn₃₁.desc.multicofork_π_two_assoc, CategoryTheory.Limits.isColimitOfConeUnopOfCocone_desc, CategoryTheory.Limits.PushoutCocone.ofCocone_ι, CategoryTheory.Adjunction.functorialityUnit_app_hom, CategoryTheory.Limits.Multicofork.ext_hom_hom, CategoryTheory.IsGrothendieckAbelian.IsPresentable.surjectivity.isIso_f, CategoryTheory.Pairwise.cocone_pt, CategoryTheory.Limits.Multicofork.ofSigmaCofork_π, CategoryTheory.WithInitial.coconeEquiv_unitIso_hom_app_hom_right, CategoryTheory.Limits.FormalCoproduct.cofan_inj_f_fst, CategoryTheory.Limits.Concrete.isColimit_exists_rep, CategoryTheory.Limits.opCoproductIsoProduct'_inv_comp_inj, SSet.horn₃₁.desc.multicofork_π_zero_assoc, ModuleCat.directLimitIsColimit_desc, SSet.finite_of_isColimit, CategoryTheory.Limits.CokernelCofork.mapIsoOfIsColimit_inv, CategoryTheory.FunctorToTypes.binaryCoproductCocone_pt_map, CategoryTheory.Limits.Cofan.inj_injective_of_isColimit, Preorder.coconeOfUpperBound_pt, CategoryTheory.Limits.Multicofork.ofSigmaCofork_pt, ModuleCat.directLimitCocone_pt_isAddCommGroup, CategoryTheory.Limits.IsColimit.comp_coconePointsIsoOfNatIso_hom, CategoryTheory.Functor.mapCoconeMapCocone_hom_hom, LightCondensed.isColimitLocallyConstantPresheafDiagram_desc_apply, CategoryTheory.Limits.Cocones.forget_obj, CategoryTheory.Limits.PushoutCocone.eta_inv_hom, SemiRingCat.FilteredColimits.colimitCoconeIsColimit.descAddMonoidHom_quotMk, CategoryTheory.Limits.PreservesColimit₂.map_ι_comp_isoObjConePointsOfIsColimit_hom, CategoryTheory.Limits.Fork.op_pt, CategoryTheory.Limits.Multicofork.π_eq_app_right, HomologicalComplex.coconeOfHasColimitEval_pt_X, CommRingCat.FilteredColimits.nontrivial, SimplicialObject.Splitting.cofan_inj_comp_PInfty_eq_zero, SimplicialObject.Splitting.ιSummand_comp_d_comp_πSummand_eq_zero, CategoryTheory.Limits.FormalCoproduct.inj_comp_cofanPtIsoSelf_hom_assoc, CategoryTheory.Limits.WidePushoutShape.mkCocone_pt, CategoryTheory.Limits.FormalCoproduct.cofan_inj_f_snd, CategoryTheory.FinitaryExtensive.mono_inr_of_isColimit, CategoryTheory.Limits.Cofork.op_π_app_zero, AddCommGrpCat.Colimits.colimitCocone_pt, CategoryTheory.Limits.Cofork.IsColimit.π_desc_assoc, CategoryTheory.PreOneHypercover.p₁_sigmaOfIsColimit, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.fst_gluedCocone_ι, PartOrdEmb.Limits.cocone_ι_app, CategoryTheory.Limits.pushoutCoconeOfRightIso_x, CategoryTheory.Limits.PushoutCocone.condition_zero, CategoryTheory.Functor.functorialityCompPrecompose_hom_app_hom, CategoryTheory.Limits.pointwiseCocone_pt, Condensed.isColimitLocallyConstantPresheaf_desc_apply, AlgebraicGeometry.PresheafedSpace.ColimitCoconeIsColimit.desc_c_naturality, CategoryTheory.Comma.colimitAuxiliaryCocone_pt, toStructuredArrow_obj, CategoryTheory.IsPushout.of_isColimit_binaryCofan_of_isInitial, AddCommGrpCat.Colimits.Quot.desc_toCocone_desc, CategoryTheory.Limits.MultispanIndex.ofSigmaCoforkFunctor_obj, CategoryTheory.ComposableArrows.Exact.cokerIsoKer'_inv_hom_id, CategoryTheory.Limits.BinaryCofan.isColimit_iff_isIso_inl, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.transitionCocone_ι_app, CategoryTheory.Limits.binaryBiconeOfIsSplitMonoOfCokernel_pt, CategoryTheory.Comma.coconeOfPreserves_pt_right, CategoryTheory.TransfiniteCompositionOfShape.map_isColimit, CategoryTheory.Presheaf.final_toCostructuredArrow_comp_pre, CategoryTheory.Limits.PushoutCocone.ι_app_left, CategoryTheory.Limits.FormalCoproduct.cofanHomEquiv_symm_apply_φ, CategoryTheory.WithInitial.coconeEquiv_functor_map_hom, CategoryTheory.FinitaryPreExtensive.hasPullbacks_of_is_coproduct, CategoryTheory.Limits.IsColimit.coconePointsIsoOfEquivalence_hom, CategoryTheory.Limits.CokernelCofork.mapIsoOfIsColimit_hom, CategoryTheory.Limits.Multicofork.map_pt, CategoryTheory.Limits.pushoutCoconeOfLeftIso_ι_app_left, AlgebraicTopology.DoldKan.N₂Γ₂_inv_app_f_f, CategoryTheory.Limits.opProductIsoCoproduct'_comp_self, CategoryTheory.Limits.IsColimit.OfNatIso.cocone_fac, CategoryTheory.Limits.PushoutCocone.ofCocone_pt, CategoryTheory.Limits.DiagramOfCocones.comp, CategoryTheory.WithInitial.coconeEquiv_inverse_obj_pt_left_as, CategoryTheory.Limits.Cofork.π_precompose, CategoryTheory.Limits.ReflexiveCofork.condition, CategoryTheory.SmallObject.coconeOfLE_pt, CategoryTheory.Limits.FormalCoproduct.inj_comp_cofanPtIsoSelf_hom, CategoryTheory.Limits.FormalCoproduct.fromIncl_comp_cofanPtIsoSelf_inv_assoc, CategoryTheory.Limits.isLimitConeUnopOfCocone_lift, CategoryTheory.Limits.Cocones.extendComp_hom_hom, CategoryTheory.Limits.Cofan.ext_hom_hom, CategoryTheory.Limits.IndObjectPresentation.yoneda_isColimit_desc, CategoryTheory.Presheaf.tautologicalCocone'_pt, CategoryTheory.isPullback_initial_to_of_cofan_isVanKampen, CategoryTheory.Limits.Bicone.ofColimitCocone_ι, CategoryTheory.isSheaf_pointwiseColimit, CategoryTheory.Limits.MonoCoprod.mono_of_injective, CategoryTheory.Limits.PushoutCocone.isIso_inl_of_epi_of_isColimit, CategoryTheory.Limits.coneOfCoconeLeftOp_pt, CategoryTheory.Limits.BinaryCofan.isColimit_iff_isIso_inr, CategoryTheory.Limits.Cowedge.ext_hom_hom, CategoryTheory.Limits.PreservesColimit₂.map_ι_comp_isoObjConePointsOfIsColimit_hom_assoc, CategoryTheory.Limits.Multicofork.ofSigmaCofork_ι_app_right, CategoryTheory.Mono.cofanInr_of_binaryCoproductDisjoint, CategoryTheory.Limits.PushoutCocone.ι_app_right, CategoryTheory.Functor.coconeOfIsLeftKanExtension_ι, CategoryTheory.Limits.coneRightOpOfCocone_π, CategoryTheory.GradedObject.CofanMapObjFun.ιMapObj_iso_inv, SimplicialObject.Splitting.πSummand_comp_cofan_inj_id_comp_PInfty_eq_PInfty, SSet.hasDimensionLT_of_isColimit, SimplicialObject.Split.toKaroubiNondegComplexFunctorIsoN₁_hom_app_f_f, SimplicialObject.Splitting.cofan_inj_πSummand_eq_id, TopCat.isClosed_iff_of_isColimit, CategoryTheory.Comma.coconeOfPreserves_ι_app_right, CategoryTheory.ShortComplex.Exact.rightHomologyDataOfIsColimitCokernelCofork_Q, CategoryTheory.Limits.isIso_colimit_cocone_parallelPair_of_eq, CategoryTheory.Limits.Cowedge.mk_pt, CategoryTheory.Mono.cofanInl_of_binaryCoproductDisjoint, CategoryTheory.Functor.precomposeWhiskerLeftMapCocone_hom_hom, toOver_pt, fromStructuredArrow_obj_pt, HomologicalComplex.extend.rightHomologyData.d_comp_desc_eq_zero_iff, CategoryTheory.Limits.Cofan.mk_pt, CategoryTheory.Comma.coconeOfPreserves_pt_hom, ofCofork_ι, CategoryTheory.ComposableArrows.Exact.cokerIsoKer'_hom_inv_id, CategoryTheory.Presieve.isSheafFor_of_preservesProduct, AlgebraicTopology.DoldKan.Γ₀.Obj.mapMono_on_summand_id, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_functor_map_hom, CategoryTheory.Limits.binaryBiconeOfIsSplitMonoOfCokernel_snd, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.fst_gluedCocone_ι_assoc, CategoryTheory.Limits.IndObjectPresentation.toCostructuredArrow_map_left, CategoryTheory.WithInitial.coconeEquiv_inverse_obj_ι_app_right, AddCommGrpCat.Colimits.Quot.desc_toCocone_desc_app, CategoryTheory.Functor.precomposeWhiskerLeftMapCocone_inv_hom, CategoryTheory.Functor.mapCoconePrecomposeEquivalenceFunctor_hom_hom, SimplicialObject.Split.cofan_inj_naturality_symm_assoc, CategoryTheory.Limits.IsColimit.coconePointsIsoOfNatIso_inv_desc_assoc, CommRingCat.coproductCocone_pt, CategoryTheory.Limits.PushoutCocone.IsColimit.inl_desc_assoc, CategoryTheory.Adjunction.functorialityCounit_app_hom, CategoryTheory.Limits.Multicofork.ofπ_pt, CategoryTheory.Limits.IsColimit.coconePointsIsoOfEquivalence_inv, CategoryTheory.isSeparator_iff_of_isColimit_cofan, CategoryTheory.WithInitial.coconeEquiv_functor_obj_ι_app_of, CategoryTheory.Limits.colimit.isoColimitCocone_ι_inv_assoc, CategoryTheory.Limits.BinaryCofan.ι_app_right, PrincipalSeg.cocone_pt, CategoryTheory.Limits.Fork.π_comp_hom_assoc, CategoryTheory.Limits.IsColimit.homEquiv_symm_naturality, CategoryTheory.Functor.Accessible.Limits.isColimitMapCocone.surjective, CategoryTheory.Functor.coconeTypesEquiv_symm_apply_ι, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_functor_obj_pt, CategoryTheory.Limits.MultispanIndex.inj_fstSigmaMapOfIsColimit_assoc, CategoryTheory.Limits.reflexiveCoforkEquivCofork_functor_obj_pt, CategoryTheory.Limits.Multicofork.map_ι_app, TopCat.coinduced_of_isColimit, toCostructuredArrowCocone_ι_app, CategoryTheory.Limits.PushoutCocone.op_π_app, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.cocone_ι_transitionMap_assoc, isColimit_iff_isIso_colimMap_ι, CategoryTheory.ShortComplex.RightHomologyData.wι, CategoryTheory.Functor.Final.extendCocone_obj_ι_app', CategoryTheory.HasLiftingProperty.transfiniteComposition.SqStruct.w, CategoryTheory.Monad.beckCofork_pt, CategoryTheory.Limits.Cocones.functoriality_obj_ι_app, CategoryTheory.Limits.IsColimit.coconePointsIsoOfNatIso_hom_desc, CategoryTheory.preservesColimitIso_inv_comp_desc_assoc, CategoryTheory.BinaryCofan.mono_inr_of_isVanKampen, CategoryTheory.Limits.binaryBiconeOfIsSplitMonoOfCokernel_inl, CategoryTheory.ShortComplex.LeftHomologyData.ofIsColimitCokernelCofork_H, CategoryTheory.Limits.Cofork.condition, CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_right, HomotopicalAlgebra.AttachCells.reindex_cofan₂, CategoryTheory.SmallObject.SuccStruct.arrowMap_ofCocone_to_top, CategoryTheory.Monad.ForgetCreatesColimits.coconePoint_A, SimplicialObject.Splitting.cofan_inj_πSummand_eq_zero, AddCommGrpCat.Colimits.Quot.ι_desc, CategoryTheory.Limits.coconeOfIsSplitEpi_pt, CategoryTheory.Limits.IsColimit.coconePointUniqueUpToIso_inv_desc, CategoryTheory.IsFinitelyPresentable.exists_hom_of_isColimit, CategoryTheory.Limits.coconeOfConeRightOp_pt, CategoryTheory.Comma.coconeOfPreserves_ι_app_left, CategoryTheory.Monad.ForgetCreatesColimits.newCocone_pt, CategoryTheory.Limits.coconeFiberwiseColimitOfCocone_ι_app, AlgebraicTopology.DoldKan.PInfty_on_Γ₀_splitting_summand_eq_self, CategoryTheory.Limits.Cotrident.IsColimit.homIso_symm_apply, CategoryTheory.extendCofan_pt, CategoryTheory.GradedObject.CofanMapObjFun.inj_iso_hom_assoc, CategoryTheory.Limits.isLimitConeOfCoconeRightOp_lift, CategoryTheory.Limits.Multicofork.isoOfπ_hom_hom, CategoryTheory.Limits.colimit.pre_desc_assoc, SheafOfModules.Presentation.map_relations_I, CategoryTheory.HasLiftingProperty.transfiniteComposition.SqStruct.sq, CategoryTheory.Coyoneda.colimitCoconeIsColimit_desc, CategoryTheory.Limits.IsColimit.coconePointUniqueUpToIso_hom_desc_assoc, CategoryTheory.Limits.colimit.pre_desc, CategoryTheory.FunctorToTypes.binaryCoproductColimit_desc, CategoryTheory.Limits.pushoutCoconeOfRightIso_ι_app_left, CategoryTheory.Limits.IsColimit.OfNatIso.coconeOfHom_homOfCocone, PresheafOfModules.colimitCocone_pt, SimplicialObject.Splitting.cofan_inj_comp_app, CategoryTheory.Sieve.yonedaFamily_fromCocone_compatible, CategoryTheory.Limits.coneOfCoconeRightOp_pt, CategoryTheory.Functor.leftAdjointObjIsDefined_of_isColimit, CategoryTheory.Limits.colimit.ι_desc_apply, CategoryTheory.Limits.IndObjectPresentation.ofCocone_I, CategoryTheory.Limits.Cofan.IsColimit.inj_desc_assoc, CategoryTheory.extendCofan_ι_app, CategoryTheory.Limits.reflexiveCoforkEquivCofork_inverse_obj_pt, CategoryTheory.ComposableArrows.Exact.cokerIsoKer'_inv_hom_id_assoc, CategoryTheory.Limits.coneLeftOpOfCocone_π_app, SemiRingCat.FilteredColimits.colimitCoconeIsColimit.descMonoidHom_apply_eq, CategoryTheory.Coyoneda.colimitCocone_pt, TopCat.continuous_iff_of_isColimit, CategoryTheory.Limits.Multicofork.toSigmaCofork_π, CategoryTheory.SmallObject.SuccStruct.ofCocone_obj_eq_pt, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_inverse_obj_pt, CategoryTheory.Limits.Types.Colimit.ι_desc_apply, w, CategoryTheory.Limits.Multicofork.IsColimit.fac_assoc, CategoryTheory.Limits.Cocones.functorialityEquivalence_counitIso, CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_right_assoc, CategoryTheory.SmallObject.SuccStruct.ofCocone_map_to_top, CategoryTheory.Limits.Types.pushoutCocone_inr_mono_of_isColimit, CategoryTheory.Limits.Cocones.extendComp_inv_hom, CategoryTheory.Limits.colimit.ι_desc, CategoryTheory.Limits.BinaryBicone.ofColimitCocone_pt, CategoryTheory.Limits.MonoCoprod.mono_inl_iff, CategoryTheory.Limits.Cofork.IsColimit.homIso_natural, CategoryTheory.Limits.Types.jointly_surjective_of_isColimit, CategoryTheory.Limits.CokernelCofork.π_mapOfIsColimit_assoc, HomotopicalAlgebra.AttachCells.reindex_cofan₁, CategoryTheory.Limits.Multicofork.fst_app_right, AddCommGrpCat.Colimits.toCocone_pt_coe, CategoryTheory.Limits.FormalCoproduct.fromIncl_comp_cofanPtIsoSelf_inv, CategoryTheory.Limits.Fork.op_ι_app, Preorder.isLUB_of_isColimit, CategoryTheory.Limits.IsColimit.coconePointsIsoOfNatIso_inv_desc, CategoryTheory.IsUniversalColimit.isPullback_of_isColimit_right, CategoryTheory.Limits.Bicone.toCocone_ι_app, CategoryTheory.Limits.Cocones.eta_hom_hom, fromCostructuredArrow_pt, CategoryTheory.Limits.coconeUnopOfCone_pt, CategoryTheory.Limits.IsColimit.ofCoconeEquiv_apply_desc, CategoryTheory.Limits.IndObjectPresentation.ofCocone_isColimit, CategoryTheory.Limits.MultispanIndex.inj_sndSigmaMapOfIsColimit_assoc, CategoryTheory.Functor.coconeOfIsLeftKanExtension_pt, SSet.horn₃₂.desc.multicofork_π_zero_assoc, CategoryTheory.Limits.isColimitOfConeLeftOpOfCocone_desc, CategoryTheory.Limits.BinaryBicone.ofColimitCocone_inr, CategoryTheory.Limits.PushoutCocone.mk_pt, CategoryTheory.Limits.coneRightOpOfCocone_pt, CategoryTheory.PreOneHypercover.sigmaOfIsColimit_Y, CategoryTheory.Limits.PushoutCocone.IsColimit.inr_desc_assoc, CategoryTheory.Functor.mapCoconeWhisker_inv_hom, w_apply, CategoryTheory.Functor.mapCocone₂_pt, CategoryTheory.Limits.splitEpiOfIdempotentOfIsColimitCofork_section_, CategoryTheory.Limits.MonoCoprod.mono_inj, CategoryTheory.Limits.pushoutCoconeOfLeftIso_ι_app_none, CategoryTheory.Limits.PushoutCocone.IsColimit.inr_desc, SimplicialObject.Splitting.decomposition_id, CategoryTheory.Limits.coneLeftOpOfCocone_pt, CategoryTheory.Limits.IsColimit.comp_coconePointUniqueUpToIso_hom, CategoryTheory.Limits.CoconeMorphism.hom_inv_id, CategoryTheory.Limits.FintypeCat.finite_of_isColimit, CategoryTheory.Limits.Fork.op_ι_app_one, CategoryTheory.Limits.FormalCoproduct.cofanHomEquiv_symm_apply_f, CategoryTheory.PreZeroHypercover.inj_sigmaOfIsColimit_f, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_inverse_obj_ι_app, CategoryTheory.Limits.HasColimit.isoOfNatIso_hom_desc_assoc, CategoryTheory.Presheaf.coconeOfRepresentable_naturality, CategoryTheory.ShortComplex.pOpcycles_π_isoOpcyclesOfIsColimit_inv, toCostructuredArrowCompToOverCompForget_hom_app, CategoryTheory.Functor.mapCocone₂_ι_app, CategoryTheory.Limits.Cofork.unop_π_app_zero, CategoryTheory.Limits.ReflexiveCofork.mk_pt, CategoryTheory.Limits.IsColimit.hom_desc, CategoryTheory.Functor.Final.colimit_cocone_comp_aux, CategoryTheory.Monad.MonadicityInternal.unitCofork_pt, CategoryTheory.FunctorToTypes.jointly_surjective, CategoryTheory.ShortComplex.Exact.rightHomologyDataOfIsColimitCokernelCofork_ι, CategoryTheory.Limits.Cofork.IsColimit.existsUnique, CategoryTheory.Limits.combineCocones_pt_obj, CommRingCat.coproductCoconeIsColimit_desc, CategoryTheory.Limits.Cotrident.app_one, CategoryTheory.Limits.PushoutCocone.epi_inr_of_is_pushout_of_epi, CategoryTheory.Limits.coconeFiberwiseColimitOfCocone_pt, CategoryTheory.Limits.CokernelCofork.condition_assoc, CategoryTheory.Limits.Multicofork.ext_inv_hom, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand, CategoryTheory.Limits.isLimitConeLeftOpOfCocone_lift, CategoryTheory.Limits.MultispanIndex.toSigmaCoforkFunctor_obj, SSet.iSup_range_eq_top_of_isColimit, AlgebraicGeometry.Scheme.Cover.coconeOfLocallyDirected_pt, CategoryTheory.GradedObject.CofanMapObjFun.ιMapObj_iso_inv_assoc, CategoryTheory.Limits.CoproductDisjoint.nonempty_isInitial_of_ne, ModuleCat.FilteredColimits.ι_colimitDesc, CategoryTheory.Limits.colimit.existsUnique, ofPushoutCocone_ι, SSet.horn₃₁.desc.multicofork_π_three_assoc, CategoryTheory.Limits.IsColimit.comp_coconePointsIsoOfNatIso_inv_assoc, CategoryTheory.Limits.isLimitConeOfCoconeLeftOp_lift, CategoryTheory.Limits.IndObjectPresentation.extend_isColimit_desc_app, CategoryTheory.Limits.IndObjectPresentation.ofCocone_ι, CategoryTheory.ObjectProperty.prop_of_isColimit, CategoryTheory.Limits.colimit.ι_coconeMorphism, CategoryTheory.Limits.IsColimit.pushoutCoconeEquivBinaryCofanFunctor_desc_right, CategoryTheory.Limits.Cowedge.ext_inv_hom, CategoryTheory.Limits.MultispanIndex.parallelPairDiagramOfIsColimit_map, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.transitionMap_comp, CategoryTheory.Limits.CokernelCofork.map_condition, CategoryTheory.Limits.CoproductDisjoint.mono_inj, CategoryTheory.Limits.colimit.comp_coconePointUniqueUpToIso_hom, CategoryTheory.Limits.PreservesColimit₂.ι_comp_isoObjConePointsOfIsColimit_inv, CategoryTheory.Limits.PushoutCocone.IsColimit.inl_desc, LightProfinite.Extend.cocone_pt, CategoryTheory.Limits.colimit.ι_desc_assoc, CategoryTheory.IsPushout.of_is_coproduct, CategoryTheory.Abelian.mono_inl_of_isColimit, CategoryTheory.GradedObject.mapBifunctorRightUnitorCofan_inj_assoc, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.gluedCocone_pt, CategoryTheory.Limits.colimit.ι_desc_app_assoc, toCostructuredArrow_obj, CategoryTheory.WithInitial.coconeEquiv_inverse_map_hom_right, CategoryTheory.Limits.coconePointwiseProduct_pt, Condensed.isColimitLocallyConstantPresheafDiagram_desc_apply, CategoryTheory.Preadditive.epi_iff_isZero_cokernel', CategoryTheory.Limits.Types.jointly_surjective, CategoryTheory.Limits.CokernelCofork.map_π, CategoryTheory.Over.liftCocone_ι_app, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.comp_homEquiv_symm, CategoryTheory.Limits.PullbackCone.unop_pt, SimplicialObject.Splitting.ι_desc, mapCoconeToOver_inv_hom, CategoryTheory.Limits.wideCoequalizer.cotrident_ι_app_one, CategoryTheory.Limits.IndObjectPresentation.ofCocone_F, CategoryTheory.Limits.Cofan.cofanTypes_pt, CategoryTheory.Limits.IsColimit.ι_smul, CategoryTheory.Functor.LeftExtension.coconeAt_pt, SimplicialObject.Splitting.πSummand_comp_cofan_inj_id_comp_PInfty_eq_PInfty_assoc, CategoryTheory.Limits.IndObjectPresentation.ofCocone_ℐ, CategoryTheory.Limits.pushoutCoconeOfLeftIso_x, CategoryTheory.Limits.BinaryCofan.ι_app_left, CategoryTheory.Limits.colimit.map_desc_assoc, CategoryTheory.Limits.BinaryBicone.toCocone_ι_app_left, ModuleCat.HasColimit.colimitCocone_pt_carrier, CategoryTheory.Limits.PushoutCocone.op_pt, CategoryTheory.Limits.Cocones.extendIso_hom_hom, CategoryTheory.Limits.PushoutCocone.mk_ι_app_right, CategoryTheory.Limits.Multicofork.snd_app_right, CategoryTheory.Limits.Cotrident.condition, HomotopicalAlgebra.AttachCells.cell_def_assoc, CategoryTheory.Comonad.ForgetCreatesColimits'.liftedCoconeIsColimit_desc_f, CategoryTheory.Functor.Final.coconesEquiv_counitIso, CategoryTheory.SmallObject.SuccStruct.iterationCocone_pt, CategoryTheory.Limits.colimit.isoColimitCocone_ι_hom_assoc, CategoryTheory.isCardinalPresentable_of_isColimit', CategoryTheory.MonoOver.commSqOfHasStrongEpiMonoFactorisation, CategoryTheory.ComposableArrows.IsComplex.epi_cokerToKer', CategoryTheory.Limits.BinaryCofan.IsColimit.desc'_coe, CategoryTheory.Limits.Cocones.functoriality_map_hom, CategoryTheory.Limits.combineCocones_ι_app_app, CategoryTheory.Limits.DiagramOfCocones.coconePoints_obj, CategoryTheory.Limits.IsColimit.comp_coconePointUniqueUpToIso_hom_assoc, CategoryTheory.Limits.Types.binaryCoproductCocone_pt, CategoryTheory.Limits.Multicofork.sigma_condition, CategoryTheory.Comonad.ForgetCreatesColimits'.coconePoint_A, CategoryTheory.ShortComplex.RightHomologyData.ofIsColimitCokernelCofork_ι, CategoryTheory.Limits.colimit.cocone_x, TopCat.nonempty_isColimit_iff_eq_coinduced, SimplicialObject.Splitting.cofan_inj_πSummand_eq_zero_assoc, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCoforkOfIsColimit_inverse, CategoryTheory.Limits.isColimitOfConeOfCoconeRightOp_desc, CategoryTheory.Monad.ForgetCreatesColimits.liftedCocone_ι_app_f, CategoryTheory.Limits.CoconeMorphism.inv_hom_id, CategoryTheory.Limits.Cone.unop_pt, CategoryTheory.IsGrothendieckAbelian.IsPresentable.surjectivity, CategoryTheory.HasLiftingProperty.transfiniteComposition.SqStruct.w_assoc, CategoryTheory.Functor.mapCoconeOp_hom_hom, CategoryTheory.ComposableArrows.Exact.isIso_cokerToKer', CategoryTheory.Presieve.piComparison_fac, CategoryTheory.Limits.CoproductsFromFiniteFiltered.liftToFinsetColimitCocone_cocone_pt, CategoryTheory.WithInitial.coconeEquiv_counitIso_hom_app_hom, AddCommGrpCat.Colimits.Quot.desc_quotQuotUliftAddEquiv, TopCat.coconeOfCoconeForget_pt, CategoryTheory.Functor.functorialityCompPrecompose_inv_app_hom, CategoryTheory.Limits.DiagramOfCocones.id, CompleteLattice.MulticoequalizerDiagram.multicofork_pt, CategoryTheory.Limits.Multicofork.condition, CategoryTheory.Limits.IsColimit.ofIsoColimit_desc, CategoryTheory.Limits.CoconeMorphism.map_w_assoc, CategoryTheory.IsCardinalPresentable.exists_hom_of_isColimit, CategoryTheory.Limits.Cocones.ext_hom_hom, CategoryTheory.Limits.IsColimit.isIso_ι_app_of_isTerminal, CategoryTheory.IsGrothendieckAbelian.IsPresentable.surjectivity.F_obj, CategoryTheory.Limits.coconeOfConeLeftOp_ι_app, CategoryTheory.Limits.IsColimit.comp_coconePointsIsoOfNatIso_inv, op_π, CategoryTheory.Limits.colimitCoconeOfUnique_cocone_pt, HomotopicalAlgebra.AttachCells.isPushout, CategoryTheory.Limits.epi_of_isColimit_parallelFamily, CategoryTheory.Limits.PushoutCocone.isoMk_hom_hom, CategoryTheory.Limits.MultispanIndex.toSigmaCoforkFunctor_map_hom, CategoryTheory.Limits.coconeOfCoconeUncurry_pt, LightCondensed.isColimitLocallyConstantPresheaf_desc_apply, CategoryTheory.Limits.FintypeCat.jointly_surjective, CategoryTheory.Limits.coconeEquivalenceOpConeOp_counitIso, CategoryTheory.Limits.Fork.op_ι_app_zero, CategoryTheory.Limits.coconeOfCoconeUncurry_ι_app, CategoryTheory.Limits.MonoCoprod.mono_binaryCofanSum_inr, CategoryTheory.Limits.pushoutCoconeOfRightIso_ι_app_none, CategoryTheory.Limits.colimit.post_desc, CategoryTheory.Limits.PushoutCocone.mk_ι_app_left, CategoryTheory.mono_of_cofan_isVanKampen, CategoryTheory.Limits.Cocones.extendId_inv_hom, CategoryTheory.Functor.mapCoconePrecompose_hom_hom, SSet.horn₃₂.desc.multicofork_pt, CategoryTheory.Limits.coconeOfCoconeFiberwiseColimit_ι_app, CategoryTheory.Limits.Cofork.op_π_app_one, CategoryTheory.Limits.IsColimit.ι_app_homEquiv_symm_assoc, CategoryTheory.Limits.Bicone.ofColimitCocone_pt, CategoryTheory.Limits.Cofork.IsColimit.π_desc, CategoryTheory.Limits.opProductIsoCoproduct'_inv_comp_lift, TopCat.isOpen_iff_of_isColimit_cofork, CategoryTheory.Limits.FormalCoproduct.coproductIsoSelf_inv_φ, toCostructuredArrowCompProj_inv_app, TopCat.isQuotientMap_of_isColimit_cofork, CategoryTheory.epi_iff_isIso_inl, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_inverse_map_hom, CategoryTheory.Sheaf.sheafifyCocone_ι_app_val_assoc, extend_ι, toStructuredArrow_map, AlgebraicGeometry.Scheme.AffineZariskiSite.cocone_pt, CategoryTheory.Limits.IsColimit.coconePointsIsoOfNatIso_inv, TopCat.isOpen_iff_of_isColimit, CategoryTheory.Limits.IndObjectPresentation.cocone_pt, CategoryTheory.Functor.Final.extendCocone_obj_pt, CategoryTheory.ShortComplex.π_isoOpcyclesOfIsColimit_hom_assoc, CategoryTheory.Limits.proj_comp_opProductIsoCoproduct'_hom, CategoryTheory.Limits.Multicofork.sigma_condition_assoc, CategoryTheory.Limits.Multicoequalizer.multicofork_ι_app_right, CategoryTheory.Limits.Multicofork.IsColimit.isPushout, CategoryTheory.Limits.PushoutCocone.unop_pt, CategoryTheory.Limits.PushoutCocone.eta_hom_hom, CategoryTheory.Comma.coconeOfPreserves_pt_left, CategoryTheory.isCardinalPresentable_of_isColimit, CategoryTheory.Limits.Cofan.nonempty_isColimit_iff_isIso_sigmaDesc, AlgebraicTopology.DoldKan.Γ₀.Obj.mapMono_on_summand_id_assoc, CategoryTheory.Limits.Cofork.ofπ_pt, CategoryTheory.Limits.coconeOfDiagramInitial_pt, CategoryTheory.Limits.BinaryBicone.toCocone_pt, TopCat.sigmaCofan_pt, CategoryTheory.Limits.Cone.op_pt, CategoryTheory.ShortComplex.exact_iff_of_forks, CategoryTheory.Limits.coequalizer.cofork_ι_app_one, CategoryTheory.Limits.Cofan.IsColimit.fac_assoc, CategoryTheory.Limits.coconeRightOpOfCone_pt, CategoryTheory.Limits.Multicofork.isoOfπ_inv_hom, CategoryTheory.Limits.combineCocones_pt_map, toCostructuredArrowCocone_pt, CategoryTheory.Limits.CompleteLattice.finiteColimitCocone_cocone_pt, CategoryTheory.Monad.MonadicityInternal.counitCofork_pt, CategoryTheory.Limits.CoproductsFromFiniteFiltered.finiteSubcoproductsCocone_ι_app_eq_sum, CategoryTheory.Limits.FormalCoproduct.ι_comp_coproductIsoCofanPt, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_counitIso, CategoryTheory.Limits.CokernelCofork.map_condition_assoc, CategoryTheory.IsUniversalColimit.isPullback_of_isColimit_left, CategoryTheory.Abelian.mono_inl_of_factor_thru_epi_mono_factorization, CategoryTheory.Abelian.mono_inr_of_isColimit, skyscraperPresheafCoconeOfSpecializes_pt, CategoryTheory.Limits.IsColimit.ι_app_homEquiv_symm, CategoryTheory.Limits.Cofan.IsColimit.fac, CategoryTheory.Limits.Cofork.IsColimit.homIso_symm_apply, CategoryTheory.Limits.isColimitOfConeOfCoconeUnop_desc, CategoryTheory.Limits.Cofork.IsColimit.π_desc', unop_pt, CategoryTheory.Limits.CokernelCofork.π_eq_zero, CategoryTheory.ComposableArrows.IsComplex.cokerToKer'_fac_assoc, CategoryTheory.Limits.instIsIsoHomInvCocone, CategoryTheory.Functor.Final.extendCocone_map_hom, CategoryTheory.Limits.IsColimit.coconePointUniqueUpToIso_hom_desc, CategoryTheory.Limits.isIso_colimit_cocone_parallelPair_of_self, CategoryTheory.IsPushout.of_isColimit, CategoryTheory.Functor.mapCocone_pt, CategoryTheory.Limits.MonoCoprod.mono_binaryCofanSum_inl, ModuleCat.directLimitCocone_pt_isModule, CategoryTheory.Limits.opCoproductIsoProduct'_hom_comp_proj_assoc, CategoryTheory.Functor.IsEventuallyConstantFrom.isIso_ι_of_isColimit, AlgebraicGeometry.PresheafedSpace.ColimitCoconeIsColimit.desc_fac, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_unitIso_hom_app_hom, mapCoconeToOver_hom_hom, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.functor_map, AlgebraicTopology.DoldKan.Γ₀.Obj.map_epi_on_summand_id, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCoforkOfIsColimit_unitIso, CategoryTheory.Limits.Cofork.unop_ι, CategoryTheory.GradedObject.mapBifunctorLeftUnitorCofan_inj_assoc, CategoryTheory.preserves_desc_mapCocone, CategoryTheory.Limits.Multicofork.π_comp_hom, ofPushoutCocone_pt, CategoryTheory.Limits.CoconeMorphism.inv_hom_id_assoc, ModuleCat.FilteredColimits.ι_colimitDesc_assoc, CategoryTheory.Limits.coconeEquivalenceOpConeOp_functor_map, CategoryTheory.Limits.CokernelCofork.IsColimit.isZero_of_epi, CategoryTheory.Limits.CompleteLattice.colimitCocone_isColimit_desc, CategoryTheory.Limits.CompleteLattice.finiteColimitCocone_isColimit_desc, SimplicialObject.Splitting.toKaroubiNondegComplexIsoN₁_hom_f_f, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand', CategoryTheory.Limits.coneUnopOfCocone_π, CategoryTheory.Limits.Cotrident.app_one_assoc, CategoryTheory.Limits.Multicofork.ofSigmaCofork_ι_app_left, extend_pt, CategoryTheory.Limits.coconeOfDiagramTerminal_pt, CategoryTheory.Limits.coconeOfCoconeCurry_ι_app, CategoryTheory.PreGaloisCategory.PointedGaloisObject.cocone_app, CategoryTheory.isSeparator_of_isColimit_cofan, CategoryTheory.ComposableArrows.IsComplex.cokerToKer'_fac, CategoryTheory.FinitaryExtensive.isPullback_initial_to, CategoryTheory.Limits.PreservesColimit₂.ι_comp_isoObjConePointsOfIsColimit_inv_assoc, SSet.horn₃₂.desc.multicofork_π_three_assoc, CategoryTheory.PreOneHypercover.forkOfIsColimit_ι_map_inj, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.pullbackGluedIso_inv_snd, CategoryTheory.Comonad.ForgetCreatesColimits'.liftedCocone_ι_app_f, SSet.horn₃₂.desc.multicofork_π_one_assoc, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.pullbackGluedIso_inv_fst, CategoryTheory.Limits.Cocones.precompose_map_hom, CategoryTheory.Limits.colimitCoconeOfUnique_isColimit_desc, CategoryTheory.Limits.MultispanIndex.ofSigmaCoforkFunctor_map_hom, CategoryTheory.Limits.Cofork.IsColimit.π_desc'_assoc, CategoryTheory.Limits.PushoutCocone.isIso_inr_of_epi_of_isColimit, CategoryTheory.Limits.IsColimit.fac_assoc, AlgebraicGeometry.SheafedSpace.isColimit_exists_rep, CategoryTheory.PreOneHypercover.p₂_sigmaOfIsColimit, CategoryTheory.Limits.pushoutCoconeOfRightIso_ι_app_right, CategoryTheory.Limits.CoproductsFromFiniteFiltered.liftToFinsetColimIso_aux, CategoryTheory.Limits.FormalCoproduct.coproductIsoSelf_hom_φ, SimplicialObject.Split.cofan_inj_naturality_symm, CategoryTheory.Presheaf.tautologicalCocone_pt, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.functor_obj, CategoryTheory.Limits.colimit.toOver_pt, CategoryTheory.Limits.colimit.isoColimitCocone_ι_hom, CategoryTheory.Limits.Types.FilteredColimit.isColimit_eq_iff', SimplicialObject.Splitting.cofan_inj_comp_app_assoc, CategoryTheory.Limits.FormalCoproduct.cofanHomEquiv_apply_φ, HomotopicalAlgebra.AttachCells.ofArrowIso_g₁, CategoryTheory.FunctorToTypes.binaryCoproductCocone_pt_obj, CategoryTheory.Limits.colimit.comp_coconePointUniqueUpToIso_inv, CategoryTheory.Functor.mapCoconeMapCocone_inv_hom, TopCat.coconeOfCoconeForget_ι_app, CategoryTheory.Comma.colimitAuxiliaryCocone_ι_app, CategoryTheory.HasLiftingProperty.transfiniteComposition.SqStruct.w₂, CategoryTheory.Sheaf.sheafifyCocone_ι_app_val, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_unitIso_inv_app_hom, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.relativeGluingData_natTrans_app, CategoryTheory.Limits.PushoutCocone.unop_snd, CategoryTheory.Limits.MultispanIndex.parallelPairDiagramOfIsColimit_obj, CategoryTheory.Limits.MultispanIndex.inj_fstSigmaMapOfIsColimit, CategoryTheory.Limits.Concrete.isColimit_rep_eq_of_exists, CategoryTheory.Limits.Cofork.app_one_eq_π, CategoryTheory.PreOneHypercover.p₂_sigmaOfIsColimit_assoc, CategoryTheory.ShortComplex.π_isoOpcyclesOfIsColimit_hom, CategoryTheory.Limits.HasColimit.isoOfNatIso_inv_desc, CategoryTheory.Limits.Sigma.cocone_pt, CategoryTheory.epi_iff_isIso_inr, CategoryTheory.WithInitial.coconeEquiv_unitIso_inv_app_hom_right, SimplicialObject.Splitting.cofan_inj_eq_assoc, CategoryTheory.Monad.ForgetCreatesColimits.liftedCoconeIsColimit_desc_f, underPost_pt, CategoryTheory.Limits.Cofork.op_ι, extensions_app, CategoryTheory.HasLiftingProperty.transfiniteComposition.SqStruct.w₂_assoc, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCoforkOfIsColimit_functor, CategoryTheory.Limits.Cotrident.IsColimit.homIso_apply_coe, CategoryTheory.Limits.Cocones.whiskeringEquivalence_counitIso, CategoryTheory.Limits.coneOfCoconeUnop_pt, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand'_assoc, CategoryTheory.Limits.colimit.pre_eq, CategoryTheory.Limits.CoconeMorphism.map_w, CategoryTheory.Limits.Multicofork.IsColimit.fac, CategoryTheory.Limits.Cocones.extendIso_inv_hom, CategoryTheory.Over.liftCocone_pt, CategoryTheory.Limits.constCocone_pt, AlgebraicGeometry.PresheafedSpace.colimitCocone_pt, CategoryTheory.BinaryCofan.isPullback_initial_to_of_isVanKampen, CategoryTheory.Limits.colimit.ι_desc_app, CategoryTheory.Limits.Cocones.precomposeEquivalence_counitIso, CategoryTheory.Limits.PushoutCocone.unop_fst, CategoryTheory.IsPushout.of_isColimit_cocone, CategoryTheory.IsGrothendieckAbelian.IsPresentable.surjectivity.epi_f, SimplicialObject.Splitting.cofan_inj_epi_naturality, CategoryTheory.Limits.PushoutCocone.op_fst, CategoryTheory.Limits.isCokernelEpiComp_desc, CategoryTheory.Limits.isIso_limit_cocone_parallelPair_of_epi, CategoryTheory.Limits.Types.pushoutCocone_inr_injective_of_isColimit, CategoryTheory.Limits.Cowedge.condition, SSet.range_eq_iSup_of_isColimit, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.comp_homEquiv_symm_assoc, CategoryTheory.Preadditive.coforkOfCokernelCofork_pt, CategoryTheory.Limits.binaryBiconeOfIsSplitMonoOfCokernel_fst, CategoryTheory.Limits.coconeLeftOpOfCone_pt, HomotopicalAlgebra.AttachCells.hm, CategoryTheory.Limits.MonoCoprod.binaryCofan_inr, CategoryTheory.Limits.Types.Pushout.cocone_pt, CategoryTheory.Limits.epi_of_isColimit_cofork, CategoryTheory.Monad.ForgetCreatesColimits.newCocone_ι
unop 📖CompOp
2 mathmath: unop_π, unop_pt
whisker 📖CompOp
21 mathmath: CategoryTheory.Functor.Final.colimitCoconeComp_cocone, whisker_pt, whisker_ι, CategoryTheory.Limits.PushoutCocone.unop_π_app, CategoryTheory.Functor.mapCoconeWhisker_hom_hom, CategoryTheory.Limits.Cocones.whiskering_obj, CategoryTheory.Limits.Cocones.equivalenceOfReindexing_functor_obj, CategoryTheory.Functor.Final.colimitCoconeComp_isColimit, CategoryTheory.Limits.PullbackCone.op_ι_app, CategoryTheory.IsUniversalColimit.whiskerEquivalence, CategoryTheory.Limits.coconeFiberwiseColimitOfCocone_ι_app, CategoryTheory.Limits.colimit.pre_desc_assoc, CategoryTheory.Limits.colimit.pre_desc, CategoryTheory.IsVanKampenColimit.whiskerEquivalence, CategoryTheory.TransfiniteCompositionOfShape.ici_isColimit, CategoryTheory.Limits.Fork.op_ι_app, CategoryTheory.IsVanKampenColimit.whiskerEquivalence_iff, CategoryTheory.Functor.mapCoconeWhisker_inv_hom, CategoryTheory.IsUniversalColimit.whiskerEquivalence_iff, CategoryTheory.Limits.Cocones.whiskering_map_hom, CategoryTheory.Limits.colimit.pre_eq
ι 📖CompOp
321 mathmath: CategoryTheory.Limits.Cocones.precompose_obj_ι, CategoryTheory.MorphismProperty.exists_isPushout_of_isFiltered, CategoryTheory.Monad.ForgetCreatesColimits.commuting, CategoryTheory.Limits.pushoutCoconeOfLeftIso_ι_app_right, CategoryTheory.Limits.Bicone.toCocone_ι_app_mk, CategoryTheory.Limits.Cotrident.ofCocone_ι, CategoryTheory.Limits.colimit.isoColimitCocone_ι_inv, CategoryTheory.Limits.IsColimit.fac, CategoryTheory.Limits.Cone.unop_ι, CategoryTheory.Functor.IsEventuallyConstantFrom.cocone_ι_app, CategoryTheory.Limits.ReflexiveCofork.app_one_eq_π, toOver_ι_app, CategoryTheory.Limits.Multicofork.ofπ_ι_app, CategoryTheory.Functor.mapCocone_ι_app, CategoryTheory.Limits.colimit.cocone_ι, CategoryTheory.IsGrothendieckAbelian.IsPresentable.surjectivity.hf, CategoryTheory.Limits.CoconeMorphism.w, CategoryTheory.Limits.BinaryBicone.ofColimitCocone_inl, CategoryTheory.Limits.PushoutCocone.mk_ι_app_zero, CategoryTheory.Limits.IsColimit.comp_coconePointsIsoOfNatIso_hom_assoc, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_functor_obj_ι_app, CategoryTheory.Functor.isColimitCoconeOfIsLeftKanExtension_desc, whisker_ι, CategoryTheory.Functor.IsEventuallyConstantFrom.isIso_ι_of_isColimit', CategoryTheory.Limits.PushoutCocone.unop_π_app, CategoryTheory.Limits.IndObjectPresentation.extend_ι_app_app, CategoryTheory.Limits.Fork.unop_ι_app_zero, ofCotrident_ι, unop_π, CategoryTheory.Limits.Cofork.ofCocone_ι, CategoryTheory.Limits.colimit.homIso_hom, CategoryTheory.IsGrothendieckAbelian.IsPresentable.surjectivity.F_map, CategoryTheory.FinitaryExtensive.mono_ι, CategoryTheory.Limits.IsColimit.homIso_hom, underPost_ι_app, CategoryTheory.Limits.Cotrident.π_eq_app_one, toCostructuredArrow_map, CategoryTheory.Limits.Types.pUnitCocone_ι_app, CategoryTheory.Limits.Cocones.eta_inv_hom, SemiRingCat.FilteredColimits.colimitCoconeIsColimit.descMonoidHom_quotMk, CategoryTheory.Limits.IsColimit.mono_ι_app_of_isFiltered, CategoryTheory.Limits.PushoutCocone.isoMk_inv_hom, LightProfinite.Extend.cocone_ι_app, CategoryTheory.Limits.IsColimit.ι_map, CategoryTheory.Limits.Types.binaryCoproductCocone_ι_app, w_assoc, ModuleCat.HasColimit.colimitCocone_ι_app, CategoryTheory.Limits.Cofork.unop_π_app_one, AddCommGrpCat.Colimits.colimitCocone_ι_app, TopCat.sigmaCofan_ι_app, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.cocone_ι_transitionMap, CategoryTheory.Comonad.ForgetCreatesColimits'.newCocone_ι_app, fromCostructuredArrow_ι_app, CategoryTheory.Limits.Types.FilteredColimit.colimit_eq_iff_aux, CategoryTheory.Functor.Final.extendCocone_obj_ι_app, CategoryTheory.MorphismProperty.TransfiniteCompositionOfShape.ofComposableArrows_isColimit_desc, CategoryTheory.WithInitial.coconeEquiv_inverse_obj_pt_hom, CategoryTheory.Limits.BinaryBicone.toCocone_ι_app_right, CategoryTheory.Limits.colimit.toOver_ι_app, CategoryTheory.Limits.Types.FilteredColimit.isColimit_eq_iff, CategoryTheory.Limits.Multicofork.snd_app_right_assoc, CategoryTheory.Limits.coneOfCoconeRightOp_π, CategoryTheory.Limits.IsColimit.comp_coconePointUniqueUpToIso_inv, CategoryTheory.HasLiftingProperty.transfiniteComposition.hasLiftingProperty_ι_app_bot, CategoryTheory.Limits.Types.FilteredColimit.jointly_surjective_of_isColimit₂, CategoryTheory.MorphismProperty.colimitsOfShape.of_isColimit, CategoryTheory.Limits.CoproductsFromFiniteFiltered.liftToFinsetColimitCocone_isColimit_desc, CategoryTheory.Limits.IsColimit.ι_map_assoc, CategoryTheory.Limits.Concrete.isColimit_rep_eq_iff_exists, CategoryTheory.Limits.IsColimit.homEquiv_apply, AlgebraicGeometry.Scheme.Cover.coconeOfLocallyDirected_ι, CategoryTheory.Limits.PullbackCone.op_ι_app, CategoryTheory.Limits.IsColimit.isIso_colimMap_ι, CategoryTheory.Limits.Fork.unop_ι_app_one, CategoryTheory.Limits.pointwiseCocone_ι_app_app, CategoryTheory.Limits.Types.Colimit.ι_desc_apply', PartOrdEmb.Limits.CoconePt.fac_apply, CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_left, CategoryTheory.Coyoneda.colimitCocone_ι_app, AlgebraicGeometry.PresheafedSpace.colimitCocone_ι_app_base, CategoryTheory.Limits.colimit.comp_coconePointUniqueUpToIso_inv_assoc, CategoryTheory.Limits.CompleteLattice.finiteColimitCocone_cocone_ι_app, CategoryTheory.Limits.CoconeMorphism.w_assoc, CategoryTheory.Limits.coneOfCoconeLeftOp_π_app, CategoryTheory.Limits.coneOfCoconeUnop_π, CategoryTheory.WithInitial.coconeEquiv_functor_obj_ι_app_star, CategoryTheory.Limits.IsColimit.comp_coconePointUniqueUpToIso_inv_assoc, CategoryTheory.Limits.CompleteLattice.colimitCocone_cocone_ι_app, CategoryTheory.Limits.colimit.comp_coconePointUniqueUpToIso_hom_assoc, CategoryTheory.Limits.PushoutCocone.ofCocone_ι, CategoryTheory.IsGrothendieckAbelian.IsPresentable.surjectivity.isIso_f, CategoryTheory.Limits.CoproductsFromFiniteFiltered.liftToFinsetColimitCocone_cocone_ι_app, PrincipalSeg.cocone_ι_app, CategoryTheory.Limits.Concrete.isColimit_exists_rep, ModuleCat.directLimitIsColimit_desc, CategoryTheory.Limits.IsColimit.comp_coconePointsIsoOfNatIso_hom, LightCondensed.isColimitLocallyConstantPresheafDiagram_desc_apply, SemiRingCat.FilteredColimits.colimitCoconeIsColimit.descAddMonoidHom_quotMk, CategoryTheory.Limits.PreservesColimit₂.map_ι_comp_isoObjConePointsOfIsColimit_hom, CategoryTheory.Limits.Multicofork.π_eq_app_right, CategoryTheory.Limits.coconePointwiseProduct_ι_app, CategoryTheory.Limits.Cofork.op_π_app_zero, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.fst_gluedCocone_ι, PartOrdEmb.Limits.cocone_ι_app, CategoryTheory.Limits.PushoutCocone.condition_zero, Condensed.isColimitLocallyConstantPresheaf_desc_apply, toStructuredArrow_obj, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.transitionCocone_ι_app, CategoryTheory.Limits.PushoutCocone.ι_app_left, CategoryTheory.WithInitial.coconeEquiv_functor_map_hom, CategoryTheory.FinitaryPreExtensive.hasPullbacks_of_is_coproduct, CategoryTheory.Limits.pushoutCoconeOfLeftIso_ι_app_left, CategoryTheory.Limits.IndObjectPresentation.yoneda_isColimit_desc, CategoryTheory.isPullback_initial_to_of_cofan_isVanKampen, CategoryTheory.Limits.Bicone.ofColimitCocone_ι, CategoryTheory.Limits.Cofan.mk_ι_app, CategoryTheory.Limits.PushoutCocone.mk_ι_app, CategoryTheory.Limits.PreservesColimit₂.map_ι_comp_isoObjConePointsOfIsColimit_hom_assoc, CategoryTheory.Limits.PushoutCocone.ι_app_right, CategoryTheory.Functor.coconeOfIsLeftKanExtension_ι, CategoryTheory.Limits.coneRightOpOfCocone_π, TopCat.isClosed_iff_of_isColimit, CategoryTheory.Comma.coconeOfPreserves_ι_app_right, CategoryTheory.Limits.coconeOfConeRightOp_ι, ofCofork_ι, CategoryTheory.Pairwise.cocone_ι_app, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.fst_gluedCocone_ι_assoc, CategoryTheory.WithInitial.coconeEquiv_inverse_obj_ι_app_right, CategoryTheory.WithInitial.coconeEquiv_functor_obj_ι_app_of, CategoryTheory.Limits.colimit.isoColimitCocone_ι_inv_assoc, CategoryTheory.Limits.BinaryCofan.ι_app_right, CategoryTheory.Functor.Accessible.Limits.isColimitMapCocone.surjective, CategoryTheory.Functor.coconeTypesEquiv_symm_apply_ι, CategoryTheory.MorphismProperty.PreIndSpreads.exists_isPushout, CategoryTheory.Limits.Multicofork.map_ι_app, TopCat.coinduced_of_isColimit, toCostructuredArrowCocone_ι_app, CategoryTheory.Limits.PushoutCocone.op_π_app, CategoryTheory.Limits.Cofork.coequalizer_ext, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.cocone_ι_transitionMap_assoc, isColimit_iff_isIso_colimMap_ι, CategoryTheory.Functor.Final.extendCocone_obj_ι_app', CategoryTheory.HasLiftingProperty.transfiniteComposition.SqStruct.w, CategoryTheory.Limits.PushoutCocone.coequalizer_ext, CategoryTheory.Limits.Cocones.functoriality_obj_ι_app, CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_right, CategoryTheory.Limits.PullbackCone.unop_ι_app, CategoryTheory.SmallObject.SuccStruct.arrowMap_ofCocone_to_top, AddCommGrpCat.Colimits.toCocone_ι_app, CategoryTheory.Limits.coconeOfDiagramTerminal_ι_app, AddCommGrpCat.Colimits.Quot.ι_desc, Preorder.coconeOfUpperBound_ι_app, CategoryTheory.Limits.asEmptyCocone_ι_app, skyscraperPresheafCocone_ι_app, CategoryTheory.Limits.IndObjectPresentation.toCostructuredArrow_obj_hom, CategoryTheory.IsFinitelyPresentable.exists_hom_of_isColimit, CategoryTheory.Comma.coconeOfPreserves_ι_app_left, CategoryTheory.Limits.coconeOfDiagramInitial_ι_app, CategoryTheory.Limits.coconeFiberwiseColimitOfCocone_ι_app, CategoryTheory.HasLiftingProperty.transfiniteComposition.SqStruct.sq, CategoryTheory.Coyoneda.colimitCoconeIsColimit_desc, CategoryTheory.Limits.pushoutCoconeOfRightIso_ι_app_left, CategoryTheory.Limits.colimit.ι_desc_apply, CategoryTheory.extendCofan_ι_app, CategoryTheory.Limits.coneLeftOpOfCocone_π_app, TopCat.continuous_iff_of_isColimit, CategoryTheory.Limits.Types.Colimit.ι_desc_apply, w, CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_right_assoc, CategoryTheory.Limits.WidePushoutShape.mkCocone_ι_app, CategoryTheory.SmallObject.SuccStruct.ofCocone_map_to_top, CategoryTheory.Limits.colimit.ι_desc, CategoryTheory.Limits.Types.jointly_surjective_of_isColimit, CategoryTheory.Limits.Multicofork.fst_app_right, CategoryTheory.Limits.Fork.op_ι_app, CategoryTheory.Limits.Bicone.toCocone_ι_app, CategoryTheory.Limits.Cocones.eta_hom_hom, CategoryTheory.Limits.BinaryBicone.ofColimitCocone_inr, CategoryTheory.SmallObject.SuccStruct.transfiniteCompositionOfShapeιIteration_incl, CategoryTheory.Functor.coconeTypesEquiv_apply_ι_app, w_apply, CategoryTheory.Limits.pushoutCoconeOfLeftIso_ι_app_none, CategoryTheory.Limits.IsColimit.comp_coconePointUniqueUpToIso_hom, HasCardinalLT.Set.cocone_ι_app, CategoryTheory.Limits.Fork.op_ι_app_one, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_inverse_obj_ι_app, CategoryTheory.Presheaf.coconeOfRepresentable_naturality, CategoryTheory.Functor.mapCocone₂_ι_app, CategoryTheory.Limits.Cofork.unop_π_app_zero, CategoryTheory.Limits.IsColimit.hom_desc, CategoryTheory.Functor.Final.colimit_cocone_comp_aux, CategoryTheory.FunctorToTypes.jointly_surjective, HomologicalComplex.coconeOfHasColimitEval_ι_app_f, CategoryTheory.Limits.Cotrident.app_one, SSet.iSup_range_eq_top_of_isColimit, ModuleCat.FilteredColimits.ι_colimitDesc, ofPushoutCocone_ι, CategoryTheory.Limits.IsColimit.comp_coconePointsIsoOfNatIso_inv_assoc, CategoryTheory.Limits.Cotrident.coequalizer_ext, CategoryTheory.Limits.IndObjectPresentation.ofCocone_ι, CategoryTheory.Limits.colimit.ι_coconeMorphism, CategoryTheory.Monad.beckAlgebraCofork_ι_app, CategoryTheory.Limits.colimit.comp_coconePointUniqueUpToIso_hom, CategoryTheory.Limits.coconeLeftOpOfCone_ι_app, CategoryTheory.Limits.PreservesColimit₂.ι_comp_isoObjConePointsOfIsColimit_inv, CategoryTheory.Limits.colimit.ι_desc_assoc, CategoryTheory.Limits.coconeRightOpOfCone_ι, CategoryTheory.Limits.colimit.ι_desc_app_assoc, toCostructuredArrow_obj, CategoryTheory.WithInitial.coconeEquiv_inverse_map_hom_right, Condensed.isColimitLocallyConstantPresheafDiagram_desc_apply, CategoryTheory.Limits.Types.jointly_surjective, CategoryTheory.Over.liftCocone_ι_app, CategoryTheory.Limits.CoproductsFromFiniteFiltered.finiteSubcoproductsCocone_ι_app, CategoryTheory.Limits.wideCoequalizer.cotrident_ι_app_one, ModuleCat.directLimitCocone_ι_app, CategoryTheory.Limits.IsColimit.ι_smul, Profinite.Extend.cocone_ι_app, CategoryTheory.Limits.BinaryCofan.ι_app_left, CategoryTheory.Limits.BinaryBicone.toCocone_ι_app_left, CategoryTheory.Limits.PushoutCocone.mk_ι_app_right, CategoryTheory.Limits.Multicofork.snd_app_right, CategoryTheory.Limits.colimit.isoColimitCocone_ι_hom_assoc, CategoryTheory.MonoOver.commSqOfHasStrongEpiMonoFactorisation, CategoryTheory.Limits.Cocones.functoriality_map_hom, CategoryTheory.Limits.combineCocones_ι_app_app, CategoryTheory.Limits.IsColimit.comp_coconePointUniqueUpToIso_hom_assoc, TopCat.nonempty_isColimit_iff_eq_coinduced, CategoryTheory.Monad.ForgetCreatesColimits.liftedCocone_ι_app_f, CategoryTheory.IsGrothendieckAbelian.IsPresentable.surjectivity, CategoryTheory.HasLiftingProperty.transfiniteComposition.SqStruct.w_assoc, CategoryTheory.FunctorToTypes.binaryCoproductCocone_ι_app, CategoryTheory.Limits.Sigma.cocone_ι, CategoryTheory.Limits.CoconeMorphism.map_w_assoc, CategoryTheory.IsCardinalPresentable.exists_hom_of_isColimit, CategoryTheory.Limits.IsColimit.isIso_ι_app_of_isTerminal, CategoryTheory.IsGrothendieckAbelian.IsPresentable.surjectivity.F_obj, CategoryTheory.Limits.coconeOfConeLeftOp_ι_app, AlgebraicGeometry.Scheme.AffineZariskiSite.cocone_ι_app, CategoryTheory.Limits.IsColimit.comp_coconePointsIsoOfNatIso_inv, op_π, CategoryTheory.Limits.coconeOfConeUnop_ι, CategoryTheory.Limits.epi_of_isColimit_parallelFamily, CategoryTheory.Limits.PushoutCocone.isoMk_hom_hom, LightCondensed.isColimitLocallyConstantPresheaf_desc_apply, CategoryTheory.Limits.FintypeCat.jointly_surjective, CategoryTheory.Limits.Fork.op_ι_app_zero, CategoryTheory.Limits.coconeOfCoconeUncurry_ι_app, CategoryTheory.Limits.pushoutCoconeOfRightIso_ι_app_none, CategoryTheory.Presheaf.tautologicalCocone_ι_app, CategoryTheory.Presheaf.tautologicalCocone'_ι_app, CategoryTheory.Limits.PushoutCocone.mk_ι_app_left, CategoryTheory.mono_of_cofan_isVanKampen, CategoryTheory.Presheaf.coconeOfRepresentable_ι_app, CategoryTheory.Limits.coconeOfCoconeFiberwiseColimit_ι_app, CategoryTheory.Limits.Cofork.op_π_app_one, CategoryTheory.Limits.IsColimit.ι_app_homEquiv_symm_assoc, skyscraperPresheafCoconeOfSpecializes_ι_app, CategoryTheory.Limits.Types.Pushout.cocone_ι_app, CategoryTheory.Over.forgetCocone_ι_app, CategoryTheory.Sheaf.sheafifyCocone_ι_app_val_assoc, extend_ι, toStructuredArrow_map, TopCat.isOpen_iff_of_isColimit, CategoryTheory.Limits.Multicoequalizer.multicofork_ι_app_right, CategoryTheory.Limits.coequalizer.cofork_ι_app_one, CategoryTheory.Limits.combineCocones_pt_map, CategoryTheory.Limits.Cotrident.ofπ_ι_app, CategoryTheory.Functor.LeftExtension.coconeAt_ι_app, CategoryTheory.Limits.coconeOfIsSplitEpi_ι_app, PresheafOfModules.colimitCocone_ι_app_app, CategoryTheory.Limits.CoproductsFromFiniteFiltered.finiteSubcoproductsCocone_ι_app_eq_sum, CategoryTheory.SmallObject.coconeOfLE_ι_app, CategoryTheory.Limits.colimitCoconeOfUnique_cocone_ι, CategoryTheory.Limits.IsColimit.ι_app_homEquiv_symm, CategoryTheory.Monad.MonadicityInternal.counitCofork_ι_app, CategoryTheory.Limits.CokernelCofork.π_eq_zero, CategoryTheory.Functor.Final.extendCocone_map_hom, CategoryTheory.Limits.coconeUnopOfCone_ι, CategoryTheory.Functor.IsEventuallyConstantFrom.isIso_ι_of_isColimit, AlgebraicGeometry.PresheafedSpace.ColimitCoconeIsColimit.desc_fac, CategoryTheory.Limits.Cofork.ofπ_ι_app, ModuleCat.FilteredColimits.ι_colimitDesc_assoc, CategoryTheory.Limits.coneUnopOfCocone_π, CategoryTheory.Limits.Cotrident.app_one_assoc, CategoryTheory.Limits.Multicofork.ofSigmaCofork_ι_app_left, CategoryTheory.Limits.coconeOfCoconeCurry_ι_app, CategoryTheory.PreGaloisCategory.PointedGaloisObject.cocone_app, CategoryTheory.FinitaryExtensive.isPullback_initial_to, CategoryTheory.Limits.PreservesColimit₂.ι_comp_isoObjConePointsOfIsColimit_inv_assoc, CategoryTheory.Comonad.ForgetCreatesColimits'.liftedCocone_ι_app_f, CategoryTheory.Limits.Cocones.precompose_map_hom, CategoryTheory.Limits.colimitCoconeOfUnique_isColimit_desc, CategoryTheory.Limits.IsColimit.fac_assoc, AlgebraicGeometry.SheafedSpace.isColimit_exists_rep, CategoryTheory.Limits.pushoutCoconeOfRightIso_ι_app_right, CategoryTheory.Limits.colimit.isoColimitCocone_ι_hom, CategoryTheory.Limits.Types.FilteredColimit.isColimit_eq_iff', fromStructuredArrow_obj_ι, CategoryTheory.Limits.colimit.comp_coconePointUniqueUpToIso_inv, TopCat.coconeOfCoconeForget_ι_app, CategoryTheory.Comma.colimitAuxiliaryCocone_ι_app, CategoryTheory.HasLiftingProperty.transfiniteComposition.SqStruct.w₂, CategoryTheory.Sheaf.sheafifyCocone_ι_app_val, CategoryTheory.Limits.Concrete.isColimit_rep_eq_of_exists, CategoryTheory.Limits.Cofork.app_one_eq_π, CategoryTheory.Limits.constCocone_ι, underPost_pt, CommRingCat.coproductCocone_ι, extensions_app, AlgebraicGeometry.PresheafedSpace.colimitCocone_ι_app_c, CategoryTheory.HasLiftingProperty.transfiniteComposition.SqStruct.w₂_assoc, CategoryTheory.Limits.CoconeMorphism.map_w, CategoryTheory.Over.liftCocone_pt, CategoryTheory.Limits.colimit.ι_desc_app, CategoryTheory.IsPushout.of_isColimit_cocone, CategoryTheory.IsGrothendieckAbelian.IsPresentable.surjectivity.epi_f, CategoryTheory.Functor.costructuredArrowMapCocone_ι_app, SSet.range_eq_iSup_of_isColimit, CategoryTheory.Limits.Cone.op_ι, CategoryTheory.Monad.ForgetCreatesColimits.newCocone_ι

Theorems

NameKindAssumesProvesValidatesDepends On
category_comp_hom 📖mathematicalCategoryTheory.Limits.CoconeMorphism.hom
CategoryTheory.CategoryStruct.comp
CategoryTheory.Limits.Cocone
CategoryTheory.Category.toCategoryStruct
category
pt
category_id_hom 📖mathematicalCategoryTheory.Limits.CoconeMorphism.hom
CategoryTheory.CategoryStruct.id
CategoryTheory.Limits.Cocone
CategoryTheory.Category.toCategoryStruct
category
pt
extend_pt 📖mathematicalpt
extend
extend_ι 📖mathematicalι
extend
CategoryTheory.NatTrans.app
CategoryTheory.types
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.coyoneda
Opposite.op
pt
CategoryTheory.uliftFunctor
CategoryTheory.Functor.cocones
extensions
extensions_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.types
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.coyoneda
Opposite.op
pt
CategoryTheory.uliftFunctor
CategoryTheory.Functor.cocones
extensions
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Opposite.unop
CategoryTheory.Functor.const
ι
CategoryTheory.Functor.map
op_pt 📖mathematicalCategoryTheory.Limits.Cone.pt
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
op
Opposite.op
pt
op_π 📖mathematicalCategoryTheory.Limits.Cone.π
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
op
CategoryTheory.NatTrans.op
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
pt
ι
unop_pt 📖mathematicalCategoryTheory.Limits.Cone.pt
unop
Opposite.unop
pt
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
unop_π 📖mathematicalCategoryTheory.Limits.Cone.π
unop
CategoryTheory.NatTrans.removeOp
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
Opposite.unop
pt
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
ι
w 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
pt
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
ι
CategoryTheory.NatTrans.naturality
CategoryTheory.Category.comp_id
w_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
pt
CategoryTheory.NatTrans.app
ι
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
w
whisker_pt 📖mathematicalpt
CategoryTheory.Functor.comp
whisker
whisker_ι 📖mathematicalι
CategoryTheory.Functor.comp
whisker
CategoryTheory.Functor.whiskerLeft
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
pt

CategoryTheory.Limits.CoconeMorphism

Definitions

NameCategoryTheorems
hom 📖CompOp
105 mathmath: CategoryTheory.Functor.LeftExtension.coconeAtFunctor_map_hom, CategoryTheory.Limits.Cocone.category_id_hom, CategoryTheory.Limits.coconeEquivalenceOpConeOp_unitIso, CategoryTheory.Limits.Fork.π_comp_hom, w, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_counitIso_inv_app_hom, CategoryTheory.Functor.mapCoconePrecomposeEquivalenceFunctor_inv_hom, CategoryTheory.Limits.Cocones.ext_inv_hom, CategoryTheory.Functor.mapCoconePrecompose_inv_hom, CategoryTheory.Limits.Multicofork.π_comp_hom_assoc, CategoryTheory.Functor.mapCoconeWhisker_hom_hom, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_unitIso, CategoryTheory.WithInitial.isColimitEquiv_symm_apply_desc, CategoryTheory.Limits.Cocones.eta_inv_hom, CategoryTheory.Limits.instIsIsoHomHomCocone, CategoryTheory.Limits.PushoutCocone.isoMk_inv_hom, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_counitIso_hom_app_hom, CategoryTheory.Functor.LeftExtension.coconeAtWhiskerRightIso_inv_hom, hom_inv_id_assoc, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_inverse_map_hom, CategoryTheory.Limits.IsColimit.mkCoconeMorphism_desc, CategoryTheory.Limits.Cocone.category_comp_hom, CategoryTheory.Limits.IsColimit.ofCoconeEquiv_symm_apply_desc, CategoryTheory.Limits.Cofan.ext_inv_hom, CategoryTheory.Limits.Cocones.extendId_hom_hom, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_functor_map_hom, CategoryTheory.Limits.DiagramOfCocones.coconePoints_map, CategoryTheory.WithInitial.coconeEquiv_counitIso_inv_app_hom, w_assoc, CategoryTheory.Adjunction.functorialityUnit_app_hom, CategoryTheory.Limits.Multicofork.ext_hom_hom, CategoryTheory.WithInitial.coconeEquiv_unitIso_hom_app_hom_right, CategoryTheory.Functor.mapCoconeMapCocone_hom_hom, CategoryTheory.Limits.PushoutCocone.eta_inv_hom, CategoryTheory.Limits.BinaryCofan.ext_hom_hom, CategoryTheory.Functor.functorialityCompPrecompose_hom_app_hom, CategoryTheory.WithInitial.coconeEquiv_functor_map_hom, CategoryTheory.Limits.DiagramOfCocones.comp, CategoryTheory.Limits.Cocones.extendComp_hom_hom, CategoryTheory.Limits.Cofan.ext_hom_hom, CategoryTheory.Limits.Cowedge.ext_hom_hom, CategoryTheory.Functor.precomposeWhiskerLeftMapCocone_hom_hom, CategoryTheory.Limits.Cofork.mkHom_hom, CategoryTheory.Limits.DiagramOfCocones.mkOfHasColimits_map_hom, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_functor_map_hom, CategoryTheory.Functor.precomposeWhiskerLeftMapCocone_inv_hom, CategoryTheory.Functor.mapCoconePrecomposeEquivalenceFunctor_hom_hom, CategoryTheory.Adjunction.functorialityCounit_app_hom, CategoryTheory.Limits.Fork.π_comp_hom_assoc, CategoryTheory.Functor.LeftExtension.coconeAtWhiskerRightIso_hom_hom, CategoryTheory.Limits.Multicofork.isoOfπ_hom_hom, CategoryTheory.Limits.Cocones.extend_hom, CategoryTheory.Limits.Cocones.extendComp_inv_hom, CategoryTheory.Limits.Cocones.eta_hom_hom, CategoryTheory.Limits.IsColimit.ofCoconeEquiv_apply_desc, CategoryTheory.Functor.mapCoconeWhisker_inv_hom, CategoryTheory.Limits.Cocone.fromStructuredArrow_map_hom, hom_inv_id, CategoryTheory.Limits.IsColimit.descCoconeMorphism_hom, CategoryTheory.Limits.Multicofork.ext_inv_hom, CategoryTheory.Limits.colimit.ι_coconeMorphism, CategoryTheory.Limits.Cowedge.ext_inv_hom, CategoryTheory.WithInitial.coconeEquiv_inverse_map_hom_right, CategoryTheory.Limits.Cocone.mapCoconeToOver_inv_hom, CategoryTheory.Limits.Cocones.extendIso_hom_hom, CategoryTheory.Functor.mapConeOp_inv_hom, CategoryTheory.Limits.Cocones.functoriality_map_hom, CategoryTheory.Limits.colimit.coconeMorphism_hom, ext_iff, inv_hom_id, CategoryTheory.WithInitial.coconeEquiv_counitIso_hom_app_hom, CategoryTheory.Functor.functorialityCompPrecompose_inv_app_hom, CategoryTheory.Limits.DiagramOfCocones.id, CategoryTheory.Limits.IsColimit.ofIsoColimit_desc, map_w_assoc, CategoryTheory.Limits.Cocones.ext_hom_hom, CategoryTheory.Limits.PushoutCocone.isoMk_hom_hom, CategoryTheory.Limits.MultispanIndex.toSigmaCoforkFunctor_map_hom, CategoryTheory.Limits.coconeEquivalenceOpConeOp_counitIso, CategoryTheory.Limits.Cotrident.mkHom_hom, CategoryTheory.Limits.Cocones.extendId_inv_hom, CategoryTheory.Functor.mapCoconePrecompose_hom_hom, CategoryTheory.Functor.mapConeOp_hom_hom, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_inverse_map_hom, CategoryTheory.Limits.Cocones.forget_map, CategoryTheory.Limits.Cocone.toStructuredArrow_map, CategoryTheory.Limits.PushoutCocone.eta_hom_hom, CategoryTheory.Limits.Multicofork.isoOfπ_inv_hom, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_counitIso, CategoryTheory.Limits.coconeEquivalenceOpConeOp_inverse_map_hom, CategoryTheory.Limits.instIsIsoHomInvCocone, CategoryTheory.Functor.Final.extendCocone_map_hom, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_unitIso_hom_app_hom, CategoryTheory.Limits.Cocone.mapCoconeToOver_hom_hom, CategoryTheory.Limits.Multicofork.π_comp_hom, inv_hom_id_assoc, CategoryTheory.Limits.coconeEquivalenceOpConeOp_functor_map, CategoryTheory.Limits.Cocones.precompose_map_hom, CategoryTheory.Limits.MultispanIndex.ofSigmaCoforkFunctor_map_hom, CategoryTheory.Functor.mapCoconeMapCocone_inv_hom, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_unitIso_inv_app_hom, CategoryTheory.Limits.Cocones.whiskering_map_hom, CategoryTheory.WithInitial.coconeEquiv_unitIso_inv_app_hom_right, map_w, CategoryTheory.Limits.Cocones.extendIso_inv_hom

Theorems

NameKindAssumesProvesValidatesDepends On
ext 📖hom
ext_iff 📖mathematicalhomext
hom_inv_id 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cocone.pt
hom
CategoryTheory.Iso.hom
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
CategoryTheory.Iso.inv
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.hom_inv_id
hom_inv_id_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cocone.pt
hom
CategoryTheory.Iso.hom
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
CategoryTheory.Iso.inv
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
hom_inv_id
inv_hom_id 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cocone.pt
hom
CategoryTheory.Iso.inv
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
CategoryTheory.Iso.hom
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.inv_hom_id
inv_hom_id_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cocone.pt
hom
CategoryTheory.Iso.inv
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
CategoryTheory.Iso.hom
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
inv_hom_id
map_w 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ι
hom
w
map_w_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ι
hom
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_w
w 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ι
hom
w_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ι
hom
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
w

CategoryTheory.Limits.Cocones

Definitions

NameCategoryTheorems
equivalenceOfReindexing 📖CompOp
3 mathmath: equivalenceOfReindexing_functor_obj, CategoryTheory.Limits.IsColimit.coconePointsIsoOfEquivalence_hom, CategoryTheory.Limits.IsColimit.coconePointsIsoOfEquivalence_inv
eta 📖CompOp
3 mathmath: eta_inv_hom, CategoryTheory.Limits.Cocone.equivStructuredArrow_unitIso, eta_hom_hom
ext 📖CompOp
15 mathmath: CategoryTheory.Limits.coconeEquivalenceOpConeOp_unitIso, ext_inv_hom, CategoryTheory.Functor.Final.coconesEquiv_unitIso, whiskeringEquivalence_unitIso, precomposeEquivalence_unitIso, CategoryTheory.TransfiniteCompositionOfShape.map_isColimit, SheafOfModules.Presentation.map_relations_I, functorialityEquivalence_counitIso, CategoryTheory.Functor.Final.coconesEquiv_counitIso, CategoryTheory.TransfiniteCompositionOfShape.ofArrowIso_isColimit, ext_hom_hom, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCoforkOfIsColimit_unitIso, whiskeringEquivalence_counitIso, functorialityEquivalence_unitIso, precomposeEquivalence_counitIso
extend 📖CompOp
2 mathmath: extend_hom, instIsIsoCoconeExtend
extendComp 📖CompOp
2 mathmath: extendComp_hom_hom, extendComp_inv_hom
extendId 📖CompOp
2 mathmath: extendId_hom_hom, extendId_inv_hom
extendIso 📖CompOp
2 mathmath: extendIso_hom_hom, extendIso_inv_hom
forget 📖CompOp
2 mathmath: forget_obj, forget_map
functoriality 📖CompOp
16 mathmath: functoriality_obj_pt, CategoryTheory.Adjunction.functorialityUnit_app_hom, CategoryTheory.Functor.functorialityCompPrecompose_hom_app_hom, reflects_cocone_isomorphism, CategoryTheory.Functor.precomposeWhiskerLeftMapCocone_hom_hom, CategoryTheory.Functor.precomposeWhiskerLeftMapCocone_inv_hom, CategoryTheory.Adjunction.functorialityCounit_app_hom, functoriality_obj_ι_app, functorialityEquivalence_counitIso, functoriality_faithful, functoriality_full, functoriality_map_hom, CategoryTheory.Functor.functorialityCompPrecompose_inv_app_hom, functorialityEquivalence_inverse, functorialityEquivalence_functor, functorialityEquivalence_unitIso
functorialityCompFunctoriality 📖CompOp
functorialityEquivalence 📖CompOp
4 mathmath: functorialityEquivalence_counitIso, functorialityEquivalence_inverse, functorialityEquivalence_functor, functorialityEquivalence_unitIso
precompose 📖CompOp
35 mathmath: precompose_obj_ι, CategoryTheory.Functor.mapCoconePrecompose_inv_hom, CategoryTheory.Limits.PushoutCocone.unop_π_app, precomposeEquivalence_functor, whiskeringEquivalence_unitIso, whiskeringEquivalence_inverse, CategoryTheory.Limits.PushoutCocone.isoMk_inv_hom, CategoryTheory.Limits.colimit.map_desc, precompose_obj_pt, precomposeEquivalence_unitIso, equivalenceOfReindexing_functor_obj, CategoryTheory.IsUniversalColimit.precompose_isIso, CategoryTheory.Limits.HasColimit.isoOfNatIso_inv_desc_assoc, CategoryTheory.Limits.HasColimit.isoOfNatIso_hom_desc, CategoryTheory.Limits.DiagramOfCocones.coconePoints_map, CategoryTheory.Functor.functorialityCompPrecompose_hom_app_hom, CategoryTheory.IsVanKampenColimit.precompose_isIso, CategoryTheory.Limits.DiagramOfCocones.comp, CategoryTheory.Limits.Cofork.π_precompose, CategoryTheory.Functor.precomposeWhiskerLeftMapCocone_hom_hom, CategoryTheory.Limits.DiagramOfCocones.mkOfHasColimits_map_hom, CategoryTheory.Functor.precomposeWhiskerLeftMapCocone_inv_hom, CategoryTheory.IsVanKampenColimit.precompose_isIso_iff, SheafOfModules.Presentation.map_relations_I, CategoryTheory.Limits.HasColimit.isoOfNatIso_hom_desc_assoc, CategoryTheory.Limits.colimit.map_desc_assoc, CategoryTheory.Functor.functorialityCompPrecompose_inv_app_hom, CategoryTheory.Limits.DiagramOfCocones.id, CategoryTheory.Limits.PushoutCocone.isoMk_hom_hom, precomposeEquivalence_inverse, CategoryTheory.Functor.mapCoconePrecompose_hom_hom, precompose_map_hom, CategoryTheory.Limits.HasColimit.isoOfNatIso_inv_desc, whiskeringEquivalence_counitIso, precomposeEquivalence_counitIso
precomposeComp 📖CompOp
precomposeEquivalence 📖CompOp
9 mathmath: CategoryTheory.Functor.mapCoconePrecomposeEquivalenceFunctor_inv_hom, precomposeEquivalence_functor, precomposeEquivalence_unitIso, CategoryTheory.Functor.mapCoconePrecomposeEquivalenceFunctor_hom_hom, functorialityEquivalence_counitIso, precomposeEquivalence_inverse, functorialityEquivalence_inverse, functorialityEquivalence_unitIso, precomposeEquivalence_counitIso
precomposeId 📖CompOp
whiskering 📖CompOp
9 mathmath: CategoryTheory.Functor.Final.coconesEquiv_unitIso, whiskeringEquivalence_unitIso, whiskeringEquivalence_inverse, whiskering_obj, whiskeringEquivalence_functor, CategoryTheory.Functor.Final.coconesEquiv_counitIso, whiskering_map_hom, whiskeringEquivalence_counitIso, CategoryTheory.Functor.Final.coconesEquiv_inverse
whiskeringEquivalence 📖CompOp
4 mathmath: whiskeringEquivalence_unitIso, whiskeringEquivalence_inverse, whiskeringEquivalence_functor, whiskeringEquivalence_counitIso

Theorems

NameKindAssumesProvesValidatesDepends On
cocone_iso_of_hom_iso 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
CategoryTheory.Iso.comp_inv_eq
CategoryTheory.Limits.CoconeMorphism.w
CategoryTheory.Limits.CoconeMorphism.ext
CategoryTheory.IsIso.hom_inv_id
CategoryTheory.IsIso.inv_hom_id
equivalenceOfReindexing_functor_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
CategoryTheory.Equivalence.functor
equivalenceOfReindexing
CategoryTheory.Functor.comp
precompose
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.Cocone.whisker
eta_hom_hom 📖mathematicalCategoryTheory.Limits.CoconeMorphism.hom
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.Cocone.ι
CategoryTheory.Iso.hom
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
eta
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
eta_inv_hom 📖mathematicalCategoryTheory.Limits.CoconeMorphism.hom
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.Cocone.ι
CategoryTheory.Iso.inv
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
eta
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
ext_hom_hom 📖mathematicalCategoryTheory.Limits.CoconeMorphism.hom
CategoryTheory.Iso.hom
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
ext
CategoryTheory.Limits.Cocone.pt
ext_inv_hom 📖mathematicalCategoryTheory.Limits.CoconeMorphism.hom
CategoryTheory.Iso.inv
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
ext
CategoryTheory.Limits.Cocone.pt
extendComp_hom_hom 📖mathematicalCategoryTheory.Limits.CoconeMorphism.hom
CategoryTheory.Limits.Cocone.extend
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Iso.hom
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
extendComp
CategoryTheory.CategoryStruct.id
extendComp_inv_hom 📖mathematicalCategoryTheory.Limits.CoconeMorphism.hom
CategoryTheory.Limits.Cocone.extend
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Iso.inv
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
extendComp
CategoryTheory.CategoryStruct.id
extendId_hom_hom 📖mathematicalCategoryTheory.Limits.CoconeMorphism.hom
CategoryTheory.Limits.Cocone.extend
CategoryTheory.Limits.Cocone.pt
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
extendId
extendId_inv_hom 📖mathematicalCategoryTheory.Limits.CoconeMorphism.hom
CategoryTheory.Limits.Cocone.extend
CategoryTheory.Limits.Cocone.pt
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.inv
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
extendId
extendIso_hom_hom 📖mathematicalCategoryTheory.Limits.CoconeMorphism.hom
CategoryTheory.Limits.Cocone.extend
CategoryTheory.Iso.hom
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
extendIso
extendIso_inv_hom 📖mathematicalCategoryTheory.Limits.CoconeMorphism.hom
CategoryTheory.Limits.Cocone.extend
CategoryTheory.Iso.hom
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Iso.inv
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
extendIso
extend_hom 📖mathematicalCategoryTheory.Limits.CoconeMorphism.hom
CategoryTheory.Limits.Cocone.extend
extend
forget_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
forget
CategoryTheory.Limits.CoconeMorphism.hom
forget_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
forget
CategoryTheory.Limits.Cocone.pt
functorialityEquivalence_counitIso 📖mathematicalCategoryTheory.Equivalence.counitIso
CategoryTheory.Limits.Cocone
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.functor
CategoryTheory.Limits.Cocone.category
functorialityEquivalence
CategoryTheory.NatIso.ofComponents
CategoryTheory.Equivalence.inverse
functoriality
precomposeEquivalence
CategoryTheory.Iso.symm
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Iso.trans
CategoryTheory.Functor.associator
CategoryTheory.Functor.id
CategoryTheory.Functor.isoWhiskerLeft
CategoryTheory.Equivalence.unitIso
CategoryTheory.Functor.rightUnitor
ext
CategoryTheory.Functor.obj
CategoryTheory.Iso.app
CategoryTheory.Limits.Cocone.pt
functorialityEquivalence_functor 📖mathematicalCategoryTheory.Equivalence.functor
CategoryTheory.Limits.Cocone
CategoryTheory.Functor.comp
CategoryTheory.Limits.Cocone.category
functorialityEquivalence
functoriality
functorialityEquivalence_inverse 📖mathematicalCategoryTheory.Equivalence.inverse
CategoryTheory.Limits.Cocone
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.functor
CategoryTheory.Limits.Cocone.category
functorialityEquivalence
functoriality
precomposeEquivalence
CategoryTheory.Iso.symm
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Iso.trans
CategoryTheory.Functor.associator
CategoryTheory.Functor.id
CategoryTheory.Functor.isoWhiskerLeft
CategoryTheory.Equivalence.unitIso
CategoryTheory.Functor.rightUnitor
functorialityEquivalence_unitIso 📖mathematicalCategoryTheory.Equivalence.unitIso
CategoryTheory.Limits.Cocone
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.functor
CategoryTheory.Limits.Cocone.category
functorialityEquivalence
CategoryTheory.NatIso.ofComponents
CategoryTheory.Functor.id
functoriality
CategoryTheory.Equivalence.inverse
precomposeEquivalence
CategoryTheory.Iso.symm
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Iso.trans
CategoryTheory.Functor.associator
CategoryTheory.Functor.isoWhiskerLeft
CategoryTheory.Functor.rightUnitor
ext
CategoryTheory.Functor.obj
CategoryTheory.Iso.app
functoriality_faithful 📖mathematicalCategoryTheory.Functor.Faithful
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
CategoryTheory.Functor.comp
functoriality
CategoryTheory.Limits.CoconeMorphism.ext
CategoryTheory.Functor.map_injective
functoriality_full 📖mathematicalCategoryTheory.Functor.Full
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
CategoryTheory.Functor.comp
functoriality
CategoryTheory.Functor.map_injective
CategoryTheory.Functor.map_comp
CategoryTheory.Functor.map_preimage
CategoryTheory.Limits.CoconeMorphism.w
CategoryTheory.Limits.CoconeMorphism.ext
functoriality_map_hom 📖mathematicalCategoryTheory.Limits.CoconeMorphism.hom
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ι
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
functoriality
functoriality_obj_pt 📖mathematicalCategoryTheory.Limits.Cocone.pt
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
functoriality
functoriality_obj_ι_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.Cocone.ι
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
functoriality
CategoryTheory.Functor.map
instIsIsoCoconeExtend 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
CategoryTheory.Limits.Cocone.extend
extend
CategoryTheory.Limits.CoconeMorphism.ext
CategoryTheory.IsIso.hom_inv_id
CategoryTheory.IsIso.inv_hom_id
precomposeEquivalence_counitIso 📖mathematicalCategoryTheory.Equivalence.counitIso
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
precomposeEquivalence
CategoryTheory.NatIso.ofComponents
CategoryTheory.Functor.comp
precompose
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Iso.hom
CategoryTheory.Functor.id
ext
CategoryTheory.Functor.obj
CategoryTheory.Iso.refl
CategoryTheory.Limits.Cocone.pt
precomposeEquivalence_functor 📖mathematicalCategoryTheory.Equivalence.functor
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
precomposeEquivalence
precompose
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
precomposeEquivalence_inverse 📖mathematicalCategoryTheory.Equivalence.inverse
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
precomposeEquivalence
precompose
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
precomposeEquivalence_unitIso 📖mathematicalCategoryTheory.Equivalence.unitIso
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
precomposeEquivalence
CategoryTheory.NatIso.ofComponents
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
precompose
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Iso.inv
ext
CategoryTheory.Functor.obj
CategoryTheory.Iso.refl
CategoryTheory.Limits.Cocone.pt
precompose_map_hom 📖mathematicalCategoryTheory.Limits.CoconeMorphism.hom
CategoryTheory.Limits.Cocone.pt
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.ι
CategoryTheory.Functor.map
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
precompose
precompose_obj_pt 📖mathematicalCategoryTheory.Limits.Cocone.pt
CategoryTheory.Functor.obj
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
precompose
precompose_obj_ι 📖mathematicalCategoryTheory.Limits.Cocone.ι
CategoryTheory.Functor.obj
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
precompose
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
reflects_cocone_isomorphism 📖mathematicalCategoryTheory.Functor.ReflectsIsomorphisms
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
CategoryTheory.Functor.comp
functoriality
cocone_iso_of_hom_iso
CategoryTheory.Functor.ReflectsIsomorphisms.reflects
CategoryTheory.Functor.map_isIso
whiskeringEquivalence_counitIso 📖mathematicalCategoryTheory.Equivalence.counitIso
CategoryTheory.Limits.Cocone
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.functor
CategoryTheory.Limits.Cocone.category
whiskeringEquivalence
CategoryTheory.NatIso.ofComponents
CategoryTheory.Equivalence.inverse
whiskering
precompose
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Iso.inv
CategoryTheory.Functor.leftUnitor
CategoryTheory.Functor.whiskerRight
CategoryTheory.Functor.associator
ext
CategoryTheory.Functor.obj
CategoryTheory.Iso.refl
CategoryTheory.Limits.Cocone.pt
whiskeringEquivalence_functor 📖mathematicalCategoryTheory.Equivalence.functor
CategoryTheory.Limits.Cocone
CategoryTheory.Functor.comp
CategoryTheory.Limits.Cocone.category
whiskeringEquivalence
whiskering
whiskeringEquivalence_inverse 📖mathematicalCategoryTheory.Equivalence.inverse
CategoryTheory.Limits.Cocone
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.functor
CategoryTheory.Limits.Cocone.category
whiskeringEquivalence
whiskering
precompose
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Iso.inv
CategoryTheory.Functor.leftUnitor
CategoryTheory.Functor.whiskerRight
CategoryTheory.Equivalence.counitIso
CategoryTheory.Functor.associator
whiskeringEquivalence_unitIso 📖mathematicalCategoryTheory.Equivalence.unitIso
CategoryTheory.Limits.Cocone
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.functor
CategoryTheory.Limits.Cocone.category
whiskeringEquivalence
CategoryTheory.NatIso.ofComponents
CategoryTheory.Functor.id
whiskering
CategoryTheory.Equivalence.inverse
precompose
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Iso.inv
CategoryTheory.Functor.leftUnitor
CategoryTheory.Functor.whiskerRight
CategoryTheory.Equivalence.counitIso
CategoryTheory.Functor.associator
ext
CategoryTheory.Functor.obj
CategoryTheory.Iso.refl
CategoryTheory.Limits.Cocone.pt
whiskering_map_hom 📖mathematicalCategoryTheory.Limits.CoconeMorphism.hom
CategoryTheory.Functor.comp
CategoryTheory.Limits.Cocone.whisker
CategoryTheory.Functor.map
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
whiskering
whiskering_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
CategoryTheory.Functor.comp
whiskering
CategoryTheory.Limits.Cocone.whisker

CategoryTheory.Limits.Cone

Definitions

NameCategoryTheorems
category 📖CompOp
230 mathmath: CategoryTheory.Limits.Cones.postcomposeId_hom_app_hom, CategoryTheory.Limits.DiagramOfCones.id, CategoryTheory.Functor.Initial.extendCone_obj_pt, CategoryTheory.WithTerminal.coneEquiv_unitIso_hom_app_hom_left, CategoryTheory.Limits.IsLimit.ofConeEquiv_symm_apply_desc, CategoryTheory.Limits.ConeMorphism.hom_inv_id, CategoryTheory.Limits.hasLimit_iff_hasTerminal_cone, CategoryTheory.Functor.mapConeMapCone_hom_hom, CategoryTheory.Limits.coconeEquivalenceOpConeOp_unitIso, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_counitIso_hom_app_hom, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_unitIso_inv_app_hom, CategoryTheory.Limits.Cones.equivalenceOfReindexing_inverse, CategoryTheory.Limits.Cones.whiskeringEquivalence_functor, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverse_obj_π_app, CategoryTheory.Limits.IsLimit.liftConeMorphism_eq_isTerminal_from, CategoryTheory.Limits.ConeMorphism.inv_hom_id_assoc, CategoryTheory.Limits.HasLimit.lift_isoOfNatIso_hom, CategoryTheory.Limits.Cones.postcompose_obj_pt, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_functor_map_hom, CategoryTheory.Limits.Cones.ext_hom_hom, CategoryTheory.Limits.Multifork.ext_hom_hom, CategoryTheory.Limits.Multifork.isoOfι_hom_hom, CategoryTheory.WithTerminal.coneEquiv_inverse_obj_π_app_left, CategoryTheory.Limits.Fork.isoForkOfι_hom_hom, CategoryTheory.Limits.Cones.functorialityEquivalence_functor, fromCostructuredArrow_map_hom, toCostructuredArrow_obj, CategoryTheory.Functor.mapConePostcompose_inv_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivCounitIso_hom_app_hom, CategoryTheory.Limits.Cones.extendId_inv_hom, CategoryTheory.Limits.Multifork.isoOfι_inv_hom, CategoryTheory.Limits.IsLimit.uniqueUpToIso_inv, CategoryTheory.Over.ConstructProducts.conesEquivCounitIso_inv_app_hom_left, CategoryTheory.Over.conePost_obj_π_app, CategoryTheory.Over.ConstructProducts.conesEquiv_unitIso, CategoryTheory.Functor.functorialityCompPostcompose_hom_app_hom, fromCostructuredArrow_obj_π, CategoryTheory.Limits.Cones.forget_map, CategoryTheory.Limits.MulticospanIndex.toPiForkFunctor_map_hom, CategoryTheory.Functor.Initial.conesEquiv_counitIso, CategoryTheory.Limits.Fork.ι_postcompose, CategoryTheory.Limits.Fork.equivOfIsos_functor_obj_ι, CategoryTheory.WithTerminal.coneEquiv_functor_obj_π_app_star, CategoryTheory.WithTerminal.coneEquiv_counitIso_inv_app_hom, CategoryTheory.Limits.Cones.whiskering_map_hom, CategoryTheory.Functor.mapCoconeOp_inv_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquiv_counitIso, CategoryTheory.Limits.pullbackConeEquivBinaryFan_functor_map_hom, CategoryTheory.Limits.pullbackConeEquivBinaryFan_counitIso, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiForkOfIsLimit_functor, CategoryTheory.Limits.Wedge.ext_hom_hom, CategoryTheory.Limits.MulticospanIndex.multiforkOfParallelHomsEquivFork_inverse_obj_ι, equivCostructuredArrow_inverse, CategoryTheory.Limits.Cones.whiskeringEquivalence_inverse, CategoryTheory.Limits.IsLimit.pullbackConeEquivBinaryFanFunctor_lift_left, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivCounitIso_inv_app_hom, CategoryTheory.Limits.IsLimit.ofIsoLimit_lift, CategoryTheory.Functor.Initial.extendCone_obj_π_app', CategoryTheory.WithTerminal.coneEquiv_functor_obj_π_app_of, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_inverse_map_hom, CategoryTheory.Presheaf.isSeparated_iff_subsingleton, CategoryTheory.Over.conePostIso_hom_app_hom, CategoryTheory.Limits.Cones.functoriality_obj_π_app, CategoryTheory.Functor.RightExtension.coneAtFunctor_obj, CategoryTheory.Limits.Cones.equivalenceOfReindexing_counitIso, category_id_hom, CategoryTheory.Limits.IsLimit.equivIsoLimit_symm_apply, CategoryTheory.Limits.DiagramOfCones.mkOfHasLimits_map_hom, CategoryTheory.Limits.coconeEquivalenceOpConeOp_functor_obj, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiForkOfIsLimit_counitIso, FundamentalGroupoidFunctor.instIsIsoFanGrpdObjTopCatFundamentalGroupoidFunctorPiTopToPiCone, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_functor_obj_pt, CategoryTheory.Limits.Cones.whiskeringEquivalence_unitIso, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctor_obj_pt, CategoryTheory.Limits.IsLimit.ofConeEquiv_apply_desc, TopCat.Presheaf.whiskerIsoMapGenerateCocone_inv_hom, CategoryTheory.Over.ConstructProducts.conesEquivFunctor_map_hom, CategoryTheory.WithTerminal.coneEquiv_inverse_obj_pt_left, CategoryTheory.Limits.IsLimit.uniqueUpToIso_hom, CategoryTheory.Over.conePost_map_hom, CategoryTheory.Functor.RightExtension.coneAtWhiskerRightIso_inv_hom, CategoryTheory.Limits.pullbackConeEquivBinaryFan_inverse_obj, CategoryTheory.Limits.Cones.postcomposeEquivalence_unitIso, CategoryTheory.Limits.pullbackConeEquivBinaryFan_functor_obj, CategoryTheory.Limits.Trident.ext_hom, CategoryTheory.Limits.Cones.postcomposeEquivalence_counitIso, CategoryTheory.Functor.postcomposeWhiskerLeftMapCone_inv_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquiv_inverse, CategoryTheory.Limits.Cones.functorialityEquivalence_unitIso, CategoryTheory.Functor.Initial.conesEquiv_unitIso, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_counitIso_inv_app_hom, CategoryTheory.Limits.Cones.functoriality_obj_pt, CategoryTheory.Limits.Fork.ext_hom, CategoryTheory.Limits.DiagramOfCones.conePoints_map, mapConeToUnder_inv_hom, CategoryTheory.WithTerminal.isLimitEquiv_symm_apply_lift, CategoryTheory.Limits.Cones.extendComp_inv_hom, CategoryTheory.Over.ConstructProducts.conesEquivUnitIso_inv_app_hom, CategoryTheory.Limits.Cones.postcomposeEquivalence_functor, CategoryTheory.Limits.Cones.extendIso_inv_hom, CategoryTheory.Limits.Cones.functoriality_faithful, CategoryTheory.WithTerminal.coneEquiv_inverse_obj_pt_hom, CategoryTheory.Limits.Fan.ext_inv_hom, CategoryTheory.Over.ConstructProducts.conesEquivCounitIso_hom_app_hom_left, CategoryTheory.Limits.Fan.ext_hom_hom, CategoryTheory.Functor.Initial.extendCone_map_hom, toCostructuredArrow_map, CategoryTheory.Limits.PullbackCone.eta_inv_hom, CategoryTheory.Limits.Cones.eta_inv_hom, CategoryTheory.Functor.Initial.conesEquiv_inverse, CategoryTheory.Over.ConstructProducts.conesEquiv_counitIso, CategoryTheory.Limits.Cones.whiskeringEquivalence_counitIso, CategoryTheory.Limits.Cones.extendIso_hom_hom, CategoryTheory.Limits.Fork.ext_inv, CategoryTheory.Limits.instIsIsoHomInvCone, CategoryTheory.Limits.PullbackCone.unop_ι_app, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivUnitIso_inv_app_hom, CategoryTheory.Limits.Cones.eta_hom_hom, CategoryTheory.Limits.PullbackCone.isoMk_inv_hom, CategoryTheory.Limits.Cones.functoriality_full, CategoryTheory.Limits.Cones.postcompose_obj_π, CategoryTheory.Adjunction.functorialityUnit'_app_hom, CategoryTheory.Limits.Cones.functoriality_map_hom, CategoryTheory.Limits.Cones.extendId_hom_hom, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_functor_obj_π_app, CategoryTheory.Limits.colimitLimitToLimitColimitCone_iso, CategoryTheory.Limits.Cones.functorialityEquivalence_inverse, CategoryTheory.liftedLimitMapsToOriginal_inv_map_π, CategoryTheory.Limits.Cones.postcomposeComp_inv_app_hom, CategoryTheory.Functor.mapConePostcomposeEquivalenceFunctor_inv_hom, CategoryTheory.Functor.mapConePostcomposeEquivalenceFunctor_hom_hom, CategoryTheory.Limits.MulticospanIndex.toPiForkFunctor_obj, equivCostructuredArrow_functor, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctor_obj_π_app, CategoryTheory.Over.conePostIso_inv_app_hom, CategoryTheory.Limits.Fork.equivOfIsos_inverse_obj_ι, TopCat.Presheaf.whiskerIsoMapGenerateCocone_hom_hom, CategoryTheory.Limits.Cones.forget_obj, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiForkOfIsLimit_inverse, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_inverse_obj_π_app, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctor_map_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverse_obj_pt, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivUnitIso_hom_app_hom, CategoryTheory.Limits.PullbackCone.eta_hom_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivUnitIsoApp_hom_hom, CategoryTheory.Over.conePost_obj_pt, CategoryTheory.Limits.Cones.functorialityEquivalence_counitIso, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_inverse_obj_pt, CategoryTheory.Limits.Trident.ext_inv, CategoryTheory.Over.ConstructProducts.conesEquiv_functor, CategoryTheory.Functor.mapConeWhisker_hom_hom, equivCostructuredArrow_counitIso, CategoryTheory.Limits.Wedge.ext_inv_hom, CategoryTheory.Limits.Cones.ext_inv_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverse_map_hom, category_comp_hom, CategoryTheory.Functor.postcomposeWhiskerLeftMapCone_hom_hom, CategoryTheory.Limits.ConeMorphism.hom_inv_id_assoc, fromCostructuredArrow_obj_pt, CategoryTheory.WithTerminal.isLimitEquiv_apply_lift_left, CategoryTheory.Limits.limit.lift_map, CategoryTheory.Limits.IsLimit.conePointsIsoOfEquivalence_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivUnitIsoApp_inv_hom, CategoryTheory.Functor.RightExtension.coneAtFunctor_map_hom, CategoryTheory.Functor.mapConePostcompose_hom_hom, CategoryTheory.Limits.IsLimit.conePointsIsoOfEquivalence_inv, CategoryTheory.Over.ConstructProducts.conesEquivFunctor_obj_pt, CategoryTheory.Functor.RightExtension.coneAtWhiskerRightIso_hom_hom, CategoryTheory.Limits.MulticospanIndex.ofPiForkFunctor_obj, CategoryTheory.Limits.Cones.instIsIsoConeExtend, CategoryTheory.WithTerminal.coneEquiv_unitIso_inv_app_hom_left, CategoryTheory.Limits.DiagramOfCones.comp, CategoryTheory.Functor.mapCoconeOp_hom_hom, CategoryTheory.Limits.Cones.equivalenceOfReindexing_unitIso, CategoryTheory.Over.ConstructProducts.conesEquivUnitIso_hom_app_hom, CategoryTheory.Limits.coconeEquivalenceOpConeOp_inverse_obj, CategoryTheory.Limits.coconeEquivalenceOpConeOp_counitIso, mapConeToUnder_hom_hom, CategoryTheory.Over.ConstructProducts.conesEquivInverse_obj, CategoryTheory.Functor.Initial.limitConeOfComp_cone, equivCostructuredArrow_unitIso, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiForkOfIsLimit_unitIso, CategoryTheory.Limits.MulticospanIndex.ofPiForkFunctor_map_hom, CategoryTheory.Limits.Multifork.ext_inv_hom, CategoryTheory.WithTerminal.coneEquiv_inverse_map_hom_left, CategoryTheory.Functor.mapConeMapCone_inv_hom, CategoryTheory.Limits.BinaryFan.ext_hom_hom, CategoryTheory.Limits.Cones.equivalenceOfReindexing_functor, CategoryTheory.Limits.coconeEquivalenceOpConeOp_inverse_map_hom, CategoryTheory.Limits.PullbackCone.isoMk_hom_hom, CategoryTheory.Functor.Initial.extendCone_obj_π_app, CategoryTheory.Functor.functorialityCompPostcompose_inv_app_hom, CategoryTheory.Limits.Fork.isoForkOfι_inv_hom, CategoryTheory.Functor.mapConeWhisker_inv_hom, CategoryTheory.WithTerminal.coneEquiv_functor_obj_pt, CategoryTheory.Over.ConstructProducts.conesEquiv_inverse, CategoryTheory.Limits.coconeEquivalenceOpConeOp_functor_map, CategoryTheory.liftedLimitMapsToOriginal_hom_π, CategoryTheory.Limits.pullbackConeEquivBinaryFan_unitIso, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquiv_functor, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquiv_unitIso, CategoryTheory.Limits.HasLimit.lift_isoOfNatIso_inv, CategoryTheory.Limits.MulticospanIndex.multiforkOfParallelHomsEquivFork_functor_obj_ι, CategoryTheory.Limits.limit.lift_map_assoc, CategoryTheory.Limits.Cones.reflects_cone_isomorphism, CategoryTheory.Limits.Cones.extendComp_hom_hom, CategoryTheory.Functor.Initial.conesEquiv_functor, CategoryTheory.Presheaf.subsingleton_iff_isSeparatedFor, CategoryTheory.Limits.Cones.cone_iso_of_hom_iso, CategoryTheory.Limits.HasLimit.lift_isoOfNatIso_hom_assoc, CategoryTheory.Limits.Cones.whiskering_obj, CategoryTheory.Limits.IsTerminal.from_eq_liftConeMorphism, CategoryTheory.Limits.Cones.postcomposeComp_hom_app_hom, CategoryTheory.Limits.Cones.postcompose_map_hom, FundamentalGroupoidFunctor.coneDiscreteComp_obj_mapCone, CategoryTheory.Limits.Cones.postcomposeEquivalence_inverse, CategoryTheory.Limits.Cones.postcomposeId_inv_app_hom, CategoryTheory.WithTerminal.coneEquiv_counitIso_hom_app_hom, CategoryTheory.Over.ConstructProducts.conesEquivFunctor_obj_π_app, CategoryTheory.Limits.IsLimit.hom_isIso, CategoryTheory.Functor.Initial.limitConeOfComp_isLimit, CategoryTheory.Limits.instIsIsoHomHomCone, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_unitIso_hom_app_hom, CategoryTheory.Over.ConstructProducts.conesEquivInverse_map_hom, CategoryTheory.Adjunction.functorialityCounit'_app_hom, CategoryTheory.WithTerminal.coneEquiv_inverse_obj_pt_right_as, CategoryTheory.Limits.pullbackConeEquivBinaryFan_inverse_map_hom, CategoryTheory.Limits.HasLimit.lift_isoOfNatIso_inv_assoc, CategoryTheory.Limits.ConeMorphism.inv_hom_id, CategoryTheory.WithTerminal.coneEquiv_functor_map_hom
equiv 📖CompOp
4 mathmath: equiv_inv_pt, equiv_hom_fst, equiv_inv_π, equiv_hom_snd
extend 📖CompOp
15 mathmath: CategoryTheory.Limits.Cones.extendId_inv_hom, extend_π, CategoryTheory.Limits.Cones.extend_hom, extend_pt, CategoryTheory.Limits.IsLimit.OfNatIso.cone_fac, CategoryTheory.Limits.Cones.extendComp_inv_hom, CategoryTheory.Limits.Cones.extendIso_inv_hom, CategoryTheory.Limits.Cones.extendIso_hom_hom, CategoryTheory.Limits.Cones.extendId_hom_hom, CategoryTheory.Limits.IsLimit.OfNatIso.coneOfHom_fac, CategoryTheory.Limits.Cones.instIsIsoConeExtend, CategoryTheory.Limits.IsLimit.homIso_hom, CategoryTheory.Limits.Cones.extendComp_hom_hom, CategoryTheory.Limits.limit.lift_extend, CategoryTheory.Limits.IsLimit.homEquiv_apply
extensions 📖CompOp
2 mathmath: extend_π, extensions_app
op 📖CompOp
10 mathmath: CategoryTheory.Limits.PullbackCone.op_ι_app, Condensed.isColimitLocallyConstantPresheaf_desc_apply, CategoryTheory.Limits.Fork.op_ι_app, Condensed.isColimitLocallyConstantPresheafDiagram_desc_apply, CategoryTheory.Functor.mapConeOp_inv_hom, LightCondensed.isColimitLocallyConstantPresheaf_desc_apply, CategoryTheory.Functor.mapConeOp_hom_hom, op_pt, AlgebraicGeometry.nonempty_isColimit_Γ_mapCocone, op_ι
pt 📖CompOp
834 mathmath: AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_snd, CategoryTheory.GrothendieckTopology.coneCompEvaluationOfConeCompDiagramFunctorCompEvaluation_pt, CategoryTheory.Limits.Trident.condition_assoc, CategoryTheory.Limits.Cones.postcomposeId_hom_app_hom, CategoryTheory.Limits.Fork.IsLimit.homIso_natural, CategoryTheory.Limits.DiagramOfCones.id, CategoryTheory.PreOneHypercover.forkOfIsColimit_ι_map_inj_assoc, CategoryTheory.Functor.Initial.extendCone_obj_pt, toUnder_pt, CategoryTheory.WithTerminal.coneEquiv_unitIso_hom_app_hom_left, CategoryTheory.Functor.coneOfIsRightKanExtension_pt, CategoryTheory.Limits.BinaryFan.rightUnitor_hom, CategoryTheory.Limits.IsLimit.ofConeEquiv_symm_apply_desc, AddCommGrpCat.binaryProductLimitCone_cone_pt, CategoryTheory.GrothendieckTopology.liftToDiagramLimitObjAux_fac, LightProfinite.Extend.functorOp_obj, CategoryTheory.regularTopology.EqualizerCondition.bijective_mapToEqualizer_pullback', CategoryTheory.ComposableArrows.Exact.cokerIsoKer'_hom_inv_id_assoc, CategoryTheory.Over.ConstructProducts.conesEquivInverseObj_pt, CategoryTheory.Limits.ConeMorphism.hom_inv_id, CategoryTheory.extendFan_pt, AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_snd_assoc, CategoryTheory.Functor.mapConeMapCone_hom_hom, CategoryTheory.Limits.coconeEquivalenceOpConeOp_unitIso, CategoryTheory.Limits.Wedge.mk_pt, CategoryTheory.Limits.Trident.app_zero, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_counitIso_hom_app_hom, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_unitIso_inv_app_hom, AlgebraicGeometry.opensCone_pt, unop_ι, CategoryTheory.Limits.ProductsFromFiniteCofiltered.liftToFinsetLimitCone_isLimit_lift, ofTrident_π, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverse_obj_π_app, CategoryTheory.Limits.Multifork.IsLimit.sectionsEquiv_apply_val, CategoryTheory.Monad.ForgetCreatesLimits.liftedConeIsLimit_lift_f, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift_snd, CategoryTheory.Limits.Fork.IsLimit.lift_ι'_assoc, CategoryTheory.Limits.ConeMorphism.inv_hom_id_assoc, CategoryTheory.Limits.pullbackConeOfLeftIso_π_app_left, CategoryTheory.PreOneHypercover.forkOfIsColimit_pt, CategoryTheory.GrothendieckTopology.liftToDiagramLimitObjAux_fac_assoc, CategoryTheory.Functor.isLimitConeOfIsRightKanExtension_lift, Profinite.Extend.functorOp_map, CategoryTheory.Functor.isCardinalAccessible_of_isLimit, CategoryTheory.Abelian.epi_fst_of_factor_thru_epi_mono_factorization, AlgebraicGeometry.exists_isAffineOpen_preimage_eq, CategoryTheory.biconeMk_obj, HomologicalComplex.coneOfHasLimitEval_pt_d, CategoryTheory.Limits.FormalCoproduct.homPullbackEquiv_symm_apply_φ, CategoryTheory.Limits.BinaryBicone.toCone_π_app_right, CategoryTheory.RanIsSheafOfIsCocontinuous.liftAux_map', CategoryTheory.Limits.HasLimit.lift_isoOfNatIso_hom, CategoryTheory.Limits.Cones.postcompose_obj_pt, CategoryTheory.Limits.MulticospanIndex.sndPiMapOfIsLimit_proj, equiv_inv_pt, CategoryTheory.Limits.Types.limitCone_pt, CategoryTheory.Limits.BinaryFan.braiding_hom_snd_assoc, CategoryTheory.Comonad.beckCoalgebraFork_pt, CategoryTheory.Limits.IsLimit.map_π, CategoryTheory.Comonad.ComonadicityInternal.unitFork_pt, CategoryTheory.Limits.mono_of_isLimit_parallelFamily, CategoryTheory.Limits.IsLimit.conePointUniqueUpToIso_hom_comp_assoc, CategoryTheory.IsPullback.of_isLimit_binaryFan_of_isTerminal, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_functor_map_hom, CategoryTheory.Limits.Cones.ext_hom_hom, CategoryTheory.Comonad.ForgetCreatesLimits'.liftedCone_π_app_f, CategoryTheory.Limits.PullbackCone.π_app_right, Preorder.conePt_mem_lowerBounds, CategoryTheory.Limits.Multifork.ext_hom_hom, CategoryTheory.Limits.Multifork.isoOfι_hom_hom, CategoryTheory.Limits.Fork.unop_ι_app_zero, CategoryTheory.Limits.SequentialProduct.cone_π_app_comp_Pi_π_pos_assoc, CategoryTheory.isCoseparator_of_isLimit_fan, CategoryTheory.Limits.KernelFork.condition_assoc, CategoryTheory.WithTerminal.coneEquiv_inverse_obj_π_app_left, CategoryTheory.Limits.KernelFork.mapOfIsLimit_ι_assoc, CategoryTheory.Limits.FormalCoproduct.pullbackCone_fst_φ, CategoryTheory.Limits.IsLimit.conePointsIsoOfNatIso_hom, CategoryTheory.Limits.Fork.isoForkOfι_hom_hom, CategoryTheory.Functor.RightExtension.coneAt_pt, CategoryTheory.Limits.PullbackCone.condition, CategoryTheory.Limits.BinaryFan.braiding_hom_fst_assoc, CategoryTheory.ShortComplex.isoCyclesOfIsLimit_hom_iCycles_assoc, CategoryTheory.Enriched.FunctorCategory.isLimitConeFunctorEnrichedHom.fac, CategoryTheory.Limits.Fork.IsLimit.mono, toCostructuredArrow_obj, CategoryTheory.Limits.KernelFork.IsLimit.isZero_of_mono, CategoryTheory.Limits.desc_op_comp_opCoproductIsoProduct'_hom, CategoryTheory.Limits.WidePullbackCone.reindex_pt, CategoryTheory.Functor.mapConePostcompose_inv_hom, CategoryTheory.Comma.coneOfPreserves_π_app_right, CategoryTheory.Comma.limitAuxiliaryCone_pt, TopCat.Presheaf.SheafConditionEqualizerProducts.fork_π_app_walkingParallelPair_one, CategoryTheory.Limits.isColimitCoconeLeftOpOfCone_desc, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivCounitIso_hom_app_hom, CategoryTheory.FunctorToTypes.binaryProductCone_pt_obj, CategoryTheory.Limits.coconeOfConeLeftOp_pt, CategoryTheory.Limits.constCone_pt, CategoryTheory.Limits.Cones.extendId_inv_hom, CategoryTheory.GrothendieckTopology.OneHypercover.multiforkLift_map, whisker_π, CategoryTheory.Limits.Multifork.isoOfι_inv_hom, CompHausLike.pullback.isLimit_lift, CategoryTheory.Under.liftCone_pt, CategoryTheory.Limits.PullbackCone.unop_inl, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_isTerminalTensorUnit_lift_hom, CategoryTheory.Limits.PreservesLimit₂.isoObjConePointsOfIsColimit_inv_comp_map_π, CategoryTheory.ComposableArrows.Exact.cokerIsoKer'_hom, CategoryTheory.Limits.isLimitOfCoconeOfConeRightOp_lift, CategoryTheory.ObjectProperty.prop_of_isLimit, toStructuredArrowCompProj_inv_app, AlgebraicGeometry.Scheme.Pullback.gluedLift_p1, CategoryTheory.Limits.IsLimit.conePointsIsoOfNatIso_inv_comp, CategoryTheory.Limits.BinaryFan.IsLimit.lift'_coe, CategoryTheory.Over.ConstructProducts.conesEquivCounitIso_inv_app_hom_left, CategoryTheory.Limits.PullbackCone.IsLimit.lift_fst, CategoryTheory.Limits.Trident.ofι_pt, CategoryTheory.Limits.Fork.ofι_pt, CategoryTheory.Over.conePost_obj_π_app, CategoryTheory.Limits.PullbackCone.op_pt, CategoryTheory.Limits.Types.binaryProductCone_pt, CategoryTheory.Limits.coneUnopOfCocone_pt, CategoryTheory.Limits.Cofork.unop_π_app_one, CategoryTheory.Limits.binaryBiconeOfIsSplitEpiOfKernel_inl, CategoryTheory.Limits.isLimitOfCoconeOfConeLeftOp_lift, CategoryTheory.Limits.pullbackConeOfLeftIso_π_app_right, CategoryTheory.Limits.IsLimit.lift_comp_conePointUniqueUpToIso_hom_assoc, CategoryTheory.Functor.functorialityCompPostcompose_hom_app_hom, Profinite.exists_locallyConstant_finite_aux, CategoryTheory.Mon.limitConeIsLimit_lift_hom, CategoryTheory.Limits.IsLimit.nonempty_isLimit_iff_isIso_lift, CategoryTheory.Limits.PullbackCone.IsLimit.equivPullbackObj_apply_fst, CategoryTheory.Limits.IsLimit.conePointUniqueUpToIso_hom_comp, CategoryTheory.Comonad.ForgetCreatesLimits'.newCone_pt, GrpCat.binaryProductLimitCone_cone_pt, CategoryTheory.Limits.opCoproductIsoProduct'_comp_self, CategoryTheory.Limits.pullbackConeOfLeftIso_snd, CategoryTheory.Limits.MulticospanIndex.toPiForkFunctor_map_hom, CategoryTheory.Limits.opCoproductIsoProduct'_hom_comp_proj, CategoryTheory.ProdPreservesConnectedLimits.forgetCone_π, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverseObj_π_app, CategoryTheory.Limits.ConeMorphism.w, CategoryTheory.Limits.limit.lift_post, lightDiagramToLightProfinite_obj, CategoryTheory.Limits.IsLimit.lift_comp_conePointsIsoOfNatIso_inv, extend_π, CategoryTheory.Functor.Initial.conesEquiv_counitIso, Profinite.isIso_indexCone_lift, CategoryTheory.Limits.Bicone.toCone_π_app_mk, CategoryTheory.Limits.Multifork.ofι_pt, CategoryTheory.Limits.PullbackCone.condition_assoc, CategoryTheory.Limits.Trident.condition, CategoryTheory.Limits.PullbackCone.unop_inr, CategoryTheory.Limits.IsLimit.lift_comp_conePointsIsoOfNatIso_hom, CategoryTheory.Limits.Fork.ι_postcompose, CategoryTheory.Limits.BinaryBicone.toCone_π_app_left, CategoryTheory.Limits.coconeOfConeUnop_pt, CategoryTheory.Limits.Fork.equivOfIsos_functor_obj_ι, CategoryTheory.WithTerminal.coneEquiv_functor_obj_π_app_star, Profinite.Extend.functorOp_obj, CategoryTheory.WithTerminal.coneEquiv_counitIso_inv_app_hom, CategoryTheory.ShortComplex.LeftHomologyData.ofIsLimitKernelFork_H, CategoryTheory.Monad.ForgetCreatesLimits.newCone_π_app, ModuleCat.binaryProductLimitCone_cone_π_app_right, CategoryTheory.Limits.Fork.IsLimit.existsUnique, toStructuredArrowCompToUnderCompForget_hom_app, CategoryTheory.Limits.PullbackCone.combine_π_app, CategoryTheory.Limits.Cocone.op_pt, LightProfinite.lightToProfinite_map_proj_eq, CompHausLike.sigmaComparison_eq_comp_isos, CategoryTheory.Limits.Fork.hom_comp_ι, CategoryTheory.Limits.asEmptyCone_pt, CategoryTheory.CartesianMonoidalCategory.ofChosenFiniteProducts.associator_naturality, CategoryTheory.Limits.Multiequalizer.multifork_π_app_left, CategoryTheory.Limits.pullbackConeEquivBinaryFan_functor_map_hom, CategoryTheory.Limits.ConeMorphism.map_w_assoc, CategoryTheory.Limits.coneOfDiagramTerminal_pt, CategoryTheory.Cat.HasLimits.limitCone_pt, CategoryTheory.Limits.BinaryFan.braiding_hom_snd, CategoryTheory.Limits.limit.isoLimitCone_hom_π_assoc, CategoryTheory.Limits.Multifork.toPiFork_pt, CategoryTheory.Limits.PullbackCone.op_inr, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctorObj_π_app, AlgebraicGeometry.isBasis_preimage_isAffineOpen, CategoryTheory.Limits.coneOfDiagramInitial_pt, CategoryTheory.Limits.PullbackCone.op_ι_app, CategoryTheory.Limits.pullbackConeEquivBinaryFan_counitIso, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiForkOfIsLimit_functor, CategoryTheory.Limits.coneOfConeCurry_pt, CategoryTheory.Limits.Wedge.IsLimit.lift_ι, CategoryTheory.Limits.Fork.unop_ι_app_one, CategoryTheory.Limits.Wedge.ext_hom_hom, CategoryTheory.Limits.IsLimit.pullbackConeEquivBinaryFanFunctor_lift_left, AlgebraicGeometry.Scheme.Pullback.gluedLift_p2, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivCounitIso_inv_app_hom, CategoryTheory.Limits.isIso_limit_cone_parallelPair_of_epi, CategoryTheory.Limits.IsLimit.ofIsoLimit_lift, CategoryTheory.Functor.Initial.extendCone_obj_π_app', CategoryTheory.Limits.Fork.IsLimit.homIso_symm_apply, CategoryTheory.Limits.WidePullbackCone.IsLimit.lift_base, AddCommGrpCat.binaryProductLimitCone_isLimit_lift, CategoryTheory.Limits.Types.Small.limitCone_pt, fromStructuredArrow_pt, toStructuredArrow_comp_toUnder_comp_forget, CategoryTheory.Limits.BinaryFan.braiding_inv_snd, CategoryTheory.Limits.PullbackCone.mono_fst_of_is_pullback_of_mono, AddCommGrpCat.binaryProductLimitCone_cone_π_app_left, CategoryTheory.ComposableArrows.IsComplex.mono_cokerToKer', CategoryTheory.Limits.Types.isLimitEquivSections_apply, CategoryTheory.Equalizer.Presieve.isSheafFor_singleton_iff, CategoryTheory.Limits.SequentialProduct.cone_π_app_comp_Pi_π_neg_assoc, extend_pt, CategoryTheory.Limits.ProductsFromFiniteCofiltered.finiteSubproductsCocone_π_app_eq_sum, CommRingCat.instIsLocalHomCarrierObjWalkingParallelPairFunctorConstPtEqualizerForkZeroParallelPairRingHomHomι, CategoryTheory.WithTerminal.coneEquiv_functor_obj_π_app_of, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_inverse_map_hom, CategoryTheory.Comma.coneOfPreserves_pt_right, CategoryTheory.Limits.opCoproductIsoProduct'_inv_comp_inj, ofPullbackCone_pt, ProfiniteAddGrp.instIsTopologicalAddGroupCarrierToTopTotallyDisconnectedSpacePtProfiniteLimitConeCompForget₂ContinuousAddMonoidHomToProfiniteContinuousMap, CategoryTheory.Limits.IsLimit.homEquiv_symm_π_app, CategoryTheory.Limits.MulticospanIndex.fstPiMapOfIsLimit_proj, GrpCat.binaryProductLimitCone_isLimit_lift, CategoryTheory.GrothendieckTopology.OneHypercoverFamily.IsSheafIff.fac, CategoryTheory.Preadditive.forkOfKernelFork_pt, LightCondensed.isColimitLocallyConstantPresheafDiagram_desc_apply, CategoryTheory.Limits.IsLimit.OfNatIso.cone_fac, CategoryTheory.Over.conePostIso_hom_app_hom, CategoryTheory.Limits.Cones.functoriality_obj_π_app, CategoryTheory.RanIsSheafOfIsCocontinuous.fac_assoc, TopCat.nonempty_isLimit_iff_eq_induced, CategoryTheory.Limits.colimitLimitToLimitColimitCone_hom, AddCommGrpCat.HasLimit.productLimitCone_cone_pt_coe, CategoryTheory.Limits.Fork.op_pt, CategoryTheory.Limits.PullbackCone.isIso_fst_of_mono_of_isLimit, ofPullbackCone_π, AlgebraicGeometry.exists_appTop_π_eq_of_isAffine_of_isLimit, CategoryTheory.Limits.ConeMorphism.map_w, CategoryTheory.Limits.Cones.equivalenceOfReindexing_counitIso, ProfiniteGrp.cone_pt, TopCat.piFan_pt, CategoryTheory.Limits.limit.isoLimitCone_hom_π, CategoryTheory.Limits.pullbackConeOfRightIso_π_app_right, CategoryTheory.ShortComplex.Exact.leftHomologyDataOfIsLimitKernelFork_K, category_id_hom, CategoryTheory.Functor.rightAdjointObjIsDefined_of_isLimit, CategoryTheory.Limits.IsLimit.hom_lift, CategoryTheory.Limits.PullbackCone.mk_π_app_right, CategoryTheory.Limits.Cofork.op_π_app_zero, CategoryTheory.Limits.coneOfConeCurry_π_app, CategoryTheory.Sheaf.isSheaf_of_isLimit, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiForkOfIsLimit_counitIso, CategoryTheory.Limits.isColimitCoconeUnopOfCone_desc, CategoryTheory.Monad.ForgetCreatesLimits.liftedCone_pt, AddGrpCat.binaryProductLimitCone_isLimit_lift, CategoryTheory.Limits.pullbackConeOfRightIso_fst, CategoryTheory.lift_comp_preservesLimitIso_hom_assoc, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_functor_obj_pt, equiv_hom_fst, toStructuredArrowCone_π_app, CategoryTheory.Limits.Cones.whiskeringEquivalence_unitIso, CategoryTheory.Limits.Fork.hom_comp_ι_assoc, Profinite.instEpiAppDiscreteQuotientCarrierToTopTotallyDisconnectedSpaceπAsLimitCone, Preorder.coneOfLowerBound_pt, CategoryTheory.Limits.isLimitOfCoconeLeftOpOfCone_lift, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctor_obj_pt, CategoryTheory.Limits.IsLimit.ofConeEquiv_apply_desc, CategoryTheory.Limits.PreservesLimit₂.isoObjConePointsOfIsLimit_hom_comp_π, CategoryTheory.Limits.KernelFork.mapIsoOfIsLimit_inv, CategoryTheory.Under.forgetCone_pt, TopCat.Presheaf.whiskerIsoMapGenerateCocone_inv_hom, CategoryTheory.Over.ConstructProducts.conesEquivFunctor_map_hom, CategoryTheory.Limits.IsLimit.conePointsIsoOfNatIso_hom_comp_assoc, CategoryTheory.Limits.BinaryFan.rightUnitor_inv, CategoryTheory.Limits.pullbackConeOfRightIso_x, CategoryTheory.ComposableArrows.Exact.cokerIsoKer'_inv_hom_id, CategoryTheory.Limits.MulticospanIndex.fstPiMapOfIsLimit_proj_assoc, CategoryTheory.Limits.PullbackCone.mk_π_app_one, CategoryTheory.WithTerminal.coneEquiv_inverse_obj_pt_left, TopCat.Sheaf.interUnionPullbackConeLift_right, LightProfinite.Extend.functor_map, CategoryTheory.Limits.CompleteLattice.limitCone_isLimit_lift, CategoryTheory.Over.conePost_map_hom, CategoryTheory.IsPullback.of_isLimit, CategoryTheory.Limits.Fork.ofCone_π, CategoryTheory.Limits.CompleteLattice.finiteLimitCone_isLimit_lift, CategoryTheory.Limits.opProductIsoCoproduct'_comp_self, CategoryTheory.Limits.pullbackConeEquivBinaryFan_inverse_obj, CategoryTheory.Limits.Cones.postcomposeEquivalence_unitIso, CategoryTheory.Limits.pullbackConeEquivBinaryFan_functor_obj, CategoryTheory.Limits.KernelFork.IsLimit.isIso_ι, CategoryTheory.Limits.Cones.postcomposeEquivalence_counitIso, CategoryTheory.Functor.postcomposeWhiskerLeftMapCone_inv_hom, CategoryTheory.Abelian.epi_snd_of_isLimit, CategoryTheory.Limits.coneOfSectionCompYoneda_pt, CategoryTheory.Limits.Types.limitConeIsLimit_lift_coe, CategoryTheory.Limits.IsLimit.lift_comp_conePointUniqueUpToIso_hom, CategoryTheory.Limits.coneOfAdj_pt, CategoryTheory.Functor.Initial.conesEquiv_unitIso, CategoryTheory.Limits.WidePullbackShape.mkCone_pt, CategoryTheory.lift_comp_preservesLimitIso_hom, CategoryTheory.RanIsSheafOfIsCocontinuous.fac', CategoryTheory.Limits.KernelFork.condition, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_counitIso_inv_app_hom, TopCat.nonempty_limitCone_of_compact_t2_cofiltered_system, CategoryTheory.Limits.limit.conePointUniqueUpToIso_hom_comp_assoc, CategoryTheory.Limits.MulticospanIndex.parallelPairDiagramOfIsLimit_map, CategoryTheory.Limits.Fork.IsLimit.homIso_apply_coe, CategoryTheory.Limits.PullbackCone.IsLimit.equivPullbackObj_apply_snd, CategoryTheory.Limits.coneOfCoconeLeftOp_pt, CategoryTheory.Limits.limit.cone_x, CategoryTheory.Limits.Cones.functoriality_obj_pt, CategoryTheory.Limits.Fork.IsLimit.lift_ι, CategoryTheory.ShortComplex.LeftHomologyData.wπ_assoc, CategoryTheory.Limits.Multifork.app_right_eq_ι_comp_snd, mapConeToUnder_inv_hom, CategoryTheory.Limits.PullbackCone.π_app_left, CategoryTheory.Limits.binaryBiconeOfIsSplitEpiOfKernel_pt, CategoryTheory.Limits.Wedge.condition, CategoryTheory.FunctorToTypes.binaryProductLimit_lift, CategoryTheory.Limits.limit.existsUnique, CategoryTheory.regularTopology.parallelPair_pullback_initial, CategoryTheory.Limits.Cones.extendComp_inv_hom, CategoryTheory.Limits.biproduct.conePointUniqueUpToIso_inv, CategoryTheory.Limits.Multifork.app_left_eq_ι, CategoryTheory.Limits.Multifork.condition, CategoryTheory.CartesianMonoidalCategory.ofChosenFiniteProducts.leftUnitor_naturality, CategoryTheory.Limits.coconeOfConeRightOp_ι, CategoryTheory.Limits.limitConeOfUnique_cone_pt, CategoryTheory.Limits.Fork.op_π, CategoryTheory.Limits.limit.conePointUniqueUpToIso_inv_comp_assoc, CategoryTheory.Over.ConstructProducts.conesEquivUnitIso_inv_app_hom, CategoryTheory.Under.liftCone_π_app, CategoryTheory.Limits.Cones.extendIso_inv_hom, CategoryTheory.Limits.Wedge.IsLimit.lift_ι_assoc, CategoryTheory.ComposableArrows.Exact.cokerIsoKer'_hom_inv_id, CategoryTheory.Limits.Fork.app_one_eq_ι_comp_left, CategoryTheory.CostructuredArrow.CreatesConnected.raiseCone_pt, CategoryTheory.Comma.limitAuxiliaryCone_π_app, CategoryTheory.Limits.Trident.IsLimit.homIso_apply_coe, CategoryTheory.Limits.WidePullbackCone.mk_pt, CategoryTheory.WithTerminal.coneEquiv_inverse_obj_pt_hom, CategoryTheory.Limits.Fan.ext_inv_hom, CategoryTheory.Limits.Bicone.toCone_pt, CategoryTheory.Over.ConstructProducts.conesEquivCounitIso_hom_app_hom_left, CategoryTheory.Limits.PreservesLimit₂.isoObjConePointsOfIsColimit_inv_comp_map_π_assoc, CategoryTheory.Limits.Multifork.IsLimit.fac_assoc, Profinite.Extend.functor_obj, CategoryTheory.Limits.FormalCoproduct.homPullbackEquiv_symm_apply_f_coe, CategoryTheory.Limits.Fan.ext_hom_hom, CategoryTheory.Limits.WidePullbackCone.IsLimit.lift_π_assoc, CategoryTheory.Functor.Initial.extendCone_map_hom, toCostructuredArrow_map, CategoryTheory.Limits.BinaryFan.π_app_right, AlgebraicGeometry.opensCone_π_app, CategoryTheory.Limits.PullbackCone.eta_inv_hom, SSet.StrictSegal.isPointwiseRightKanExtensionAt.fac_aux₂, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift_fst, CategoryTheory.Functor.Accessible.Limits.isColimitMapCocone.surjective, CategoryTheory.Limits.Cones.eta_inv_hom, CategoryTheory.Limits.Cones.whiskeringEquivalence_counitIso, CategoryTheory.Limits.Fan.IsLimit.fac_assoc, CategoryTheory.Limits.PushoutCocone.op_π_app, CategoryTheory.Comonad.ForgetCreatesLimits'.newCone_π, CategoryTheory.Limits.limit.lift_π_app, CategoryTheory.biconeMk_map, CategoryTheory.Limits.ProductsFromFiniteCofiltered.finiteSubproductsCone_pt, CategoryTheory.Limits.Cones.extendIso_hom_hom, CategoryTheory.Limits.WidePullbackCone.condition_assoc, PresheafOfModules.isSheaf_of_isLimit, CategoryTheory.Limits.Fork.app_one_eq_ι_comp_right_assoc, CategoryTheory.Limits.WidePullbackCone.IsLimit.lift_base_assoc, CategoryTheory.Limits.instIsIsoHomInvCone, CategoryTheory.Limits.IsLimit.conePointsIsoOfNatIso_inv, overPost_pt, CategoryTheory.IsUniversalColimit.nonempty_isColimit_of_pullbackCone_left, CategoryTheory.Functor.Initial.limit_cone_comp_aux, CategoryTheory.CartesianMonoidalCategory.ofChosenFiniteProducts.triangle, CategoryTheory.Sheaf.coneΓ_pt, CategoryTheory.Preadditive.mono_iff_isZero_kernel', CategoryTheory.Limits.coneOfSectionCompCoyoneda_pt, CategoryTheory.ShortComplex.Exact.leftHomologyDataOfIsLimitKernelFork_π, Condensed.instFinalOppositeDiscreteQuotientCarrierToTopTotallyDisconnectedSpaceCostructuredArrowFintypeCatProfiniteOpToProfiniteOpPtAsLimitConeFunctorOp, CategoryTheory.Limits.isLimitConeOfAdj_lift, CategoryTheory.Limits.Types.Limit.lift_π_apply, CategoryTheory.Limits.BinaryFan.braiding_inv_fst_assoc, CategoryTheory.Limits.isLimitOfCoconeRightOpOfCone_lift, CategoryTheory.Limits.ConeMorphism.w_assoc, CategoryTheory.Limits.PullbackCone.unop_ι_app, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivUnitIso_inv_app_hom, CategoryTheory.IsUniversalColimit.nonempty_isColimit_prod_of_pullbackCone, CategoryTheory.Limits.BinaryBicone.toCone_pt, CategoryTheory.Limits.Multifork.toPiFork_π_app_one, CategoryTheory.Limits.Multifork.ofPiFork_pt, CategoryTheory.Limits.pullbackConeOfLeftIso_π_app_none, CategoryTheory.Limits.Multifork.IsLimit.sectionsEquiv_symm_apply_val, CategoryTheory.Limits.biprod.conePointUniqueUpToIso_hom, CategoryTheory.Limits.Concrete.to_product_injective_of_isLimit, CategoryTheory.Limits.Cones.eta_hom_hom, CategoryTheory.Limits.isIso_limit_cone_parallelPair_of_eq, CategoryTheory.Limits.Fan.IsLimit.fac, CategoryTheory.Functor.mapCone_pt, CategoryTheory.Limits.PullbackCone.isoMk_inv_hom, CategoryTheory.Limits.coconeOfConeRightOp_pt, CategoryTheory.Functor.mapCone₂_pt, CategoryTheory.ProdPreservesConnectedLimits.forgetCone_pt, CategoryTheory.Limits.limit.isoLimitCone_inv_π_assoc, CategoryTheory.Limits.BinaryFan.braiding_hom_fst, SSet.StrictSegal.isPointwiseRightKanExtensionAt.fac_aux₃, CategoryTheory.Limits.Fan.mk_pt, CategoryTheory.Limits.Cones.postcompose_obj_π, CategoryTheory.Adjunction.functorialityUnit'_app_hom, CategoryTheory.Limits.WidePullbackCone.IsLimit.lift_π, CategoryTheory.Functor.mapCone₂_π_app, CategoryTheory.Limits.Cones.functoriality_map_hom, CategoryTheory.Limits.Cones.extendId_hom_hom, CategoryTheory.Limits.SequentialProduct.cone_π_app_comp_Pi_π_pos, CategoryTheory.Limits.PreservesLimit₂.isoObjConePointsOfIsLimit_hom_comp_π_assoc, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_functor_obj_π_app, CategoryTheory.Limits.IsLimit.lift_comp_conePointUniqueUpToIso_inv_assoc, LightProfinite.Extend.functorOp_map, TopCat.Sheaf.interUnionPullbackConeLift_left, CategoryTheory.Limits.coneOfCoconeRightOp_pt, CategoryTheory.Limits.PullbackCone.IsLimit.equivPullbackObj_symm_apply_fst, Alexandrov.lowerCone_π_app, CategoryTheory.GrothendieckTopology.OneHypercoverFamily.IsSheafIff.fac', CategoryTheory.Limits.Fork.condition, CategoryTheory.ComposableArrows.Exact.cokerIsoKer'_inv_hom_id_assoc, CategoryTheory.ShortComplex.LeftHomologyData.wπ, ModuleCat.binaryProductLimitCone_cone_π_app_left, CategoryTheory.liftedLimitMapsToOriginal_inv_map_π, CategoryTheory.Limits.KernelFork.app_one, CategoryTheory.GrothendieckTopology.OneHypercoverFamily.IsSheafIff.fac'_assoc, CategoryTheory.Functor.coneOfIsRightKanExtension_π, CategoryTheory.Limits.Fork.app_zero_eq_ι, CategoryTheory.Limits.Cones.postcomposeComp_inv_app_hom, CategoryTheory.Limits.limit.cone_π, CategoryTheory.Limits.IsLimit.isIso_limMap_π, CategoryTheory.Functor.mapConePostcomposeEquivalenceFunctor_inv_hom, CategoryTheory.Limits.limit.lift_π_apply, CategoryTheory.Limits.DiagramOfCones.conePoints_obj, CategoryTheory.Limits.isLimitOfCoconeOfConeUnop_lift, CategoryTheory.Limits.isKernelCompMono_lift, CategoryTheory.Limits.pullbackConeOfRightIso_π_app_left, CategoryTheory.Limits.pullbackConeOfLeftIso_x, toStructuredArrowCompProj_hom_app, CategoryTheory.Limits.Trident.ofCone_π, CategoryTheory.Limits.Types.Small.limitConeIsLimit_lift, CategoryTheory.Functor.mapConePostcomposeEquivalenceFunctor_hom_hom, CategoryTheory.Limits.IsLimit.lift_comp_conePointUniqueUpToIso_inv, CategoryTheory.Limits.limit.conePointUniqueUpToIso_hom_comp, CategoryTheory.IsSplitEqualizer.asFork_pt, CategoryTheory.Functor.mapCone_π_app, CategoryTheory.Limits.MulticospanIndex.toPiForkFunctor_obj, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctor_obj_π_app, CategoryTheory.Over.conePostIso_inv_app_hom, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.pullbackConeSndIsOpenImmersion, CategoryTheory.Sheaf.coneΓ_π_app, CategoryTheory.Limits.Fork.equivOfIsos_inverse_obj_ι, TopCat.Presheaf.whiskerIsoMapGenerateCocone_hom_hom, CategoryTheory.Limits.coneOfConeUncurry_π_app, CategoryTheory.Limits.ProductsFromFiniteCofiltered.liftToFinsetLimitCone_cone_pt, CategoryTheory.Limits.Cones.forget_obj, AlgebraicGeometry.Scheme.Pullback.openCoverOfBase'_f, CategoryTheory.Limits.CompleteLattice.finiteLimitCone_cone_pt, CategoryTheory.Limits.Fork.op_ι_app, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiForkOfIsLimit_inverse, CategoryTheory.Functor.IsEventuallyConstantTo.isIso_π_of_isLimit, CategoryTheory.Functor.IsEventuallyConstantTo.cone_pt, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_inverse_obj_π_app, CategoryTheory.Limits.Pi.map_eq_prod_map, CategoryTheory.Functor.OneHypercoverDenseData.isSheaf_iff.fac_assoc, CategoryTheory.Limits.coconeUnopOfCone_pt, CategoryTheory.Limits.Concrete.surjective_π_app_zero_of_surjective_map, LightProfinite.instTotallyDisconnectedSpaceCarrierToTopTruePtCompHausLimitConeCompLightProfiniteToCompHaus, Profinite.exists_locallyConstant, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverse_obj_pt, CategoryTheory.CostructuredArrow.CreatesConnected.raiseCone_π_app, CategoryTheory.Limits.Multifork.IsLimit.fac, CategoryTheory.Limits.IsLimit.conePointUniqueUpToIso_inv_comp, CategoryTheory.extendFan_π_app, CategoryTheory.Limits.coneRightOpOfCocone_pt, CommGrpCat.binaryProductLimitCone_cone_pt, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivUnitIso_hom_app_hom, CategoryTheory.Limits.PullbackCone.eta_hom_hom, CategoryTheory.Limits.binaryBiconeOfIsSplitEpiOfKernel_snd, CategoryTheory.Limits.BinaryBicone.ofLimitCone_snd, AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_fst_assoc, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivUnitIsoApp_hom_hom, CategoryTheory.Limits.PullbackCone.mk_pt, CategoryTheory.Over.conePost_obj_pt, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctorObj_pt, CategoryTheory.Limits.limitConeOfUnique_isLimit_lift, CategoryTheory.coherentTopology.epi_π_app_zero_of_epi, CategoryTheory.Limits.coneLeftOpOfCocone_pt, CategoryTheory.Limits.Trident.ι_eq_app_zero, CategoryTheory.Limits.limit.lift_pre, CategoryTheory.Limits.Cones.functorialityEquivalence_counitIso, CategoryTheory.Limits.Fork.op_ι_app_one, w, CategoryTheory.Limits.mono_of_isLimit_fork, CategoryTheory.Limits.PullbackCone.ofCone_π, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_inverse_obj_pt, CategoryTheory.Limits.BinaryFan.isLimit_iff_isIso_fst, CategoryTheory.Limits.PullbackCone.op_inl, CategoryTheory.Limits.PullbackCone.IsLimit.lift_snd, CategoryTheory.Functor.mapConeWhisker_hom_hom, AlgebraicGeometry.ExistsHomHomCompEqCompAux.hab, ModuleCat.HasLimit.productLimitCone_cone_pt_isModule, CategoryTheory.Limits.Cofork.unop_π_app_zero, CategoryTheory.ShortComplex.isoCyclesOfIsLimit_inv_ι_assoc, toStructuredArrow_obj, CategoryTheory.Over.isPullback_of_binaryFan_isLimit, CategoryTheory.Limits.biprod.conePointUniqueUpToIso_inv, CategoryTheory.Limits.IsLimit.fac_assoc, CategoryTheory.Limits.PullbackCone.flip_pt, CategoryTheory.Limits.BinaryFan.braiding_inv_fst, CategoryTheory.Limits.Wedge.ext_inv_hom, CategoryTheory.Limits.BinaryFan.assoc_snd, CategoryTheory.Limits.Pi.cone_pt, CategoryTheory.Limits.IsLimit.homEquiv_symm_π_app_assoc, CategoryTheory.Limits.Cones.ext_inv_hom, category_comp_hom, CategoryTheory.Limits.CoproductDisjoint.nonempty_isInitial_of_ne, CategoryTheory.CartesianMonoidalCategory.ofChosenFiniteProducts.pentagon, CategoryTheory.Limits.FormalCoproduct.pullbackCone_fst_f, CategoryTheory.Monad.ForgetCreatesLimits.conePoint_A, CategoryTheory.Comma.coneOfPreserves_pt_hom, ModuleCat.HasLimit.productLimitCone_cone_pt_carrier, CategoryTheory.Limits.Trident.IsLimit.homIso_symm_apply, CategoryTheory.Functor.postcomposeWhiskerLeftMapCone_hom_hom, CategoryTheory.Enriched.FunctorCategory.coneFunctorEnrichedHom_pt, CategoryTheory.Limits.MulticospanIndex.sndPiMapOfIsLimit_proj_assoc, CategoryTheory.Limits.ConeMorphism.hom_inv_id_assoc, TopCat.coneOfConeForget_π_app, CategoryTheory.Limits.BinaryFan.braiding_inv_snd_assoc, CategoryTheory.Limits.Bicone.ofLimitCone_π, CategoryTheory.Limits.Fan.IsLimit.lift_proj, ofFork_π, CategoryTheory.Limits.isColimitCoconeRightOpOfCone_desc, CategoryTheory.Limits.isColimitCoconeOfConeRightOp_desc, CategoryTheory.ShortComplex.LeftHomologyData.ofIsLimitKernelFork_K, TopCat.induced_of_isLimit, CategoryTheory.Limits.Types.surjective_π_app_zero_of_surjective_map, CategoryTheory.Limits.coconeLeftOpOfCone_ι_app, AlgebraicGeometry.exists_mem_of_isClosed_of_nonempty', fromCostructuredArrow_obj_pt, isLimit_iff_isIso_limMap_π, TopCat.Presheaf.SheafConditionEqualizerProducts.fork_pt, CategoryTheory.Limits.coconeRightOpOfCone_ι, CategoryTheory.Limits.PullbackCone.combine_pt_map, CategoryTheory.Limits.Fork.IsLimit.lift_ι_assoc, Condensed.isColimitLocallyConstantPresheafDiagram_desc_apply, CategoryTheory.Limits.Multifork.app_right_eq_ι_comp_snd_assoc, CategoryTheory.Limits.PullbackCone.unop_pt, CategoryTheory.Limits.limit.lift_π_assoc, CategoryTheory.WithTerminal.isLimitEquiv_apply_lift_left, CategoryTheory.Limits.Fork.IsLimit.lift_ι', CategoryTheory.Limits.limit.pre_eq, CategoryTheory.Limits.limit.lift_map, AddCommGrpCat.HasLimit.lift_hom_apply, CategoryTheory.Limits.PullbackCone.combine_pt_obj, CategoryTheory.Limits.IsLimit.conePointsIsoOfEquivalence_hom, CategoryTheory.Limits.Fan.IsLimit.lift_proj_assoc, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivUnitIsoApp_inv_hom, CategoryTheory.Limits.PushoutCocone.op_pt, CategoryTheory.Limits.Multifork.ofPiFork_π_app_right, LightCondensed.epi_π_app_zero_of_epi, CategoryTheory.Functor.mapConeOp_inv_hom, CategoryTheory.Limits.FormalCoproduct.pullbackCone_condition, CategoryTheory.Limits.Multifork.ofPiFork_π_app_left, CategoryTheory.regularTopology.equalizerCondition_w, CategoryTheory.Functor.mapConePostcompose_hom_hom, CategoryTheory.ShortComplex.isoCyclesOfIsLimit_hom_iCycles, CategoryTheory.Subfunctor.equalizer.fork_pt, CategoryTheory.Limits.IsLimit.conePointsIsoOfEquivalence_inv, AlgebraicGeometry.exists_appTop_π_eq_of_isLimit, TopCat.Presheaf.isGluing_iff_pairwise, Alexandrov.lowerCone_pt, CategoryTheory.Over.ConstructProducts.conesEquivFunctor_obj_pt, CategoryTheory.Limits.pullbackConeOfRightIso_π_app_none, CategoryTheory.Limits.binaryBiconeOfIsSplitEpiOfKernel_fst, CategoryTheory.Limits.IsLimit.lift_comp_conePointsIsoOfNatIso_inv_assoc, HomologicalComplex.coneOfHasLimitEval_pt_X, whisker_pt, CategoryTheory.ComposableArrows.IsComplex.epi_cokerToKer', ModuleCat.HasLimit.lift_hom_apply, ModuleCat.binaryProductLimitCone_isLimit_lift, CategoryTheory.Comonad.beckEqualizer_lift, CategoryTheory.Comonad.ForgetCreatesLimits'.conePoint_A, CategoryTheory.Limits.MulticospanIndex.ofPiForkFunctor_obj, Profinite.Extend.cone_pt, CategoryTheory.isCoseparator_iff_of_isLimit_fan, CategoryTheory.WithTerminal.coneEquiv_unitIso_inv_app_hom_left, lightDiagramToLightProfinite_map, CategoryTheory.IsUniversalColimit.nonempty_isColimit_of_pullbackCone_right, CategoryTheory.RanIsSheafOfIsCocontinuous.fac, CategoryTheory.Limits.limit.isoLimitCone_inv_π, CategoryTheory.Limits.Bicone.toCone_π_app, CategoryTheory.Limits.KernelFork.mapIsoOfIsLimit_hom, CategoryTheory.ShortComplex.LeftHomologyData.ofIsLimitKernelFork_π, CategoryTheory.Limits.BinaryFan.leftUnitor_hom, CategoryTheory.Subobject.leInfCone_π_app_none, CategoryTheory.Limits.Fan.nonempty_isLimit_iff_isIso_piLift, unop_pt, CategoryTheory.Limits.IsLimit.lift_comp_conePointsIsoOfNatIso_hom_assoc, CategoryTheory.Limits.DiagramOfCones.comp, CategoryTheory.Limits.PullbackCone.condition_one, CategoryTheory.GrothendieckTopology.coneCompEvaluationOfConeCompDiagramFunctorCompEvaluation_π_app, CategoryTheory.ComposableArrows.Exact.isIso_cokerToKer', CategoryTheory.Presieve.piComparison_fac, CategoryTheory.Limits.BinaryBicone.ofLimitCone_fst, toUnder_π_app, CategoryTheory.Limits.IsLimit.assoc_lift, CategoryTheory.Limits.Cones.equivalenceOfReindexing_unitIso, CategoryTheory.Comonad.beckFork_pt, CategoryTheory.Limits.IsLimit.conePointUniqueUpToIso_inv_comp_assoc, CategoryTheory.Limits.MulticospanIndex.parallelPairDiagramOfIsLimit_obj, CategoryTheory.Over.ConstructProducts.conesEquivUnitIso_hom_app_hom, AlgebraicGeometry.Scheme.nonempty_of_isLimit, CategoryTheory.Limits.coconeOfConeLeftOp_ι_app, CategoryTheory.Limits.limit.coneMorphism_π, CategoryTheory.Limits.KernelFork.map_condition, AlgebraicGeometry.Scheme.compactSpace_of_isLimit, CategoryTheory.Limits.coconeOfConeUnop_ι, CategoryTheory.Limits.IsLimit.lift_self, CategoryTheory.Mon.limitCone_pt, AlgebraicGeometry.exists_mem_of_isClosed_of_nonempty, CategoryTheory.Limits.coconeEquivalenceOpConeOp_counitIso, CommRingCat.piFan_pt, CategoryTheory.Limits.Fork.op_ι_app_zero, CategoryTheory.Cat.HasLimits.limitConeLift_toFunctor, CategoryTheory.Limits.Trident.app_zero_assoc, CategoryTheory.Limits.PullbackCone.isIso_snd_of_mono_of_isLimit, CategoryTheory.Limits.combineCones_pt_map, toStructuredArrow_comp_proj, CategoryTheory.Abelian.epi_fst_of_isLimit, CategoryTheory.Limits.Cofork.op_π_app_one, SSet.StrictSegal.isPointwiseRightKanExtensionAt.fac_aux₁, CategoryTheory.Limits.IsLimit.conePointsIsoOfNatIso_inv_comp_assoc, CategoryTheory.Limits.limit.conePointUniqueUpToIso_inv_comp, CategoryTheory.Limits.IsLimit.map_π_assoc, mapConeToUnder_hom_hom, CategoryTheory.Limits.opProductIsoCoproduct'_inv_comp_lift, ModuleCat.HasLimit.productLimitCone_cone_pt_isAddCommGroup, CategoryTheory.Limits.BinaryFan.leftUnitor_inv, CategoryTheory.Limits.isColimitCoconeOfConeLeftOp_desc, CategoryTheory.Functor.mapConeOp_hom_hom, CategoryTheory.coherentTopology.isLocallySurjective_π_app_zero_of_isLocallySurjective_map, CategoryTheory.Limits.PullbackCone.IsLimit.lift_fst_assoc, LightCondensed.instFinalNatCostructuredArrowOppositeFintypeCatLightProfiniteOpToLightProfiniteOpPtAsLimitConeFunctorOp, CategoryTheory.Limits.KernelFork.map_ι, ModuleCat.binaryProductLimitCone_cone_pt, CategoryTheory.Limits.equalizer.fork_π_app_zero, CategoryTheory.Comma.coneOfPreserves_pt_left, CategoryTheory.Functor.structuredArrowMapCone_pt, CommGrpCat.binaryProductLimitCone_isLimit_lift, CategoryTheory.Limits.coneOfConeUncurry_pt, CategoryTheory.Limits.splitMonoOfIdempotentOfIsLimitFork_retraction, CategoryTheory.Limits.Multifork.hom_comp_ι, w_apply, CategoryTheory.Limits.isLimitOfCoconeUnopOfCone_lift, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiForkOfIsLimit_unitIso, overPost_π_app, toStructuredArrow_map, CategoryTheory.Limits.proj_comp_opProductIsoCoproduct'_hom, CategoryTheory.Limits.PushoutCocone.unop_pt, CategoryTheory.Limits.Multifork.pi_condition_assoc, CategoryTheory.Limits.SequentialProduct.cone_π_app, CategoryTheory.Limits.MulticospanIndex.ofPiForkFunctor_map_hom, CategoryTheory.Limits.limit.lift_π_app_assoc, w_assoc, AlgebraicGeometry.isAffineHom_π_app, LightProfinite.Extend.functor_obj, CategoryTheory.Limits.Multifork.ext_inv_hom, CategoryTheory.WithTerminal.coneEquiv_inverse_map_hom_left, op_pt, CategoryTheory.ShortComplex.exact_iff_of_forks, CategoryTheory.ShortComplex.HomologyData.ofEpiMonoFactorisation.f'_eq, HomologicalComplex.extend.leftHomologyData.lift_d_comp_eq_zero_iff, CategoryTheory.Monad.ForgetCreatesLimits.liftedCone_π_app_f, CategoryTheory.Limits.combineCones_pt_obj, CategoryTheory.Limits.coconeRightOpOfCone_pt, CategoryTheory.CategoryOfElements.CreatesLimitsAux.liftedCone_pt_snd, CategoryTheory.Over.ConstructProducts.conesEquivInverseObj_π_app, CategoryTheory.Functor.mapConeMapCone_inv_hom, CategoryTheory.GrothendieckTopology.liftToPlusObjLimitObj_fac, CategoryTheory.Limits.IsLimit.homEquiv_symm_naturality, CategoryTheory.Functor.IsEventuallyConstantTo.isIso_π_of_isLimit', LightProfinite.instEpiAppOppositeNatπAsLimitCone, CategoryTheory.FunctorToTypes.binaryProductCone_pt_map, CategoryTheory.Limits.PullbackCone.IsLimit.lift_snd_assoc, CategoryTheory.Limits.IsLimit.isZero_pt, CategoryTheory.Limits.BinaryFan.assocInv_snd, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_tensorProductIsBinaryProduct_lift_hom, CategoryTheory.Limits.coconeEquivalenceOpConeOp_inverse_map_hom, CategoryTheory.Limits.PullbackCone.isoMk_hom_hom, CategoryTheory.Comonad.ForgetCreatesLimits'.commuting, CategoryTheory.Limits.Multifork.ofPiFork_ι, CategoryTheory.Functor.Initial.extendCone_obj_π_app, CategoryTheory.Limits.Fork.condition_assoc, CategoryTheory.Limits.IsLimit.conePointsIsoOfNatIso_hom_comp, CategoryTheory.Limits.Cocone.unop_pt, CategoryTheory.preserves_lift_mapCone, instSecondCountableTopologyCarrierToTopTotallyDisconnectedSpacePtOppositeNatProfiniteCone, CategoryTheory.Functor.functorialityCompPostcompose_inv_app_hom, CategoryTheory.Limits.Wedge.condition_assoc, CategoryTheory.ComposableArrows.IsComplex.cokerToKer'_fac_assoc, CategoryTheory.Limits.coconeUnopOfCone_ι, CategoryTheory.Limits.BinaryFan.assocInv_fst, CategoryTheory.Limits.Fork.isoForkOfι_inv_hom, CategoryTheory.Limits.opCoproductIsoProduct'_hom_comp_proj_assoc, CategoryTheory.Limits.BinaryFan.π_app_left, CategoryTheory.Functor.mapConeWhisker_inv_hom, CategoryTheory.Limits.IsLimit.existsUnique, CategoryTheory.PreOneHypercover.Hom.mapMultiforkOfIsLimit_ι_assoc, toStructuredArrowCompToUnderCompForget_inv_app, CategoryTheory.ShortComplex.RightHomologyData.ofIsLimitKernelFork_H, CategoryTheory.mono_iff_isIso_fst, TopCat.Presheaf.SheafConditionEqualizerProducts.fork_π_app_walkingParallelPair_zero, CategoryTheory.WithTerminal.coneEquiv_functor_obj_pt, CategoryTheory.Limits.IsLimit.homIso_hom, CategoryTheory.Limits.PullbackCone.ofCone_pt, CategoryTheory.liftedLimitMapsToOriginal_hom_π, CategoryTheory.CartesianMonoidalCategory.ofChosenFiniteProducts.rightUnitor_naturality, CategoryTheory.Limits.PullbackCone.mk_π_app_left, CategoryTheory.CategoryOfElements.CreatesLimitsAux.map_lift_mapCone, TopCat.isSheaf_of_isLimit, CategoryTheory.Comonad.ComonadicityInternal.counitFork_pt, CategoryTheory.Limits.FormalCoproduct.homPullbackEquiv_apply_coe, extensions_app, CategoryTheory.Limits.pullbackConeEquivBinaryFan_unitIso, CategoryTheory.Limits.isColimitCoconeOfConeUnop_desc, AddGrpCat.binaryProductLimitCone_cone_pt, CategoryTheory.Limits.coneOfIsSplitMono_pt, CommRingCat.prodFan_pt, TopCat.Sheaf.interUnionPullbackCone_pt, CategoryTheory.Limits.HasLimit.lift_isoOfNatIso_inv, Profinite.exists_locallyConstant_finite_nonempty, CategoryTheory.Limits.BinaryFan.assoc_fst, CategoryTheory.ComposableArrows.IsComplex.cokerToKer'_fac, CategoryTheory.Limits.limit.lift_map_assoc, CategoryTheory.Limits.Types.Limit.lift_π_apply', CategoryTheory.mono_iff_isIso_snd, AddCommGrpCat.binaryProductLimitCone_cone_π_app_right, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverseObj_pt, CategoryTheory.PreOneHypercover.forkOfIsColimit_ι_map_inj, CategoryTheory.PreservesFiniteLimitsOfFlat.fac, CategoryTheory.Limits.PullbackCone.IsLimit.equivPullbackObj_symm_apply_snd, CategoryTheory.Comonad.ForgetCreatesLimits'.liftedConeIsLimit_lift_f, CategoryTheory.Limits.PullbackCone.mono_snd_of_is_pullback_of_mono, CategoryTheory.Limits.SequentialProduct.cone_π_app_comp_Pi_π_neg, CategoryTheory.IsPullback.of_isLimit_cone, CategoryTheory.Limits.limit.lift_π, CategoryTheory.PreOneHypercover.Hom.mapMultiforkOfIsLimit_ι, CategoryTheory.Limits.Cones.extendComp_hom_hom, CategoryTheory.Limits.wideEqualizer.trident_π_app_zero, CategoryTheory.Limits.BinaryFan.isLimit_iff_isIso_snd, CategoryTheory.Limits.Multifork.hom_comp_ι_assoc, CategoryTheory.Limits.Bicone.ofLimitCone_pt, CategoryTheory.RanIsSheafOfIsCocontinuous.liftAux_map, Profinite.exists_locallyConstant_fin_two, PresheafOfModules.limitCone_pt, toStructuredArrowCone_pt, CategoryTheory.Limits.IsLimit.OfNatIso.coneOfHom_homOfCone, CategoryTheory.GrothendieckTopology.OneHypercover.multiforkLift_map_assoc, CategoryTheory.Limits.Multifork.app_right_eq_ι_comp_fst, ProfiniteGrp.instIsTopologicalGroupCarrierToTopTotallyDisconnectedSpacePtProfiniteLimitConeCompForget₂ContinuousMonoidHomToProfiniteContinuousMap, CategoryTheory.Limits.BinaryFan.mk_pt, Profinite.Extend.functor_map, CategoryTheory.Limits.HasLimit.lift_isoOfNatIso_hom_assoc, CategoryTheory.Limits.BinaryBicone.ofLimitCone_pt, CategoryTheory.Limits.isIso_limit_cone_parallelPair_of_self, CategoryTheory.Functor.OneHypercoverDenseData.isSheaf_iff.lift_map, CategoryTheory.Limits.Trident.IsLimit.homIso_natural, CategoryTheory.Functor.OneHypercoverDenseData.isSheaf_iff.lift_map_assoc, CategoryTheory.Limits.Multifork.toPiFork_π_app_zero, CategoryTheory.Limits.biproduct.conePointUniqueUpToIso_hom, CategoryTheory.Limits.Types.isLimit_iff_bijective_sectionOfCone, CategoryTheory.Limits.Cones.postcomposeComp_hom_app_hom, CategoryTheory.Limits.Types.surjective_π_app_zero_of_surjective_map_aux, CategoryTheory.Limits.FormalCoproduct.pullbackCone_snd_f, CategoryTheory.Limits.Cones.postcompose_map_hom, CategoryTheory.Limits.IsLimit.isIso_π_app_of_isInitial, CategoryTheory.Limits.coneOfCoconeUnop_pt, CategoryTheory.Limits.Multifork.toSections_fac, Profinite.isIso_asLimitCone_lift, TopCat.coneOfConeForget_pt, CategoryTheory.CategoryOfElements.CreatesLimitsAux.liftedCone_pt_fst, CategoryTheory.Limits.Cones.postcomposeId_inv_app_hom, CategoryTheory.Limits.Fork.unop_π, CategoryTheory.WithTerminal.coneEquiv_counitIso_hom_app_hom, CategoryTheory.Limits.limit.lift_extend, TopCat.isTopologicalBasis_cofiltered_limit, CategoryTheory.Limits.binaryBiconeOfIsSplitEpiOfKernel_inr, CategoryTheory.IsPullback.of_is_product, CategoryTheory.Limits.Multifork.isLimit_types_iff, CategoryTheory.Limits.IsLimit.fac, CategoryTheory.Limits.Types.isLimit_iff, CategoryTheory.Over.ConstructProducts.conesEquivFunctor_obj_π_app, CategoryTheory.Limits.combineCones_π_app_app, CategoryTheory.Limits.instIsIsoHomHomCone, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_unitIso_hom_app_hom, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.instSndPullbackConeOfLeft, CategoryTheory.Limits.KernelFork.mapOfIsLimit_ι, CategoryTheory.Limits.Multifork.condition_assoc, Preorder.isGLB_of_isLimit, CategoryTheory.Over.ConstructProducts.conesEquivInverse_map_hom, CategoryTheory.Limits.FormalCoproduct.pullbackCone_snd_φ, CategoryTheory.Limits.WidePullbackCone.condition, CategoryTheory.Adjunction.functorialityCounit'_app_hom, CategoryTheory.WithTerminal.coneEquiv_inverse_obj_pt_right_as, CategoryTheory.Limits.Fork.app_one_eq_ι_comp_right, Profinite.exists_hom, CategoryTheory.Functor.OneHypercoverDenseData.isSheaf_iff.liftAux_fac, AlgebraicGeometry.Scheme.isAffine_of_isLimit, CategoryTheory.Limits.FormalCoproduct.isPullback, CategoryTheory.Comonad.ForgetCreatesLimits'.liftedCone_pt, CategoryTheory.Limits.pullbackConeEquivBinaryFan_inverse_map_hom, CategoryTheory.Limits.HasLimit.lift_isoOfNatIso_inv_assoc, CompHausLike.pullback.cone_pt, CategoryTheory.Limits.coconeLeftOpOfCone_pt, CategoryTheory.Limits.ConeMorphism.inv_hom_id, CategoryTheory.ShortComplex.isoCyclesOfIsLimit_inv_ι, CategoryTheory.Limits.Types.isLimitEquivSections_symm_apply, CategoryTheory.Functor.OneHypercoverDenseData.isSheaf_iff.fac, op_ι, CategoryTheory.WithTerminal.coneEquiv_functor_map_hom, AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_fst, CategoryTheory.Limits.IsLimit.homEquiv_apply, CategoryTheory.Limits.CompleteLattice.limitCone_cone_pt, CategoryTheory.Limits.Multifork.pi_condition, CategoryTheory.Limits.KernelFork.map_condition_assoc, CategoryTheory.Comma.coneOfPreserves_π_app_left
unop 📖CompOp
6 mathmath: CategoryTheory.Limits.coconeEquivalenceOpConeOp_unitIso, unop_ι, unop_pt, CategoryTheory.Limits.coconeEquivalenceOpConeOp_inverse_obj, CategoryTheory.Limits.coconeEquivalenceOpConeOp_counitIso, CategoryTheory.Limits.coconeEquivalenceOpConeOp_inverse_map_hom
whisker 📖CompOp
16 mathmath: whisker_π, CategoryTheory.Functor.Initial.limitConeComp_isLimit, CategoryTheory.Limits.Cones.whiskering_map_hom, CategoryTheory.Limits.Cones.equivalenceOfReindexing_counitIso, TopCat.Presheaf.whiskerIsoMapGenerateCocone_inv_hom, CategoryTheory.Functor.Initial.limitConeComp_cone, CategoryTheory.Limits.PushoutCocone.op_π_app, CategoryTheory.Limits.PullbackCone.unop_ι_app, TopCat.Presheaf.whiskerIsoMapGenerateCocone_hom_hom, CategoryTheory.Limits.limit.lift_pre, CategoryTheory.Functor.mapConeWhisker_hom_hom, CategoryTheory.Limits.limit.pre_eq, whisker_pt, CategoryTheory.Limits.Cones.equivalenceOfReindexing_unitIso, CategoryTheory.Functor.mapConeWhisker_inv_hom, CategoryTheory.Limits.Cones.whiskering_obj
π 📖CompOp
321 mathmath: CategoryTheory.Limits.limitConeOfUnique_cone_π, CategoryTheory.GrothendieckTopology.liftToDiagramLimitObjAux_fac, LightProfinite.Extend.functorOp_obj, CategoryTheory.Limits.Trident.app_zero, AlgebraicGeometry.opensCone_pt, unop_ι, CategoryTheory.Limits.ProductsFromFiniteCofiltered.liftToFinsetLimitCone_isLimit_lift, ofTrident_π, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverse_obj_π_app, CategoryTheory.Comonad.ComonadicityInternal.unitFork_π_app, CategoryTheory.Limits.pullbackConeOfLeftIso_π_app_left, CategoryTheory.GrothendieckTopology.liftToDiagramLimitObjAux_fac_assoc, CategoryTheory.Functor.isLimitConeOfIsRightKanExtension_lift, CategoryTheory.Limits.Pi.cone_π, Profinite.Extend.functorOp_map, AlgebraicGeometry.exists_isAffineOpen_preimage_eq, CategoryTheory.Limits.BinaryBicone.toCone_π_app_right, CategoryTheory.Limits.IsLimit.map_π, CategoryTheory.Limits.IsLimit.conePointUniqueUpToIso_hom_comp_assoc, CategoryTheory.Comonad.ForgetCreatesLimits'.liftedCone_π_app_f, CategoryTheory.Limits.PullbackCone.π_app_right, CategoryTheory.Limits.PushoutCocone.unop_π_app, CategoryTheory.Limits.Fork.unop_ι_app_zero, CategoryTheory.Limits.SequentialProduct.cone_π_app_comp_Pi_π_pos_assoc, Profinite.Extend.cone_π_app, CategoryTheory.Limits.Cocone.unop_π, CategoryTheory.WithTerminal.coneEquiv_inverse_obj_π_app_left, CategoryTheory.Enriched.FunctorCategory.isLimitConeFunctorEnrichedHom.fac, toCostructuredArrow_obj, CategoryTheory.Functor.IsEventuallyConstantTo.cone_π_app, CategoryTheory.Comma.coneOfPreserves_π_app_right, TopCat.Presheaf.SheafConditionEqualizerProducts.fork_π_app_walkingParallelPair_one, CategoryTheory.Functor.RightExtension.coneAt_π_app, CategoryTheory.Limits.coneOfDiagramTerminal_π_app, whisker_π, CategoryTheory.Under.liftCone_pt, CategoryTheory.Limits.PreservesLimit₂.isoObjConePointsOfIsColimit_inv_comp_map_π, CategoryTheory.Limits.PullbackCone.mk_π_app, CategoryTheory.Limits.IsLimit.conePointsIsoOfNatIso_inv_comp, CategoryTheory.Over.conePost_obj_π_app, ModuleCat.HasLimit.productLimitCone_cone_π, CategoryTheory.Limits.Cofork.unop_π_app_one, fromStructuredArrow_π_app, CategoryTheory.Limits.pullbackConeOfLeftIso_π_app_right, Profinite.exists_locallyConstant_finite_aux, fromCostructuredArrow_obj_π, CategoryTheory.Limits.IsLimit.conePointUniqueUpToIso_hom_comp, CategoryTheory.ProdPreservesConnectedLimits.forgetCone_π, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverseObj_π_app, CategoryTheory.Limits.ConeMorphism.w, extend_π, CategoryTheory.Limits.Bicone.toCone_π_app_mk, CategoryTheory.Limits.coneOfCoconeRightOp_π, CategoryTheory.Limits.BinaryBicone.toCone_π_app_left, CategoryTheory.WithTerminal.coneEquiv_functor_obj_π_app_star, Profinite.Extend.functorOp_obj, CategoryTheory.Limits.coneOfDiagramInitial_π_app, CategoryTheory.Limits.WidePullbackShape.mkCone_π_app, CategoryTheory.Monad.ForgetCreatesLimits.newCone_π_app, ModuleCat.binaryProductLimitCone_cone_π_app_right, CategoryTheory.Limits.PullbackCone.combine_π_app, CategoryTheory.CategoryOfElements.CreatesLimitsAux.liftedCone_π_app_coe, LightProfinite.lightToProfinite_map_proj_eq, CategoryTheory.Limits.Multiequalizer.multifork_π_app_left, CategoryTheory.Cat.HasLimits.limitCone_π_app, CategoryTheory.Limits.ConeMorphism.map_w_assoc, CategoryTheory.Limits.limit.isoLimitCone_hom_π_assoc, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctorObj_π_app, AlgebraicGeometry.isBasis_preimage_isAffineOpen, CategoryTheory.Limits.PullbackCone.op_ι_app, CategoryTheory.Limits.Fork.unop_ι_app_one, CategoryTheory.Functor.Initial.extendCone_obj_π_app', CategoryTheory.Enriched.FunctorCategory.coneFunctorEnrichedHom_π_app, AddCommGrpCat.binaryProductLimitCone_cone_π_app_left, CategoryTheory.Limits.coneOfCoconeLeftOp_π_app, CategoryTheory.Limits.coneOfCoconeUnop_π, PresheafOfModules.limitCone_π_app_app, CategoryTheory.Limits.Types.isLimitEquivSections_apply, CategoryTheory.Limits.SequentialProduct.cone_π_app_comp_Pi_π_neg_assoc, CategoryTheory.Limits.ProductsFromFiniteCofiltered.finiteSubproductsCocone_π_app_eq_sum, CategoryTheory.Limits.coneOfIsSplitMono_π_app, CategoryTheory.WithTerminal.coneEquiv_functor_obj_π_app_of, CategoryTheory.Limits.IsLimit.homEquiv_symm_π_app, LightCondensed.isColimitLocallyConstantPresheafDiagram_desc_apply, CategoryTheory.Limits.Cones.functoriality_obj_π_app, TopCat.nonempty_isLimit_iff_eq_induced, ofPullbackCone_π, AlgebraicGeometry.exists_appTop_π_eq_of_isAffine_of_isLimit, CategoryTheory.Limits.ConeMorphism.map_w, CategoryTheory.Limits.limit.isoLimitCone_hom_π, CategoryTheory.Limits.pullbackConeOfRightIso_π_app_right, CategoryTheory.Limits.Fork.ofι_π_app, CategoryTheory.Limits.IsLimit.hom_lift, CategoryTheory.Limits.PullbackCone.mk_π_app_right, CategoryTheory.Limits.Cofork.op_π_app_zero, CategoryTheory.Limits.coneOfConeCurry_π_app, CategoryTheory.Limits.Types.limitCone_π_app, toStructuredArrowCone_π_app, Profinite.instEpiAppDiscreteQuotientCarrierToTopTotallyDisconnectedSpaceπAsLimitCone, CategoryTheory.Limits.PreservesLimit₂.isoObjConePointsOfIsLimit_hom_comp_π, CategoryTheory.Over.ConstructProducts.conesEquivFunctor_map_hom, CategoryTheory.Limits.IsLimit.conePointsIsoOfNatIso_hom_comp_assoc, CategoryTheory.Limits.PullbackCone.mk_π_app_one, LightProfinite.Extend.functor_map, CategoryTheory.Over.conePost_map_hom, CategoryTheory.Limits.Fork.ofCone_π, AlgebraicGeometry.exists_preimage_eq, CategoryTheory.Limits.Types.limitConeIsLimit_lift_coe, Profinite.exists_isClopen_of_cofiltered, CategoryTheory.Limits.limit.conePointUniqueUpToIso_hom_comp_assoc, CategoryTheory.Limits.coneRightOpOfCocone_π, CategoryTheory.Limits.Multifork.app_right_eq_ι_comp_snd, CategoryTheory.Limits.PullbackCone.π_app_left, CategoryTheory.Limits.Multifork.app_left_eq_ι, CategoryTheory.Limits.coconeOfConeRightOp_ι, CategoryTheory.Limits.limit.conePointUniqueUpToIso_inv_comp_assoc, CategoryTheory.Under.liftCone_π_app, CategoryTheory.Limits.Fork.app_one_eq_ι_comp_left, CategoryTheory.CostructuredArrow.CreatesConnected.raiseCone_pt, CategoryTheory.Mon.limitCone_π_app_hom, CategoryTheory.Comma.limitAuxiliaryCone_π_app, CategoryTheory.WithTerminal.coneEquiv_inverse_obj_pt_hom, CategoryTheory.Limits.PreservesLimit₂.isoObjConePointsOfIsColimit_inv_comp_map_π_assoc, Profinite.Extend.functor_obj, CategoryTheory.Functor.Initial.extendCone_map_hom, toCostructuredArrow_map, CategoryTheory.Limits.BinaryFan.π_app_right, AlgebraicGeometry.opensCone_π_app, SSet.StrictSegal.isPointwiseRightKanExtensionAt.fac_aux₂, CategoryTheory.Limits.Cones.eta_inv_hom, CategoryTheory.Limits.PushoutCocone.op_π_app, CategoryTheory.Comonad.ForgetCreatesLimits'.newCone_π, CategoryTheory.Limits.limit.lift_π_app, equiv_inv_π, CategoryTheory.biconeMk_map, CategoryTheory.Limits.Types.Small.limitCone_π_app, CategoryTheory.Limits.Fork.app_one_eq_ι_comp_right_assoc, overPost_pt, CategoryTheory.Functor.Initial.limit_cone_comp_aux, CategoryTheory.Limits.isLimitConeOfAdj_lift, CategoryTheory.Limits.Types.Limit.lift_π_apply, equiv_hom_snd, CategoryTheory.Limits.ConeMorphism.w_assoc, CategoryTheory.Limits.PullbackCone.unop_ι_app, CategoryTheory.Limits.Multifork.toPiFork_π_app_one, CategoryTheory.Limits.pullbackConeOfLeftIso_π_app_none, CategoryTheory.Limits.Concrete.to_product_injective_of_isLimit, CategoryTheory.Limits.Cones.eta_hom_hom, CategoryTheory.Limits.PullbackCone.isoMk_inv_hom, AddCommGrpCat.HasLimit.productLimitCone_cone_π, CategoryTheory.Limits.limit.isoLimitCone_inv_π_assoc, SSet.StrictSegal.isPointwiseRightKanExtensionAt.fac_aux₃, CategoryTheory.Limits.Cones.postcompose_obj_π, CategoryTheory.Functor.mapCone₂_π_app, CategoryTheory.Limits.Cones.functoriality_map_hom, CategoryTheory.Limits.SequentialProduct.cone_π_app_comp_Pi_π_pos, CategoryTheory.Limits.PreservesLimit₂.isoObjConePointsOfIsLimit_hom_comp_π_assoc, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_functor_obj_π_app, LightProfinite.Extend.functorOp_map, Alexandrov.lowerCone_π_app, CategoryTheory.Limits.coneLeftOpOfCocone_π_app, ModuleCat.binaryProductLimitCone_cone_π_app_left, CategoryTheory.liftedLimitMapsToOriginal_inv_map_π, CategoryTheory.Limits.KernelFork.app_one, CategoryTheory.Functor.coneOfIsRightKanExtension_π, CategoryTheory.Limits.Fork.app_zero_eq_ι, CategoryTheory.Limits.limit.cone_π, CategoryTheory.Limits.IsLimit.isIso_limMap_π, CategoryTheory.Limits.limit.lift_π_apply, CategoryTheory.Limits.pullbackConeOfRightIso_π_app_left, ProfiniteGrp.cone_π_app, CategoryTheory.Limits.Trident.ofCone_π, CompHausLike.pullback.cone_π, CategoryTheory.Limits.Types.Small.limitConeIsLimit_lift, CategoryTheory.Limits.limit.conePointUniqueUpToIso_hom_comp, CategoryTheory.Functor.mapCone_π_app, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctor_obj_π_app, CategoryTheory.Sheaf.coneΓ_π_app, CategoryTheory.Limits.coneOfConeUncurry_π_app, CategoryTheory.Limits.asEmptyCone_π_app, CategoryTheory.Limits.Fork.op_ι_app, CategoryTheory.Functor.IsEventuallyConstantTo.isIso_π_of_isLimit, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_inverse_obj_π_app, CategoryTheory.Limits.Trident.ofι_π_app, CategoryTheory.Limits.coneOfSectionCompYoneda_π, CategoryTheory.Limits.Concrete.surjective_π_app_zero_of_surjective_map, Profinite.exists_locallyConstant, CategoryTheory.Limits.Trident.equalizer_ext, CategoryTheory.CostructuredArrow.CreatesConnected.raiseCone_π_app, CategoryTheory.Limits.IsLimit.conePointUniqueUpToIso_inv_comp, CategoryTheory.extendFan_π_app, CategoryTheory.Limits.BinaryBicone.ofLimitCone_snd, CategoryTheory.Over.conePost_obj_pt, CategoryTheory.Limits.limitConeOfUnique_isLimit_lift, CategoryTheory.coherentTopology.epi_π_app_zero_of_epi, CategoryTheory.Limits.Trident.ι_eq_app_zero, CategoryTheory.Limits.Fork.op_ι_app_one, w, CategoryTheory.Limits.PullbackCone.ofCone_π, AlgebraicGeometry.ExistsHomHomCompEqCompAux.hab, CategoryTheory.Limits.Cofork.unop_π_app_zero, toStructuredArrow_obj, CategoryTheory.Limits.IsLimit.fac_assoc, CategoryTheory.Limits.IsLimit.homEquiv_symm_π_app_assoc, CategoryTheory.Limits.limit.homIso_hom, TopCat.coneOfConeForget_π_app, CategoryTheory.Limits.Bicone.ofLimitCone_π, ofFork_π, TopCat.induced_of_isLimit, CategoryTheory.Limits.Types.surjective_π_app_zero_of_surjective_map, CategoryTheory.Limits.coconeLeftOpOfCone_ι_app, AlgebraicGeometry.exists_mem_of_isClosed_of_nonempty', isLimit_iff_isIso_limMap_π, CategoryTheory.Limits.coconeRightOpOfCone_ι, CategoryTheory.Limits.PullbackCone.combine_pt_map, Condensed.isColimitLocallyConstantPresheafDiagram_desc_apply, CategoryTheory.Limits.PullbackCone.equalizer_ext, CategoryTheory.Limits.Multifork.app_right_eq_ι_comp_snd_assoc, Preorder.coneOfLowerBound_π_app, CategoryTheory.Limits.limit.lift_π_assoc, AddCommGrpCat.HasLimit.lift_hom_apply, CategoryTheory.Limits.ProductsFromFiniteCofiltered.finiteSubproductsCone_π_app, CategoryTheory.Limits.Multifork.ofPiFork_π_app_right, LightCondensed.epi_π_app_zero_of_epi, AlgebraicGeometry.exists_appTop_π_eq_of_isLimit, TopCat.Presheaf.isGluing_iff_pairwise, CategoryTheory.Over.ConstructProducts.conesEquivFunctor_obj_pt, CategoryTheory.Limits.ProductsFromFiniteCofiltered.liftToFinsetLimitCone_cone_π_app, CategoryTheory.Limits.pullbackConeOfRightIso_π_app_none, ModuleCat.HasLimit.lift_hom_apply, CategoryTheory.FunctorToTypes.binaryProductCone_π_app, ModuleCat.binaryProductLimitCone_isLimit_lift, CategoryTheory.Limits.Multifork.ofι_π_app, CategoryTheory.Limits.limit.isoLimitCone_inv_π, CategoryTheory.Limits.Bicone.toCone_π_app, HomologicalComplex.coneOfHasLimitEval_π_app_f, CategoryTheory.Subobject.leInfCone_π_app_none, CategoryTheory.Limits.PullbackCone.condition_one, CategoryTheory.GrothendieckTopology.coneCompEvaluationOfConeCompDiagramFunctorCompEvaluation_π_app, CategoryTheory.Limits.BinaryBicone.ofLimitCone_fst, toUnder_π_app, CategoryTheory.Limits.coneOfSectionCompCoyoneda_π, CategoryTheory.Limits.IsLimit.conePointUniqueUpToIso_inv_comp_assoc, CategoryTheory.Limits.coconeOfConeLeftOp_ι_app, CategoryTheory.Limits.limit.coneMorphism_π, CategoryTheory.Limits.Cocone.op_π, CategoryTheory.Limits.coconeOfConeUnop_ι, AlgebraicGeometry.exists_mem_of_isClosed_of_nonempty, CategoryTheory.Limits.Fork.op_ι_app_zero, CategoryTheory.Cat.HasLimits.limitConeLift_toFunctor, CategoryTheory.Limits.Trident.app_zero_assoc, CategoryTheory.Limits.combineCones_pt_map, CategoryTheory.Limits.Cofork.op_π_app_one, SSet.StrictSegal.isPointwiseRightKanExtensionAt.fac_aux₁, CategoryTheory.Limits.IsLimit.conePointsIsoOfNatIso_inv_comp_assoc, CategoryTheory.Limits.limit.conePointUniqueUpToIso_inv_comp, CategoryTheory.Limits.IsLimit.map_π_assoc, CategoryTheory.coherentTopology.isLocallySurjective_π_app_zero_of_isLocallySurjective_map, CategoryTheory.Limits.equalizer.fork_π_app_zero, w_apply, overPost_π_app, toStructuredArrow_map, CategoryTheory.Limits.SequentialProduct.cone_π_app, CategoryTheory.Limits.limit.lift_π_app_assoc, w_assoc, AlgebraicGeometry.isAffineHom_π_app, LightProfinite.Extend.functor_obj, CategoryTheory.WithTerminal.coneEquiv_inverse_map_hom_left, CategoryTheory.Monad.ForgetCreatesLimits.liftedCone_π_app_f, CategoryTheory.Over.ConstructProducts.conesEquivInverseObj_π_app, CategoryTheory.GrothendieckTopology.liftToPlusObjLimitObj_fac, CategoryTheory.Limits.CompleteLattice.limitCone_cone_π_app, CategoryTheory.Functor.IsEventuallyConstantTo.isIso_π_of_isLimit', LightProfinite.instEpiAppOppositeNatπAsLimitCone, CategoryTheory.Limits.PullbackCone.isoMk_hom_hom, CategoryTheory.Comonad.ForgetCreatesLimits'.commuting, CategoryTheory.Functor.Initial.extendCone_obj_π_app, CategoryTheory.Limits.IsLimit.conePointsIsoOfNatIso_hom_comp, CategoryTheory.Limits.coconeUnopOfCone_ι, CategoryTheory.Limits.BinaryFan.π_app_left, TopCat.Presheaf.SheafConditionEqualizerProducts.fork_π_app_walkingParallelPair_zero, CategoryTheory.Limits.IsLimit.homIso_hom, CategoryTheory.liftedLimitMapsToOriginal_hom_π, CategoryTheory.Limits.PullbackCone.mk_π_app_left, extensions_app, CategoryTheory.Limits.coneUnopOfCocone_π, Profinite.exists_locallyConstant_finite_nonempty, CategoryTheory.Limits.CompleteLattice.finiteLimitCone_cone_π_app, CategoryTheory.Limits.Types.Limit.lift_π_apply', AddCommGrpCat.binaryProductLimitCone_cone_π_app_right, CategoryTheory.PreservesFiniteLimitsOfFlat.fac, CategoryTheory.Limits.constCone_π, CategoryTheory.Limits.SequentialProduct.cone_π_app_comp_Pi_π_neg, CategoryTheory.IsPullback.of_isLimit_cone, CategoryTheory.Limits.limit.lift_π, CategoryTheory.Limits.wideEqualizer.trident_π_app_zero, Profinite.exists_locallyConstant_fin_two, CategoryTheory.Comonad.beckCoalgebraFork_π_app, TopCat.piFan_π_app, CategoryTheory.Limits.Fan.mk_π_app, CategoryTheory.Limits.Multifork.app_right_eq_ι_comp_fst, Profinite.Extend.functor_map, CategoryTheory.Limits.coneOfAdj_π, AlgebraicGeometry.Scheme.exists_isOpenCover_and_isAffine, CategoryTheory.Under.forgetCone_π_app, CategoryTheory.Limits.Types.surjective_π_app_zero_of_surjective_map_aux, CategoryTheory.Limits.Cones.postcompose_map_hom, CategoryTheory.Limits.IsLimit.isIso_π_app_of_isInitial, TopCat.isTopologicalBasis_cofiltered_limit, CategoryTheory.Limits.IsLimit.fac, CategoryTheory.Over.ConstructProducts.conesEquivFunctor_obj_π_app, CategoryTheory.Limits.combineCones_π_app_app, CategoryTheory.Limits.Fork.app_one_eq_ι_comp_right, Profinite.exists_hom, CategoryTheory.Limits.Fork.equalizer_ext, CategoryTheory.Limits.Types.isLimitEquivSections_symm_apply, op_ι, CategoryTheory.WithTerminal.coneEquiv_functor_map_hom, CategoryTheory.Functor.structuredArrowMapCone_π_app, CategoryTheory.Limits.IsLimit.homEquiv_apply, CategoryTheory.Comma.coneOfPreserves_π_app_left

Theorems

NameKindAssumesProvesValidatesDepends On
category_comp_hom 📖mathematicalCategoryTheory.Limits.ConeMorphism.hom
CategoryTheory.CategoryStruct.comp
CategoryTheory.Limits.Cone
CategoryTheory.Category.toCategoryStruct
category
pt
category_id_hom 📖mathematicalCategoryTheory.Limits.ConeMorphism.hom
CategoryTheory.CategoryStruct.id
CategoryTheory.Limits.Cone
CategoryTheory.Category.toCategoryStruct
category
pt
equiv_hom_fst 📖mathematicalOpposite
CategoryTheory.Functor.obj
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.cones
CategoryTheory.Iso.hom
CategoryTheory.Limits.Cone
equiv
Opposite.op
pt
equiv_hom_snd 📖mathematicalOpposite
CategoryTheory.Functor.obj
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.cones
CategoryTheory.Iso.hom
CategoryTheory.Limits.Cone
equiv
π
equiv_inv_pt 📖mathematicalpt
CategoryTheory.Iso.inv
CategoryTheory.types
CategoryTheory.Limits.Cone
Opposite
CategoryTheory.Functor.obj
CategoryTheory.Category.opposite
CategoryTheory.Functor.cones
equiv
Opposite.unop
Quiver.Hom
CategoryTheory.Functor
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.const
equiv_inv_π 📖mathematicalπ
CategoryTheory.Iso.inv
CategoryTheory.types
CategoryTheory.Limits.Cone
Opposite
CategoryTheory.Functor.obj
CategoryTheory.Category.opposite
CategoryTheory.Functor.cones
equiv
Quiver.Hom
CategoryTheory.Functor
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.const
Opposite.unop
extend_pt 📖mathematicalpt
extend
extend_π 📖mathematicalπ
extend
CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.yoneda
pt
CategoryTheory.uliftFunctor
CategoryTheory.Functor.cones
extensions
Opposite.op
extensions_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.yoneda
pt
CategoryTheory.uliftFunctor
CategoryTheory.Functor.cones
extensions
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Opposite.unop
CategoryTheory.Functor.op
CategoryTheory.Functor.const
CategoryTheory.Functor.map
π
op_pt 📖mathematicalCategoryTheory.Limits.Cocone.pt
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
op
Opposite.op
pt
op_ι 📖mathematicalCategoryTheory.Limits.Cocone.ι
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
op
CategoryTheory.NatTrans.op
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
pt
π
unop_pt 📖mathematicalCategoryTheory.Limits.Cocone.pt
unop
Opposite.unop
pt
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
unop_ι 📖mathematicalCategoryTheory.Limits.Cocone.ι
unop
CategoryTheory.NatTrans.removeOp
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
Opposite.unop
pt
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
π
w 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
pt
CategoryTheory.NatTrans.app
π
CategoryTheory.Functor.map
CategoryTheory.NatTrans.naturality
CategoryTheory.Category.id_comp
w_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
pt
CategoryTheory.NatTrans.app
π
CategoryTheory.Functor.map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
w
whisker_pt 📖mathematicalpt
CategoryTheory.Functor.comp
whisker
whisker_π 📖mathematicalπ
CategoryTheory.Functor.comp
whisker
CategoryTheory.Functor.whiskerLeft
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
pt

CategoryTheory.Limits.ConeMorphism

Definitions

NameCategoryTheorems
hom 📖CompOp
132 mathmath: CategoryTheory.Limits.Cones.postcomposeId_hom_app_hom, CategoryTheory.Limits.DiagramOfCones.id, CategoryTheory.WithTerminal.coneEquiv_unitIso_hom_app_hom_left, CategoryTheory.Limits.IsLimit.ofConeEquiv_symm_apply_desc, hom_inv_id, CategoryTheory.Functor.mapConeMapCone_hom_hom, CategoryTheory.Limits.coconeEquivalenceOpConeOp_unitIso, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_counitIso_hom_app_hom, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_unitIso_inv_app_hom, inv_hom_id_assoc, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_functor_map_hom, CategoryTheory.Limits.Cones.ext_hom_hom, CategoryTheory.Limits.Multifork.ext_hom_hom, CategoryTheory.Limits.Multifork.isoOfι_hom_hom, CategoryTheory.Limits.Fork.isoForkOfι_hom_hom, CategoryTheory.Limits.Cone.fromCostructuredArrow_map_hom, CategoryTheory.Functor.mapConePostcompose_inv_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivCounitIso_hom_app_hom, CategoryTheory.Limits.Cones.extendId_inv_hom, CategoryTheory.Limits.Multifork.isoOfι_inv_hom, CategoryTheory.Over.ConstructProducts.conesEquivCounitIso_inv_app_hom_left, CategoryTheory.Functor.functorialityCompPostcompose_hom_app_hom, CategoryTheory.Limits.Cones.forget_map, CategoryTheory.Limits.IsLimit.liftConeMorphism_hom, CategoryTheory.Limits.MulticospanIndex.toPiForkFunctor_map_hom, w, CategoryTheory.Limits.Cones.extend_hom, CategoryTheory.WithTerminal.coneEquiv_counitIso_inv_app_hom, CategoryTheory.Limits.Cones.whiskering_map_hom, CategoryTheory.Functor.mapCoconeOp_inv_hom, CategoryTheory.Limits.Fork.hom_comp_ι, CategoryTheory.Limits.pullbackConeEquivBinaryFan_functor_map_hom, map_w_assoc, CategoryTheory.Limits.pullbackConeEquivBinaryFan_counitIso, CategoryTheory.Limits.Wedge.ext_hom_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivCounitIso_inv_app_hom, CategoryTheory.Limits.IsLimit.ofIsoLimit_lift, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_inverse_map_hom, CategoryTheory.Over.conePostIso_hom_app_hom, CategoryTheory.Limits.colimitLimitToLimitColimitCone_hom, map_w, CategoryTheory.Limits.Cone.category_id_hom, CategoryTheory.Limits.DiagramOfCones.mkOfHasLimits_map_hom, CategoryTheory.Limits.Fork.hom_comp_ι_assoc, CategoryTheory.Limits.IsLimit.ofConeEquiv_apply_desc, TopCat.Presheaf.whiskerIsoMapGenerateCocone_inv_hom, CategoryTheory.Over.ConstructProducts.conesEquivFunctor_map_hom, CategoryTheory.Over.conePost_map_hom, CategoryTheory.Functor.RightExtension.coneAtWhiskerRightIso_inv_hom, CategoryTheory.Functor.postcomposeWhiskerLeftMapCone_inv_hom, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_counitIso_inv_app_hom, CategoryTheory.Limits.DiagramOfCones.conePoints_map, CategoryTheory.Limits.Cone.mapConeToUnder_inv_hom, CategoryTheory.WithTerminal.isLimitEquiv_symm_apply_lift, CategoryTheory.Limits.Cones.extendComp_inv_hom, CategoryTheory.Over.ConstructProducts.conesEquivUnitIso_inv_app_hom, CategoryTheory.Limits.Cones.extendIso_inv_hom, CategoryTheory.Limits.Fan.ext_inv_hom, CategoryTheory.Over.ConstructProducts.conesEquivCounitIso_hom_app_hom_left, CategoryTheory.Limits.Fan.ext_hom_hom, CategoryTheory.Functor.Initial.extendCone_map_hom, CategoryTheory.Limits.Cone.toCostructuredArrow_map, CategoryTheory.Limits.PullbackCone.eta_inv_hom, CategoryTheory.Limits.Cones.eta_inv_hom, CategoryTheory.Limits.Cones.extendIso_hom_hom, CategoryTheory.Limits.instIsIsoHomInvCone, w_assoc, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivUnitIso_inv_app_hom, CategoryTheory.Limits.Cones.eta_hom_hom, CategoryTheory.Limits.PullbackCone.isoMk_inv_hom, CategoryTheory.Adjunction.functorialityUnit'_app_hom, CategoryTheory.Limits.Cones.functoriality_map_hom, CategoryTheory.Limits.Cones.extendId_hom_hom, CategoryTheory.liftedLimitMapsToOriginal_inv_map_π, CategoryTheory.Limits.Cones.postcomposeComp_inv_app_hom, CategoryTheory.Functor.mapConePostcomposeEquivalenceFunctor_inv_hom, CategoryTheory.Functor.mapConePostcomposeEquivalenceFunctor_hom_hom, ext_iff, CategoryTheory.Over.conePostIso_inv_app_hom, TopCat.Presheaf.whiskerIsoMapGenerateCocone_hom_hom, CategoryTheory.Limits.Fork.mkHom_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctor_map_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivUnitIso_hom_app_hom, CategoryTheory.Limits.PullbackCone.eta_hom_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivUnitIsoApp_hom_hom, CategoryTheory.Limits.IsLimit.mkConeMorphism_lift, CategoryTheory.Functor.mapConeWhisker_hom_hom, CategoryTheory.Limits.Wedge.ext_inv_hom, CategoryTheory.Limits.Cones.ext_inv_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverse_map_hom, CategoryTheory.Limits.Cone.category_comp_hom, CategoryTheory.Functor.postcomposeWhiskerLeftMapCone_hom_hom, hom_inv_id_assoc, CategoryTheory.Limits.limit.coneMorphism_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivUnitIsoApp_inv_hom, CategoryTheory.Functor.RightExtension.coneAtFunctor_map_hom, CategoryTheory.Functor.mapConePostcompose_hom_hom, CategoryTheory.Functor.RightExtension.coneAtWhiskerRightIso_hom_hom, CategoryTheory.WithTerminal.coneEquiv_unitIso_inv_app_hom_left, CategoryTheory.Limits.DiagramOfCones.comp, CategoryTheory.Functor.mapCoconeOp_hom_hom, CategoryTheory.Over.ConstructProducts.conesEquivUnitIso_hom_app_hom, CategoryTheory.Limits.limit.coneMorphism_π, CategoryTheory.Limits.coconeEquivalenceOpConeOp_counitIso, CategoryTheory.Limits.Cone.mapConeToUnder_hom_hom, CategoryTheory.Limits.Multifork.hom_comp_ι, CategoryTheory.Limits.MulticospanIndex.ofPiForkFunctor_map_hom, CategoryTheory.Limits.Multifork.ext_inv_hom, CategoryTheory.WithTerminal.coneEquiv_inverse_map_hom_left, CategoryTheory.Functor.mapConeMapCone_inv_hom, CategoryTheory.Limits.BinaryFan.ext_hom_hom, CategoryTheory.Limits.Trident.mkHom_hom, CategoryTheory.Limits.coconeEquivalenceOpConeOp_inverse_map_hom, CategoryTheory.Limits.PullbackCone.isoMk_hom_hom, CategoryTheory.Functor.functorialityCompPostcompose_inv_app_hom, CategoryTheory.Limits.Fork.isoForkOfι_inv_hom, CategoryTheory.Functor.mapConeWhisker_inv_hom, CategoryTheory.liftedLimitMapsToOriginal_hom_π, CategoryTheory.Limits.pullbackConeEquivBinaryFan_unitIso, CategoryTheory.Limits.Cones.extendComp_hom_hom, CategoryTheory.Limits.Multifork.hom_comp_ι_assoc, CategoryTheory.Limits.Cones.postcomposeComp_hom_app_hom, CategoryTheory.Limits.Cones.postcompose_map_hom, CategoryTheory.Limits.Cones.postcomposeId_inv_app_hom, CategoryTheory.WithTerminal.coneEquiv_counitIso_hom_app_hom, CategoryTheory.Limits.instIsIsoHomHomCone, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_unitIso_hom_app_hom, CategoryTheory.Over.ConstructProducts.conesEquivInverse_map_hom, CategoryTheory.Adjunction.functorialityCounit'_app_hom, CategoryTheory.Limits.pullbackConeEquivBinaryFan_inverse_map_hom, inv_hom_id, CategoryTheory.WithTerminal.coneEquiv_functor_map_hom

Theorems

NameKindAssumesProvesValidatesDepends On
ext 📖hom
ext_iff 📖mathematicalhomext
hom_inv_id 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
hom
CategoryTheory.Iso.hom
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
CategoryTheory.Iso.inv
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.hom_inv_id
hom_inv_id_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
hom
CategoryTheory.Iso.hom
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
CategoryTheory.Iso.inv
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
hom_inv_id
inv_hom_id 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
hom
CategoryTheory.Iso.inv
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
CategoryTheory.Iso.hom
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.inv_hom_id
inv_hom_id_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
hom
CategoryTheory.Iso.inv
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
CategoryTheory.Iso.hom
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
inv_hom_id
map_w 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.Cone.pt
CategoryTheory.Functor.map
hom
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.π
w
map_w_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.Cone.pt
CategoryTheory.Functor.map
hom
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.π
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_w
w 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Functor.obj
hom
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.π
w_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
hom
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.π
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
w

CategoryTheory.Limits.Cones

Definitions

NameCategoryTheorems
equivalenceOfReindexing 📖CompOp
6 mathmath: equivalenceOfReindexing_inverse, equivalenceOfReindexing_counitIso, CategoryTheory.Limits.IsLimit.conePointsIsoOfEquivalence_hom, CategoryTheory.Limits.IsLimit.conePointsIsoOfEquivalence_inv, equivalenceOfReindexing_unitIso, equivalenceOfReindexing_functor
eta 📖CompOp
3 mathmath: eta_inv_hom, eta_hom_hom, CategoryTheory.Limits.Cone.equivCostructuredArrow_unitIso
ext 📖CompOp
14 mathmath: ext_hom_hom, CategoryTheory.Functor.Initial.conesEquiv_counitIso, equivalenceOfReindexing_counitIso, whiskeringEquivalence_unitIso, postcomposeEquivalence_unitIso, postcomposeEquivalence_counitIso, functorialityEquivalence_unitIso, CategoryTheory.Functor.Initial.conesEquiv_unitIso, whiskeringEquivalence_counitIso, functorialityEquivalence_counitIso, ext_inv_hom, equivalenceOfReindexing_unitIso, CategoryTheory.Limits.coconeEquivalenceOpConeOp_counitIso, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiForkOfIsLimit_unitIso
extend 📖CompOp
2 mathmath: extend_hom, instIsIsoConeExtend
extendComp 📖CompOp
2 mathmath: extendComp_inv_hom, extendComp_hom_hom
extendId 📖CompOp
2 mathmath: extendId_inv_hom, extendId_hom_hom
extendIso 📖CompOp
2 mathmath: extendIso_inv_hom, extendIso_hom_hom
forget 📖CompOp
2 mathmath: forget_map, forget_obj
functoriality 📖CompOp
18 mathmath: functorialityEquivalence_functor, CategoryTheory.Functor.functorialityCompPostcompose_hom_app_hom, CategoryTheory.Over.conePostIso_hom_app_hom, functoriality_obj_π_app, CategoryTheory.Functor.postcomposeWhiskerLeftMapCone_inv_hom, functorialityEquivalence_unitIso, functoriality_obj_pt, functoriality_faithful, functoriality_full, CategoryTheory.Adjunction.functorialityUnit'_app_hom, functoriality_map_hom, functorialityEquivalence_inverse, CategoryTheory.Over.conePostIso_inv_app_hom, functorialityEquivalence_counitIso, CategoryTheory.Functor.postcomposeWhiskerLeftMapCone_hom_hom, CategoryTheory.Functor.functorialityCompPostcompose_inv_app_hom, reflects_cone_isomorphism, CategoryTheory.Adjunction.functorialityCounit'_app_hom
functorialityCompFunctoriality 📖CompOp
functorialityEquivalence 📖CompOp
4 mathmath: functorialityEquivalence_functor, functorialityEquivalence_unitIso, functorialityEquivalence_inverse, functorialityEquivalence_counitIso
postcompose 📖CompOp
38 mathmath: postcomposeId_hom_app_hom, CategoryTheory.Limits.DiagramOfCones.id, equivalenceOfReindexing_inverse, CategoryTheory.Limits.HasLimit.lift_isoOfNatIso_hom, postcompose_obj_pt, CategoryTheory.Functor.mapConePostcompose_inv_hom, CategoryTheory.Functor.functorialityCompPostcompose_hom_app_hom, CategoryTheory.Limits.Fork.ι_postcompose, whiskeringEquivalence_inverse, equivalenceOfReindexing_counitIso, CategoryTheory.Limits.DiagramOfCones.mkOfHasLimits_map_hom, whiskeringEquivalence_unitIso, postcomposeEquivalence_unitIso, postcomposeEquivalence_counitIso, CategoryTheory.Functor.postcomposeWhiskerLeftMapCone_inv_hom, CategoryTheory.Limits.DiagramOfCones.conePoints_map, postcomposeEquivalence_functor, whiskeringEquivalence_counitIso, CategoryTheory.Limits.PullbackCone.unop_ι_app, CategoryTheory.Limits.PullbackCone.isoMk_inv_hom, postcompose_obj_π, postcomposeComp_inv_app_hom, CategoryTheory.Functor.postcomposeWhiskerLeftMapCone_hom_hom, CategoryTheory.Limits.limit.lift_map, CategoryTheory.Functor.mapConePostcompose_hom_hom, CategoryTheory.Limits.DiagramOfCones.comp, equivalenceOfReindexing_unitIso, equivalenceOfReindexing_functor, CategoryTheory.Limits.PullbackCone.isoMk_hom_hom, CategoryTheory.Functor.functorialityCompPostcompose_inv_app_hom, CategoryTheory.Limits.HasLimit.lift_isoOfNatIso_inv, CategoryTheory.Limits.limit.lift_map_assoc, CategoryTheory.Limits.HasLimit.lift_isoOfNatIso_hom_assoc, postcomposeComp_hom_app_hom, postcompose_map_hom, postcomposeEquivalence_inverse, postcomposeId_inv_app_hom, CategoryTheory.Limits.HasLimit.lift_isoOfNatIso_inv_assoc
postcomposeComp 📖CompOp
2 mathmath: postcomposeComp_inv_app_hom, postcomposeComp_hom_app_hom
postcomposeEquivalence 📖CompOp
9 mathmath: postcomposeEquivalence_unitIso, postcomposeEquivalence_counitIso, functorialityEquivalence_unitIso, postcomposeEquivalence_functor, functorialityEquivalence_inverse, CategoryTheory.Functor.mapConePostcomposeEquivalenceFunctor_inv_hom, CategoryTheory.Functor.mapConePostcomposeEquivalenceFunctor_hom_hom, functorialityEquivalence_counitIso, postcomposeEquivalence_inverse
postcomposeId 📖CompOp
2 mathmath: postcomposeId_hom_app_hom, postcomposeId_inv_app_hom
whiskering 📖CompOp
15 mathmath: equivalenceOfReindexing_inverse, whiskeringEquivalence_functor, CategoryTheory.Functor.Initial.conesEquiv_counitIso, whiskering_map_hom, whiskeringEquivalence_inverse, CategoryTheory.Over.conePostIso_hom_app_hom, equivalenceOfReindexing_counitIso, whiskeringEquivalence_unitIso, CategoryTheory.Functor.Initial.conesEquiv_unitIso, CategoryTheory.Functor.Initial.conesEquiv_inverse, whiskeringEquivalence_counitIso, CategoryTheory.Over.conePostIso_inv_app_hom, equivalenceOfReindexing_unitIso, equivalenceOfReindexing_functor, whiskering_obj
whiskeringEquivalence 📖CompOp
4 mathmath: whiskeringEquivalence_functor, whiskeringEquivalence_inverse, whiskeringEquivalence_unitIso, whiskeringEquivalence_counitIso

Theorems

NameKindAssumesProvesValidatesDepends On
cone_iso_of_hom_iso 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
CategoryTheory.Iso.inv_comp_eq
CategoryTheory.Limits.ConeMorphism.w
CategoryTheory.Limits.ConeMorphism.ext
CategoryTheory.IsIso.hom_inv_id
CategoryTheory.IsIso.inv_hom_id
equivalenceOfReindexing_counitIso 📖mathematicalCategoryTheory.Equivalence.counitIso
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
equivalenceOfReindexing
CategoryTheory.Iso.trans
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.functor
postcompose
CategoryTheory.Iso.inv
CategoryTheory.Equivalence.inverse
whiskering
CategoryTheory.Iso.hom
CategoryTheory.Equivalence.invFunIdAssoc
CategoryTheory.Functor.id
CategoryTheory.Iso.symm
CategoryTheory.Functor.associator
CategoryTheory.Functor.isoWhiskerRight
CategoryTheory.Functor.isoWhiskerLeft
CategoryTheory.NatIso.ofComponents
ext
CategoryTheory.Limits.Cone.whisker
CategoryTheory.Functor.obj
CategoryTheory.Iso.refl
CategoryTheory.Limits.Cone.pt
CategoryTheory.Functor.rightUnitor
CategoryTheory.Functor.isoWhiskerRight_trans
CategoryTheory.Iso.trans_assoc
equivalenceOfReindexing_functor 📖mathematicalCategoryTheory.Equivalence.functor
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
equivalenceOfReindexing
CategoryTheory.Functor.comp
whiskering
postcompose
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
equivalenceOfReindexing_inverse 📖mathematicalCategoryTheory.Equivalence.inverse
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
equivalenceOfReindexing
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.functor
postcompose
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
whiskering
CategoryTheory.Iso.hom
CategoryTheory.Equivalence.invFunIdAssoc
equivalenceOfReindexing_unitIso 📖mathematicalCategoryTheory.Equivalence.unitIso
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
equivalenceOfReindexing
CategoryTheory.Iso.trans
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.functor
whiskering
CategoryTheory.Equivalence.inverse
postcompose
CategoryTheory.Iso.hom
CategoryTheory.Equivalence.invFunIdAssoc
CategoryTheory.Iso.inv
CategoryTheory.NatIso.ofComponents
ext
CategoryTheory.Functor.obj
CategoryTheory.Limits.Cone.whisker
CategoryTheory.Iso.refl
CategoryTheory.Limits.Cone.pt
CategoryTheory.Functor.isoWhiskerRight
CategoryTheory.Iso.symm
CategoryTheory.Functor.rightUnitor
CategoryTheory.Functor.isoWhiskerLeft
CategoryTheory.Functor.associator
CategoryTheory.Functor.isoWhiskerRight_trans
CategoryTheory.Iso.trans_assoc
eta_hom_hom 📖mathematicalCategoryTheory.Limits.ConeMorphism.hom
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.Cone.π
CategoryTheory.Iso.hom
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
eta
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
eta_inv_hom 📖mathematicalCategoryTheory.Limits.ConeMorphism.hom
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.Cone.π
CategoryTheory.Iso.inv
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
eta
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
ext_hom_hom 📖mathematicalCategoryTheory.Limits.ConeMorphism.hom
CategoryTheory.Iso.hom
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
ext
CategoryTheory.Limits.Cone.pt
ext_inv_hom 📖mathematicalCategoryTheory.Limits.ConeMorphism.hom
CategoryTheory.Iso.inv
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
ext
CategoryTheory.Limits.Cone.pt
extendComp_hom_hom 📖mathematicalCategoryTheory.Limits.ConeMorphism.hom
CategoryTheory.Limits.Cone.extend
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Iso.hom
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
extendComp
CategoryTheory.CategoryStruct.id
extendComp_inv_hom 📖mathematicalCategoryTheory.Limits.ConeMorphism.hom
CategoryTheory.Limits.Cone.extend
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Iso.inv
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
extendComp
CategoryTheory.CategoryStruct.id
extendId_hom_hom 📖mathematicalCategoryTheory.Limits.ConeMorphism.hom
CategoryTheory.Limits.Cone.extend
CategoryTheory.Limits.Cone.pt
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
extendId
extendId_inv_hom 📖mathematicalCategoryTheory.Limits.ConeMorphism.hom
CategoryTheory.Limits.Cone.extend
CategoryTheory.Limits.Cone.pt
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.inv
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
extendId
extendIso_hom_hom 📖mathematicalCategoryTheory.Limits.ConeMorphism.hom
CategoryTheory.Limits.Cone.extend
CategoryTheory.Iso.hom
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
extendIso
extendIso_inv_hom 📖mathematicalCategoryTheory.Limits.ConeMorphism.hom
CategoryTheory.Limits.Cone.extend
CategoryTheory.Iso.hom
CategoryTheory.Limits.Cone.pt
CategoryTheory.Iso.inv
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
extendIso
extend_hom 📖mathematicalCategoryTheory.Limits.ConeMorphism.hom
CategoryTheory.Limits.Cone.extend
extend
forget_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
forget
CategoryTheory.Limits.ConeMorphism.hom
forget_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
forget
CategoryTheory.Limits.Cone.pt
functorialityEquivalence_counitIso 📖mathematicalCategoryTheory.Equivalence.counitIso
CategoryTheory.Limits.Cone
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.functor
CategoryTheory.Limits.Cone.category
functorialityEquivalence
CategoryTheory.NatIso.ofComponents
CategoryTheory.Equivalence.inverse
functoriality
postcomposeEquivalence
CategoryTheory.Iso.trans
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.associator
CategoryTheory.Functor.id
CategoryTheory.Functor.isoWhiskerLeft
CategoryTheory.Iso.symm
CategoryTheory.Equivalence.unitIso
CategoryTheory.Functor.rightUnitor
ext
CategoryTheory.Functor.obj
CategoryTheory.Iso.app
CategoryTheory.Limits.Cone.pt
functorialityEquivalence_functor 📖mathematicalCategoryTheory.Equivalence.functor
CategoryTheory.Limits.Cone
CategoryTheory.Functor.comp
CategoryTheory.Limits.Cone.category
functorialityEquivalence
functoriality
functorialityEquivalence_inverse 📖mathematicalCategoryTheory.Equivalence.inverse
CategoryTheory.Limits.Cone
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.functor
CategoryTheory.Limits.Cone.category
functorialityEquivalence
functoriality
postcomposeEquivalence
CategoryTheory.Iso.trans
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.associator
CategoryTheory.Functor.id
CategoryTheory.Functor.isoWhiskerLeft
CategoryTheory.Iso.symm
CategoryTheory.Equivalence.unitIso
CategoryTheory.Functor.rightUnitor
functorialityEquivalence_unitIso 📖mathematicalCategoryTheory.Equivalence.unitIso
CategoryTheory.Limits.Cone
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.functor
CategoryTheory.Limits.Cone.category
functorialityEquivalence
CategoryTheory.NatIso.ofComponents
CategoryTheory.Functor.id
functoriality
CategoryTheory.Equivalence.inverse
postcomposeEquivalence
CategoryTheory.Iso.trans
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.associator
CategoryTheory.Functor.isoWhiskerLeft
CategoryTheory.Iso.symm
CategoryTheory.Functor.rightUnitor
ext
CategoryTheory.Functor.obj
CategoryTheory.Iso.app
functoriality_faithful 📖mathematicalCategoryTheory.Functor.Faithful
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
CategoryTheory.Functor.comp
functoriality
CategoryTheory.Limits.ConeMorphism.ext
CategoryTheory.Functor.map_injective
functoriality_full 📖mathematicalCategoryTheory.Functor.Full
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
CategoryTheory.Functor.comp
functoriality
CategoryTheory.Functor.map_injective
CategoryTheory.Functor.map_comp
CategoryTheory.Functor.map_preimage
CategoryTheory.Limits.ConeMorphism.w
CategoryTheory.Limits.ConeMorphism.ext
functoriality_map_hom 📖mathematicalCategoryTheory.Limits.ConeMorphism.hom
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Limits.Cone.pt
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cone.π
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
functoriality
functoriality_obj_pt 📖mathematicalCategoryTheory.Limits.Cone.pt
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
functoriality
functoriality_obj_π_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.Functor.comp
CategoryTheory.Limits.Cone.π
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
functoriality
CategoryTheory.Functor.map
instIsIsoConeExtend 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
CategoryTheory.Limits.Cone.extend
extend
CategoryTheory.Limits.ConeMorphism.ext
CategoryTheory.IsIso.hom_inv_id
CategoryTheory.IsIso.inv_hom_id
postcomposeComp_hom_app_hom 📖mathematicalCategoryTheory.Limits.ConeMorphism.hom
CategoryTheory.Functor.obj
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
postcompose
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
postcomposeComp
CategoryTheory.CategoryStruct.id
CategoryTheory.Limits.Cone.pt
postcomposeComp_inv_app_hom 📖mathematicalCategoryTheory.Limits.ConeMorphism.hom
CategoryTheory.Functor.obj
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
CategoryTheory.Functor.comp
postcompose
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
postcomposeComp
CategoryTheory.CategoryStruct.id
CategoryTheory.Limits.Cone.pt
postcomposeEquivalence_counitIso 📖mathematicalCategoryTheory.Equivalence.counitIso
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
postcomposeEquivalence
CategoryTheory.NatIso.ofComponents
CategoryTheory.Functor.comp
postcompose
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Iso.hom
CategoryTheory.Functor.id
ext
CategoryTheory.Functor.obj
CategoryTheory.Iso.refl
CategoryTheory.Limits.Cone.pt
postcomposeEquivalence_functor 📖mathematicalCategoryTheory.Equivalence.functor
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
postcomposeEquivalence
postcompose
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
postcomposeEquivalence_inverse 📖mathematicalCategoryTheory.Equivalence.inverse
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
postcomposeEquivalence
postcompose
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
postcomposeEquivalence_unitIso 📖mathematicalCategoryTheory.Equivalence.unitIso
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
postcomposeEquivalence
CategoryTheory.NatIso.ofComponents
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
postcompose
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Iso.inv
ext
CategoryTheory.Functor.obj
CategoryTheory.Iso.refl
CategoryTheory.Limits.Cone.pt
postcomposeId_hom_app_hom 📖mathematicalCategoryTheory.Limits.ConeMorphism.hom
CategoryTheory.Functor.obj
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
postcompose
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
postcomposeId
CategoryTheory.Limits.Cone.pt
postcomposeId_inv_app_hom 📖mathematicalCategoryTheory.Limits.ConeMorphism.hom
CategoryTheory.Functor.obj
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
CategoryTheory.Functor.id
postcompose
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
postcomposeId
CategoryTheory.Limits.Cone.pt
postcompose_map_hom 📖mathematicalCategoryTheory.Limits.ConeMorphism.hom
CategoryTheory.Limits.Cone.pt
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.π
CategoryTheory.Functor.map
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
postcompose
postcompose_obj_pt 📖mathematicalCategoryTheory.Limits.Cone.pt
CategoryTheory.Functor.obj
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
postcompose
postcompose_obj_π 📖mathematicalCategoryTheory.Limits.Cone.π
CategoryTheory.Functor.obj
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
postcompose
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
reflects_cone_isomorphism 📖mathematicalCategoryTheory.Functor.ReflectsIsomorphisms
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
CategoryTheory.Functor.comp
functoriality
cone_iso_of_hom_iso
CategoryTheory.Functor.ReflectsIsomorphisms.reflects
CategoryTheory.Functor.map_isIso
whiskeringEquivalence_counitIso 📖mathematicalCategoryTheory.Equivalence.counitIso
CategoryTheory.Limits.Cone
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.functor
CategoryTheory.Limits.Cone.category
whiskeringEquivalence
CategoryTheory.NatIso.ofComponents
CategoryTheory.Equivalence.inverse
whiskering
postcompose
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.invFunIdAssoc
CategoryTheory.Functor.id
ext
CategoryTheory.Functor.obj
CategoryTheory.Iso.refl
CategoryTheory.Limits.Cone.pt
whiskeringEquivalence_functor 📖mathematicalCategoryTheory.Equivalence.functor
CategoryTheory.Limits.Cone
CategoryTheory.Functor.comp
CategoryTheory.Limits.Cone.category
whiskeringEquivalence
whiskering
whiskeringEquivalence_inverse 📖mathematicalCategoryTheory.Equivalence.inverse
CategoryTheory.Limits.Cone
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.functor
CategoryTheory.Limits.Cone.category
whiskeringEquivalence
whiskering
postcompose
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.invFunIdAssoc
whiskeringEquivalence_unitIso 📖mathematicalCategoryTheory.Equivalence.unitIso
CategoryTheory.Limits.Cone
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.functor
CategoryTheory.Limits.Cone.category
whiskeringEquivalence
CategoryTheory.NatIso.ofComponents
CategoryTheory.Functor.id
whiskering
CategoryTheory.Equivalence.inverse
postcompose
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.invFunIdAssoc
ext
CategoryTheory.Functor.obj
CategoryTheory.Iso.refl
CategoryTheory.Limits.Cone.pt
whiskering_map_hom 📖mathematicalCategoryTheory.Limits.ConeMorphism.hom
CategoryTheory.Functor.comp
CategoryTheory.Limits.Cone.whisker
CategoryTheory.Functor.map
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
whiskering
whiskering_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
CategoryTheory.Functor.comp
whiskering
CategoryTheory.Limits.Cone.whisker

---

← Back to Index