pt 📖 | CompOp | 834 mathmath: AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_snd, CategoryTheory.GrothendieckTopology.coneCompEvaluationOfConeCompDiagramFunctorCompEvaluation_pt, CategoryTheory.Limits.Trident.condition_assoc, CategoryTheory.Limits.Cones.postcomposeId_hom_app_hom, CategoryTheory.Limits.Fork.IsLimit.homIso_natural, CategoryTheory.Limits.DiagramOfCones.id, CategoryTheory.PreOneHypercover.forkOfIsColimit_ι_map_inj_assoc, CategoryTheory.Functor.Initial.extendCone_obj_pt, toUnder_pt, CategoryTheory.WithTerminal.coneEquiv_unitIso_hom_app_hom_left, CategoryTheory.Functor.coneOfIsRightKanExtension_pt, CategoryTheory.Limits.BinaryFan.rightUnitor_hom, CategoryTheory.Limits.IsLimit.ofConeEquiv_symm_apply_desc, AddCommGrpCat.binaryProductLimitCone_cone_pt, CategoryTheory.GrothendieckTopology.liftToDiagramLimitObjAux_fac, LightProfinite.Extend.functorOp_obj, CategoryTheory.regularTopology.EqualizerCondition.bijective_mapToEqualizer_pullback', CategoryTheory.ComposableArrows.Exact.cokerIsoKer'_hom_inv_id_assoc, CategoryTheory.Over.ConstructProducts.conesEquivInverseObj_pt, CategoryTheory.Limits.ConeMorphism.hom_inv_id, CategoryTheory.extendFan_pt, AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_snd_assoc, CategoryTheory.Functor.mapConeMapCone_hom_hom, CategoryTheory.Limits.coconeEquivalenceOpConeOp_unitIso, CategoryTheory.Limits.Wedge.mk_pt, CategoryTheory.Limits.Trident.app_zero, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_counitIso_hom_app_hom, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_unitIso_inv_app_hom, AlgebraicGeometry.opensCone_pt, unop_ι, CategoryTheory.Limits.ProductsFromFiniteCofiltered.liftToFinsetLimitCone_isLimit_lift, ofTrident_π, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverse_obj_π_app, CategoryTheory.Limits.Multifork.IsLimit.sectionsEquiv_apply_val, CategoryTheory.Monad.ForgetCreatesLimits.liftedConeIsLimit_lift_f, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift_snd, CategoryTheory.Limits.Fork.IsLimit.lift_ι'_assoc, CategoryTheory.Limits.ConeMorphism.inv_hom_id_assoc, CategoryTheory.Limits.pullbackConeOfLeftIso_π_app_left, CategoryTheory.PreOneHypercover.forkOfIsColimit_pt, CategoryTheory.GrothendieckTopology.liftToDiagramLimitObjAux_fac_assoc, CategoryTheory.Functor.isLimitConeOfIsRightKanExtension_lift, Profinite.Extend.functorOp_map, CategoryTheory.Functor.isCardinalAccessible_of_isLimit, CategoryTheory.Abelian.epi_fst_of_factor_thru_epi_mono_factorization, AlgebraicGeometry.exists_isAffineOpen_preimage_eq, CategoryTheory.biconeMk_obj, HomologicalComplex.coneOfHasLimitEval_pt_d, CategoryTheory.Limits.FormalCoproduct.homPullbackEquiv_symm_apply_φ, CategoryTheory.Limits.BinaryBicone.toCone_π_app_right, CategoryTheory.RanIsSheafOfIsCocontinuous.liftAux_map', CategoryTheory.Limits.HasLimit.lift_isoOfNatIso_hom, CategoryTheory.Limits.Cones.postcompose_obj_pt, CategoryTheory.Limits.MulticospanIndex.sndPiMapOfIsLimit_proj, equiv_inv_pt, CategoryTheory.Limits.Types.limitCone_pt, CategoryTheory.Limits.BinaryFan.braiding_hom_snd_assoc, CategoryTheory.Comonad.beckCoalgebraFork_pt, CategoryTheory.Limits.IsLimit.map_π, CategoryTheory.Comonad.ComonadicityInternal.unitFork_pt, CategoryTheory.Limits.mono_of_isLimit_parallelFamily, CategoryTheory.Limits.IsLimit.conePointUniqueUpToIso_hom_comp_assoc, CategoryTheory.IsPullback.of_isLimit_binaryFan_of_isTerminal, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_functor_map_hom, CategoryTheory.Limits.Cones.ext_hom_hom, CategoryTheory.Comonad.ForgetCreatesLimits'.liftedCone_π_app_f, CategoryTheory.Limits.PullbackCone.π_app_right, Preorder.conePt_mem_lowerBounds, CategoryTheory.Limits.Multifork.ext_hom_hom, CategoryTheory.Limits.Multifork.isoOfι_hom_hom, CategoryTheory.Limits.Fork.unop_ι_app_zero, CategoryTheory.Limits.SequentialProduct.cone_π_app_comp_Pi_π_pos_assoc, CategoryTheory.isCoseparator_of_isLimit_fan, CategoryTheory.Limits.KernelFork.condition_assoc, CategoryTheory.WithTerminal.coneEquiv_inverse_obj_π_app_left, CategoryTheory.Limits.KernelFork.mapOfIsLimit_ι_assoc, CategoryTheory.Limits.FormalCoproduct.pullbackCone_fst_φ, CategoryTheory.Limits.IsLimit.conePointsIsoOfNatIso_hom, CategoryTheory.Limits.Fork.isoForkOfι_hom_hom, CategoryTheory.Functor.RightExtension.coneAt_pt, CategoryTheory.Limits.PullbackCone.condition, CategoryTheory.Limits.BinaryFan.braiding_hom_fst_assoc, CategoryTheory.ShortComplex.isoCyclesOfIsLimit_hom_iCycles_assoc, CategoryTheory.Enriched.FunctorCategory.isLimitConeFunctorEnrichedHom.fac, CategoryTheory.Limits.Fork.IsLimit.mono, toCostructuredArrow_obj, CategoryTheory.Limits.KernelFork.IsLimit.isZero_of_mono, CategoryTheory.Limits.desc_op_comp_opCoproductIsoProduct'_hom, CategoryTheory.Limits.WidePullbackCone.reindex_pt, CategoryTheory.Functor.mapConePostcompose_inv_hom, CategoryTheory.Comma.coneOfPreserves_π_app_right, CategoryTheory.Comma.limitAuxiliaryCone_pt, TopCat.Presheaf.SheafConditionEqualizerProducts.fork_π_app_walkingParallelPair_one, CategoryTheory.Limits.isColimitCoconeLeftOpOfCone_desc, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivCounitIso_hom_app_hom, CategoryTheory.FunctorToTypes.binaryProductCone_pt_obj, CategoryTheory.Limits.coconeOfConeLeftOp_pt, CategoryTheory.Limits.constCone_pt, CategoryTheory.Limits.Cones.extendId_inv_hom, CategoryTheory.GrothendieckTopology.OneHypercover.multiforkLift_map, whisker_π, CategoryTheory.Limits.Multifork.isoOfι_inv_hom, CompHausLike.pullback.isLimit_lift, CategoryTheory.Under.liftCone_pt, CategoryTheory.Limits.PullbackCone.unop_inl, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_isTerminalTensorUnit_lift_hom, CategoryTheory.Limits.PreservesLimit₂.isoObjConePointsOfIsColimit_inv_comp_map_π, CategoryTheory.ComposableArrows.Exact.cokerIsoKer'_hom, CategoryTheory.Limits.isLimitOfCoconeOfConeRightOp_lift, CategoryTheory.ObjectProperty.prop_of_isLimit, toStructuredArrowCompProj_inv_app, AlgebraicGeometry.Scheme.Pullback.gluedLift_p1, CategoryTheory.Limits.IsLimit.conePointsIsoOfNatIso_inv_comp, CategoryTheory.Limits.BinaryFan.IsLimit.lift'_coe, CategoryTheory.Over.ConstructProducts.conesEquivCounitIso_inv_app_hom_left, CategoryTheory.Limits.PullbackCone.IsLimit.lift_fst, CategoryTheory.Limits.Trident.ofι_pt, CategoryTheory.Limits.Fork.ofι_pt, CategoryTheory.Over.conePost_obj_π_app, CategoryTheory.Limits.PullbackCone.op_pt, CategoryTheory.Limits.Types.binaryProductCone_pt, CategoryTheory.Limits.coneUnopOfCocone_pt, CategoryTheory.Limits.Cofork.unop_π_app_one, CategoryTheory.Limits.binaryBiconeOfIsSplitEpiOfKernel_inl, CategoryTheory.Limits.isLimitOfCoconeOfConeLeftOp_lift, CategoryTheory.Limits.pullbackConeOfLeftIso_π_app_right, CategoryTheory.Limits.IsLimit.lift_comp_conePointUniqueUpToIso_hom_assoc, CategoryTheory.Functor.functorialityCompPostcompose_hom_app_hom, Profinite.exists_locallyConstant_finite_aux, CategoryTheory.Mon.limitConeIsLimit_lift_hom, CategoryTheory.Limits.IsLimit.nonempty_isLimit_iff_isIso_lift, CategoryTheory.Limits.PullbackCone.IsLimit.equivPullbackObj_apply_fst, CategoryTheory.Limits.IsLimit.conePointUniqueUpToIso_hom_comp, CategoryTheory.Comonad.ForgetCreatesLimits'.newCone_pt, GrpCat.binaryProductLimitCone_cone_pt, CategoryTheory.Limits.opCoproductIsoProduct'_comp_self, CategoryTheory.Limits.pullbackConeOfLeftIso_snd, CategoryTheory.Limits.MulticospanIndex.toPiForkFunctor_map_hom, CategoryTheory.Limits.opCoproductIsoProduct'_hom_comp_proj, CategoryTheory.ProdPreservesConnectedLimits.forgetCone_π, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverseObj_π_app, CategoryTheory.Limits.ConeMorphism.w, CategoryTheory.Limits.limit.lift_post, lightDiagramToLightProfinite_obj, CategoryTheory.Limits.IsLimit.lift_comp_conePointsIsoOfNatIso_inv, extend_π, CategoryTheory.Functor.Initial.conesEquiv_counitIso, Profinite.isIso_indexCone_lift, CategoryTheory.Limits.Bicone.toCone_π_app_mk, CategoryTheory.Limits.Multifork.ofι_pt, CategoryTheory.Limits.PullbackCone.condition_assoc, CategoryTheory.Limits.Trident.condition, CategoryTheory.Limits.PullbackCone.unop_inr, CategoryTheory.Limits.IsLimit.lift_comp_conePointsIsoOfNatIso_hom, CategoryTheory.Limits.Fork.ι_postcompose, CategoryTheory.Limits.BinaryBicone.toCone_π_app_left, CategoryTheory.Limits.coconeOfConeUnop_pt, CategoryTheory.Limits.Fork.equivOfIsos_functor_obj_ι, CategoryTheory.WithTerminal.coneEquiv_functor_obj_π_app_star, Profinite.Extend.functorOp_obj, CategoryTheory.WithTerminal.coneEquiv_counitIso_inv_app_hom, CategoryTheory.ShortComplex.LeftHomologyData.ofIsLimitKernelFork_H, CategoryTheory.Monad.ForgetCreatesLimits.newCone_π_app, ModuleCat.binaryProductLimitCone_cone_π_app_right, CategoryTheory.Limits.Fork.IsLimit.existsUnique, toStructuredArrowCompToUnderCompForget_hom_app, CategoryTheory.Limits.PullbackCone.combine_π_app, CategoryTheory.Limits.Cocone.op_pt, LightProfinite.lightToProfinite_map_proj_eq, CompHausLike.sigmaComparison_eq_comp_isos, CategoryTheory.Limits.Fork.hom_comp_ι, CategoryTheory.Limits.asEmptyCone_pt, CategoryTheory.CartesianMonoidalCategory.ofChosenFiniteProducts.associator_naturality, CategoryTheory.Limits.Multiequalizer.multifork_π_app_left, CategoryTheory.Limits.pullbackConeEquivBinaryFan_functor_map_hom, CategoryTheory.Limits.ConeMorphism.map_w_assoc, CategoryTheory.Limits.coneOfDiagramTerminal_pt, CategoryTheory.Cat.HasLimits.limitCone_pt, CategoryTheory.Limits.BinaryFan.braiding_hom_snd, CategoryTheory.Limits.limit.isoLimitCone_hom_π_assoc, CategoryTheory.Limits.Multifork.toPiFork_pt, CategoryTheory.Limits.PullbackCone.op_inr, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctorObj_π_app, AlgebraicGeometry.isBasis_preimage_isAffineOpen, CategoryTheory.Limits.coneOfDiagramInitial_pt, CategoryTheory.Limits.PullbackCone.op_ι_app, CategoryTheory.Limits.pullbackConeEquivBinaryFan_counitIso, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiForkOfIsLimit_functor, CategoryTheory.Limits.coneOfConeCurry_pt, CategoryTheory.Limits.Wedge.IsLimit.lift_ι, CategoryTheory.Limits.Fork.unop_ι_app_one, CategoryTheory.Limits.Wedge.ext_hom_hom, CategoryTheory.Limits.IsLimit.pullbackConeEquivBinaryFanFunctor_lift_left, AlgebraicGeometry.Scheme.Pullback.gluedLift_p2, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivCounitIso_inv_app_hom, CategoryTheory.Limits.isIso_limit_cone_parallelPair_of_epi, CategoryTheory.Limits.IsLimit.ofIsoLimit_lift, CategoryTheory.Functor.Initial.extendCone_obj_π_app', CategoryTheory.Limits.Fork.IsLimit.homIso_symm_apply, CategoryTheory.Limits.WidePullbackCone.IsLimit.lift_base, AddCommGrpCat.binaryProductLimitCone_isLimit_lift, CategoryTheory.Limits.Types.Small.limitCone_pt, fromStructuredArrow_pt, toStructuredArrow_comp_toUnder_comp_forget, CategoryTheory.Limits.BinaryFan.braiding_inv_snd, CategoryTheory.Limits.PullbackCone.mono_fst_of_is_pullback_of_mono, AddCommGrpCat.binaryProductLimitCone_cone_π_app_left, CategoryTheory.ComposableArrows.IsComplex.mono_cokerToKer', CategoryTheory.Limits.Types.isLimitEquivSections_apply, CategoryTheory.Equalizer.Presieve.isSheafFor_singleton_iff, CategoryTheory.Limits.SequentialProduct.cone_π_app_comp_Pi_π_neg_assoc, extend_pt, CategoryTheory.Limits.ProductsFromFiniteCofiltered.finiteSubproductsCocone_π_app_eq_sum, CommRingCat.instIsLocalHomCarrierObjWalkingParallelPairFunctorConstPtEqualizerForkZeroParallelPairRingHomHomι, CategoryTheory.WithTerminal.coneEquiv_functor_obj_π_app_of, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_inverse_map_hom, CategoryTheory.Comma.coneOfPreserves_pt_right, CategoryTheory.Limits.opCoproductIsoProduct'_inv_comp_inj, ofPullbackCone_pt, ProfiniteAddGrp.instIsTopologicalAddGroupCarrierToTopTotallyDisconnectedSpacePtProfiniteLimitConeCompForget₂ContinuousAddMonoidHomToProfiniteContinuousMap, CategoryTheory.Limits.IsLimit.homEquiv_symm_π_app, CategoryTheory.Limits.MulticospanIndex.fstPiMapOfIsLimit_proj, GrpCat.binaryProductLimitCone_isLimit_lift, CategoryTheory.GrothendieckTopology.OneHypercoverFamily.IsSheafIff.fac, CategoryTheory.Preadditive.forkOfKernelFork_pt, LightCondensed.isColimitLocallyConstantPresheafDiagram_desc_apply, CategoryTheory.Limits.IsLimit.OfNatIso.cone_fac, CategoryTheory.Over.conePostIso_hom_app_hom, CategoryTheory.Limits.Cones.functoriality_obj_π_app, CategoryTheory.RanIsSheafOfIsCocontinuous.fac_assoc, TopCat.nonempty_isLimit_iff_eq_induced, CategoryTheory.Limits.colimitLimitToLimitColimitCone_hom, AddCommGrpCat.HasLimit.productLimitCone_cone_pt_coe, CategoryTheory.Limits.Fork.op_pt, CategoryTheory.Limits.PullbackCone.isIso_fst_of_mono_of_isLimit, ofPullbackCone_π, AlgebraicGeometry.exists_appTop_π_eq_of_isAffine_of_isLimit, CategoryTheory.Limits.ConeMorphism.map_w, CategoryTheory.Limits.Cones.equivalenceOfReindexing_counitIso, ProfiniteGrp.cone_pt, TopCat.piFan_pt, CategoryTheory.Limits.limit.isoLimitCone_hom_π, CategoryTheory.Limits.pullbackConeOfRightIso_π_app_right, CategoryTheory.ShortComplex.Exact.leftHomologyDataOfIsLimitKernelFork_K, category_id_hom, CategoryTheory.Functor.rightAdjointObjIsDefined_of_isLimit, CategoryTheory.Limits.IsLimit.hom_lift, CategoryTheory.Limits.PullbackCone.mk_π_app_right, CategoryTheory.Limits.Cofork.op_π_app_zero, CategoryTheory.Limits.coneOfConeCurry_π_app, CategoryTheory.Sheaf.isSheaf_of_isLimit, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiForkOfIsLimit_counitIso, CategoryTheory.Limits.isColimitCoconeUnopOfCone_desc, CategoryTheory.Monad.ForgetCreatesLimits.liftedCone_pt, AddGrpCat.binaryProductLimitCone_isLimit_lift, CategoryTheory.Limits.pullbackConeOfRightIso_fst, CategoryTheory.lift_comp_preservesLimitIso_hom_assoc, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_functor_obj_pt, equiv_hom_fst, toStructuredArrowCone_π_app, CategoryTheory.Limits.Cones.whiskeringEquivalence_unitIso, CategoryTheory.Limits.Fork.hom_comp_ι_assoc, Profinite.instEpiAppDiscreteQuotientCarrierToTopTotallyDisconnectedSpaceπAsLimitCone, Preorder.coneOfLowerBound_pt, CategoryTheory.Limits.isLimitOfCoconeLeftOpOfCone_lift, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctor_obj_pt, CategoryTheory.Limits.IsLimit.ofConeEquiv_apply_desc, CategoryTheory.Limits.PreservesLimit₂.isoObjConePointsOfIsLimit_hom_comp_π, CategoryTheory.Limits.KernelFork.mapIsoOfIsLimit_inv, CategoryTheory.Under.forgetCone_pt, TopCat.Presheaf.whiskerIsoMapGenerateCocone_inv_hom, CategoryTheory.Over.ConstructProducts.conesEquivFunctor_map_hom, CategoryTheory.Limits.IsLimit.conePointsIsoOfNatIso_hom_comp_assoc, CategoryTheory.Limits.BinaryFan.rightUnitor_inv, CategoryTheory.Limits.pullbackConeOfRightIso_x, CategoryTheory.ComposableArrows.Exact.cokerIsoKer'_inv_hom_id, CategoryTheory.Limits.MulticospanIndex.fstPiMapOfIsLimit_proj_assoc, CategoryTheory.Limits.PullbackCone.mk_π_app_one, CategoryTheory.WithTerminal.coneEquiv_inverse_obj_pt_left, TopCat.Sheaf.interUnionPullbackConeLift_right, LightProfinite.Extend.functor_map, CategoryTheory.Limits.CompleteLattice.limitCone_isLimit_lift, CategoryTheory.Over.conePost_map_hom, CategoryTheory.IsPullback.of_isLimit, CategoryTheory.Limits.Fork.ofCone_π, CategoryTheory.Limits.CompleteLattice.finiteLimitCone_isLimit_lift, CategoryTheory.Limits.opProductIsoCoproduct'_comp_self, CategoryTheory.Limits.pullbackConeEquivBinaryFan_inverse_obj, CategoryTheory.Limits.Cones.postcomposeEquivalence_unitIso, CategoryTheory.Limits.pullbackConeEquivBinaryFan_functor_obj, CategoryTheory.Limits.KernelFork.IsLimit.isIso_ι, CategoryTheory.Limits.Cones.postcomposeEquivalence_counitIso, CategoryTheory.Functor.postcomposeWhiskerLeftMapCone_inv_hom, CategoryTheory.Abelian.epi_snd_of_isLimit, CategoryTheory.Limits.coneOfSectionCompYoneda_pt, CategoryTheory.Limits.Types.limitConeIsLimit_lift_coe, CategoryTheory.Limits.IsLimit.lift_comp_conePointUniqueUpToIso_hom, CategoryTheory.Limits.coneOfAdj_pt, CategoryTheory.Functor.Initial.conesEquiv_unitIso, CategoryTheory.Limits.WidePullbackShape.mkCone_pt, CategoryTheory.lift_comp_preservesLimitIso_hom, CategoryTheory.RanIsSheafOfIsCocontinuous.fac', CategoryTheory.Limits.KernelFork.condition, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_counitIso_inv_app_hom, TopCat.nonempty_limitCone_of_compact_t2_cofiltered_system, CategoryTheory.Limits.limit.conePointUniqueUpToIso_hom_comp_assoc, CategoryTheory.Limits.MulticospanIndex.parallelPairDiagramOfIsLimit_map, CategoryTheory.Limits.Fork.IsLimit.homIso_apply_coe, CategoryTheory.Limits.PullbackCone.IsLimit.equivPullbackObj_apply_snd, CategoryTheory.Limits.coneOfCoconeLeftOp_pt, CategoryTheory.Limits.limit.cone_x, CategoryTheory.Limits.Cones.functoriality_obj_pt, CategoryTheory.Limits.Fork.IsLimit.lift_ι, CategoryTheory.ShortComplex.LeftHomologyData.wπ_assoc, CategoryTheory.Limits.Multifork.app_right_eq_ι_comp_snd, mapConeToUnder_inv_hom, CategoryTheory.Limits.PullbackCone.π_app_left, CategoryTheory.Limits.binaryBiconeOfIsSplitEpiOfKernel_pt, CategoryTheory.Limits.Wedge.condition, CategoryTheory.FunctorToTypes.binaryProductLimit_lift, CategoryTheory.Limits.limit.existsUnique, CategoryTheory.regularTopology.parallelPair_pullback_initial, CategoryTheory.Limits.Cones.extendComp_inv_hom, CategoryTheory.Limits.biproduct.conePointUniqueUpToIso_inv, CategoryTheory.Limits.Multifork.app_left_eq_ι, CategoryTheory.Limits.Multifork.condition, CategoryTheory.CartesianMonoidalCategory.ofChosenFiniteProducts.leftUnitor_naturality, CategoryTheory.Limits.coconeOfConeRightOp_ι, CategoryTheory.Limits.limitConeOfUnique_cone_pt, CategoryTheory.Limits.Fork.op_π, CategoryTheory.Limits.limit.conePointUniqueUpToIso_inv_comp_assoc, CategoryTheory.Over.ConstructProducts.conesEquivUnitIso_inv_app_hom, CategoryTheory.Under.liftCone_π_app, CategoryTheory.Limits.Cones.extendIso_inv_hom, CategoryTheory.Limits.Wedge.IsLimit.lift_ι_assoc, CategoryTheory.ComposableArrows.Exact.cokerIsoKer'_hom_inv_id, CategoryTheory.Limits.Fork.app_one_eq_ι_comp_left, CategoryTheory.CostructuredArrow.CreatesConnected.raiseCone_pt, CategoryTheory.Comma.limitAuxiliaryCone_π_app, CategoryTheory.Limits.Trident.IsLimit.homIso_apply_coe, CategoryTheory.Limits.WidePullbackCone.mk_pt, CategoryTheory.WithTerminal.coneEquiv_inverse_obj_pt_hom, CategoryTheory.Limits.Fan.ext_inv_hom, CategoryTheory.Limits.Bicone.toCone_pt, CategoryTheory.Over.ConstructProducts.conesEquivCounitIso_hom_app_hom_left, CategoryTheory.Limits.PreservesLimit₂.isoObjConePointsOfIsColimit_inv_comp_map_π_assoc, CategoryTheory.Limits.Multifork.IsLimit.fac_assoc, Profinite.Extend.functor_obj, CategoryTheory.Limits.FormalCoproduct.homPullbackEquiv_symm_apply_f_coe, CategoryTheory.Limits.Fan.ext_hom_hom, CategoryTheory.Limits.WidePullbackCone.IsLimit.lift_π_assoc, CategoryTheory.Functor.Initial.extendCone_map_hom, toCostructuredArrow_map, CategoryTheory.Limits.BinaryFan.π_app_right, AlgebraicGeometry.opensCone_π_app, CategoryTheory.Limits.PullbackCone.eta_inv_hom, SSet.StrictSegal.isPointwiseRightKanExtensionAt.fac_aux₂, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift_fst, CategoryTheory.Functor.Accessible.Limits.isColimitMapCocone.surjective, CategoryTheory.Limits.Cones.eta_inv_hom, CategoryTheory.Limits.Cones.whiskeringEquivalence_counitIso, CategoryTheory.Limits.Fan.IsLimit.fac_assoc, CategoryTheory.Limits.PushoutCocone.op_π_app, CategoryTheory.Comonad.ForgetCreatesLimits'.newCone_π, CategoryTheory.Limits.limit.lift_π_app, CategoryTheory.biconeMk_map, CategoryTheory.Limits.ProductsFromFiniteCofiltered.finiteSubproductsCone_pt, CategoryTheory.Limits.Cones.extendIso_hom_hom, CategoryTheory.Limits.WidePullbackCone.condition_assoc, PresheafOfModules.isSheaf_of_isLimit, CategoryTheory.Limits.Fork.app_one_eq_ι_comp_right_assoc, CategoryTheory.Limits.WidePullbackCone.IsLimit.lift_base_assoc, CategoryTheory.Limits.instIsIsoHomInvCone, CategoryTheory.Limits.IsLimit.conePointsIsoOfNatIso_inv, overPost_pt, CategoryTheory.IsUniversalColimit.nonempty_isColimit_of_pullbackCone_left, CategoryTheory.Functor.Initial.limit_cone_comp_aux, CategoryTheory.CartesianMonoidalCategory.ofChosenFiniteProducts.triangle, CategoryTheory.Sheaf.coneΓ_pt, CategoryTheory.Preadditive.mono_iff_isZero_kernel', CategoryTheory.Limits.coneOfSectionCompCoyoneda_pt, CategoryTheory.ShortComplex.Exact.leftHomologyDataOfIsLimitKernelFork_π, Condensed.instFinalOppositeDiscreteQuotientCarrierToTopTotallyDisconnectedSpaceCostructuredArrowFintypeCatProfiniteOpToProfiniteOpPtAsLimitConeFunctorOp, CategoryTheory.Limits.isLimitConeOfAdj_lift, CategoryTheory.Limits.Types.Limit.lift_π_apply, CategoryTheory.Limits.BinaryFan.braiding_inv_fst_assoc, CategoryTheory.Limits.isLimitOfCoconeRightOpOfCone_lift, CategoryTheory.Limits.ConeMorphism.w_assoc, CategoryTheory.Limits.PullbackCone.unop_ι_app, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivUnitIso_inv_app_hom, CategoryTheory.IsUniversalColimit.nonempty_isColimit_prod_of_pullbackCone, CategoryTheory.Limits.BinaryBicone.toCone_pt, CategoryTheory.Limits.Multifork.toPiFork_π_app_one, CategoryTheory.Limits.Multifork.ofPiFork_pt, CategoryTheory.Limits.pullbackConeOfLeftIso_π_app_none, CategoryTheory.Limits.Multifork.IsLimit.sectionsEquiv_symm_apply_val, CategoryTheory.Limits.biprod.conePointUniqueUpToIso_hom, CategoryTheory.Limits.Concrete.to_product_injective_of_isLimit, CategoryTheory.Limits.Cones.eta_hom_hom, CategoryTheory.Limits.isIso_limit_cone_parallelPair_of_eq, CategoryTheory.Limits.Fan.IsLimit.fac, CategoryTheory.Functor.mapCone_pt, CategoryTheory.Limits.PullbackCone.isoMk_inv_hom, CategoryTheory.Limits.coconeOfConeRightOp_pt, CategoryTheory.Functor.mapCone₂_pt, CategoryTheory.ProdPreservesConnectedLimits.forgetCone_pt, CategoryTheory.Limits.limit.isoLimitCone_inv_π_assoc, CategoryTheory.Limits.BinaryFan.braiding_hom_fst, SSet.StrictSegal.isPointwiseRightKanExtensionAt.fac_aux₃, CategoryTheory.Limits.Fan.mk_pt, CategoryTheory.Limits.Cones.postcompose_obj_π, CategoryTheory.Adjunction.functorialityUnit'_app_hom, CategoryTheory.Limits.WidePullbackCone.IsLimit.lift_π, CategoryTheory.Functor.mapCone₂_π_app, CategoryTheory.Limits.Cones.functoriality_map_hom, CategoryTheory.Limits.Cones.extendId_hom_hom, CategoryTheory.Limits.SequentialProduct.cone_π_app_comp_Pi_π_pos, CategoryTheory.Limits.PreservesLimit₂.isoObjConePointsOfIsLimit_hom_comp_π_assoc, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_functor_obj_π_app, CategoryTheory.Limits.IsLimit.lift_comp_conePointUniqueUpToIso_inv_assoc, LightProfinite.Extend.functorOp_map, TopCat.Sheaf.interUnionPullbackConeLift_left, CategoryTheory.Limits.coneOfCoconeRightOp_pt, CategoryTheory.Limits.PullbackCone.IsLimit.equivPullbackObj_symm_apply_fst, Alexandrov.lowerCone_π_app, CategoryTheory.GrothendieckTopology.OneHypercoverFamily.IsSheafIff.fac', CategoryTheory.Limits.Fork.condition, CategoryTheory.ComposableArrows.Exact.cokerIsoKer'_inv_hom_id_assoc, CategoryTheory.ShortComplex.LeftHomologyData.wπ, ModuleCat.binaryProductLimitCone_cone_π_app_left, CategoryTheory.liftedLimitMapsToOriginal_inv_map_π, CategoryTheory.Limits.KernelFork.app_one, CategoryTheory.GrothendieckTopology.OneHypercoverFamily.IsSheafIff.fac'_assoc, CategoryTheory.Functor.coneOfIsRightKanExtension_π, CategoryTheory.Limits.Fork.app_zero_eq_ι, CategoryTheory.Limits.Cones.postcomposeComp_inv_app_hom, CategoryTheory.Limits.limit.cone_π, CategoryTheory.Limits.IsLimit.isIso_limMap_π, CategoryTheory.Functor.mapConePostcomposeEquivalenceFunctor_inv_hom, CategoryTheory.Limits.limit.lift_π_apply, CategoryTheory.Limits.DiagramOfCones.conePoints_obj, CategoryTheory.Limits.isLimitOfCoconeOfConeUnop_lift, CategoryTheory.Limits.isKernelCompMono_lift, CategoryTheory.Limits.pullbackConeOfRightIso_π_app_left, CategoryTheory.Limits.pullbackConeOfLeftIso_x, toStructuredArrowCompProj_hom_app, CategoryTheory.Limits.Trident.ofCone_π, CategoryTheory.Limits.Types.Small.limitConeIsLimit_lift, CategoryTheory.Functor.mapConePostcomposeEquivalenceFunctor_hom_hom, CategoryTheory.Limits.IsLimit.lift_comp_conePointUniqueUpToIso_inv, CategoryTheory.Limits.limit.conePointUniqueUpToIso_hom_comp, CategoryTheory.IsSplitEqualizer.asFork_pt, CategoryTheory.Functor.mapCone_π_app, CategoryTheory.Limits.MulticospanIndex.toPiForkFunctor_obj, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctor_obj_π_app, CategoryTheory.Over.conePostIso_inv_app_hom, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.pullbackConeSndIsOpenImmersion, CategoryTheory.Sheaf.coneΓ_π_app, CategoryTheory.Limits.Fork.equivOfIsos_inverse_obj_ι, TopCat.Presheaf.whiskerIsoMapGenerateCocone_hom_hom, CategoryTheory.Limits.coneOfConeUncurry_π_app, CategoryTheory.Limits.ProductsFromFiniteCofiltered.liftToFinsetLimitCone_cone_pt, CategoryTheory.Limits.Cones.forget_obj, AlgebraicGeometry.Scheme.Pullback.openCoverOfBase'_f, CategoryTheory.Limits.CompleteLattice.finiteLimitCone_cone_pt, CategoryTheory.Limits.Fork.op_ι_app, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiForkOfIsLimit_inverse, CategoryTheory.Functor.IsEventuallyConstantTo.isIso_π_of_isLimit, CategoryTheory.Functor.IsEventuallyConstantTo.cone_pt, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_inverse_obj_π_app, CategoryTheory.Limits.Pi.map_eq_prod_map, CategoryTheory.Functor.OneHypercoverDenseData.isSheaf_iff.fac_assoc, CategoryTheory.Limits.coconeUnopOfCone_pt, CategoryTheory.Limits.Concrete.surjective_π_app_zero_of_surjective_map, LightProfinite.instTotallyDisconnectedSpaceCarrierToTopTruePtCompHausLimitConeCompLightProfiniteToCompHaus, Profinite.exists_locallyConstant, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverse_obj_pt, CategoryTheory.CostructuredArrow.CreatesConnected.raiseCone_π_app, CategoryTheory.Limits.Multifork.IsLimit.fac, CategoryTheory.Limits.IsLimit.conePointUniqueUpToIso_inv_comp, CategoryTheory.extendFan_π_app, CategoryTheory.Limits.coneRightOpOfCocone_pt, CommGrpCat.binaryProductLimitCone_cone_pt, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivUnitIso_hom_app_hom, CategoryTheory.Limits.PullbackCone.eta_hom_hom, CategoryTheory.Limits.binaryBiconeOfIsSplitEpiOfKernel_snd, CategoryTheory.Limits.BinaryBicone.ofLimitCone_snd, AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_fst_assoc, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivUnitIsoApp_hom_hom, CategoryTheory.Limits.PullbackCone.mk_pt, CategoryTheory.Over.conePost_obj_pt, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctorObj_pt, CategoryTheory.Limits.limitConeOfUnique_isLimit_lift, CategoryTheory.coherentTopology.epi_π_app_zero_of_epi, CategoryTheory.Limits.coneLeftOpOfCocone_pt, CategoryTheory.Limits.Trident.ι_eq_app_zero, CategoryTheory.Limits.limit.lift_pre, CategoryTheory.Limits.Cones.functorialityEquivalence_counitIso, CategoryTheory.Limits.Fork.op_ι_app_one, w, CategoryTheory.Limits.mono_of_isLimit_fork, CategoryTheory.Limits.PullbackCone.ofCone_π, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_inverse_obj_pt, CategoryTheory.Limits.BinaryFan.isLimit_iff_isIso_fst, CategoryTheory.Limits.PullbackCone.op_inl, CategoryTheory.Limits.PullbackCone.IsLimit.lift_snd, CategoryTheory.Functor.mapConeWhisker_hom_hom, AlgebraicGeometry.ExistsHomHomCompEqCompAux.hab, ModuleCat.HasLimit.productLimitCone_cone_pt_isModule, CategoryTheory.Limits.Cofork.unop_π_app_zero, CategoryTheory.ShortComplex.isoCyclesOfIsLimit_inv_ι_assoc, toStructuredArrow_obj, CategoryTheory.Over.isPullback_of_binaryFan_isLimit, CategoryTheory.Limits.biprod.conePointUniqueUpToIso_inv, CategoryTheory.Limits.IsLimit.fac_assoc, CategoryTheory.Limits.PullbackCone.flip_pt, CategoryTheory.Limits.BinaryFan.braiding_inv_fst, CategoryTheory.Limits.Wedge.ext_inv_hom, CategoryTheory.Limits.BinaryFan.assoc_snd, CategoryTheory.Limits.Pi.cone_pt, CategoryTheory.Limits.IsLimit.homEquiv_symm_π_app_assoc, CategoryTheory.Limits.Cones.ext_inv_hom, category_comp_hom, CategoryTheory.Limits.CoproductDisjoint.nonempty_isInitial_of_ne, CategoryTheory.CartesianMonoidalCategory.ofChosenFiniteProducts.pentagon, CategoryTheory.Limits.FormalCoproduct.pullbackCone_fst_f, CategoryTheory.Monad.ForgetCreatesLimits.conePoint_A, CategoryTheory.Comma.coneOfPreserves_pt_hom, ModuleCat.HasLimit.productLimitCone_cone_pt_carrier, CategoryTheory.Limits.Trident.IsLimit.homIso_symm_apply, CategoryTheory.Functor.postcomposeWhiskerLeftMapCone_hom_hom, CategoryTheory.Enriched.FunctorCategory.coneFunctorEnrichedHom_pt, CategoryTheory.Limits.MulticospanIndex.sndPiMapOfIsLimit_proj_assoc, CategoryTheory.Limits.ConeMorphism.hom_inv_id_assoc, TopCat.coneOfConeForget_π_app, CategoryTheory.Limits.BinaryFan.braiding_inv_snd_assoc, CategoryTheory.Limits.Bicone.ofLimitCone_π, CategoryTheory.Limits.Fan.IsLimit.lift_proj, ofFork_π, CategoryTheory.Limits.isColimitCoconeRightOpOfCone_desc, CategoryTheory.Limits.isColimitCoconeOfConeRightOp_desc, CategoryTheory.ShortComplex.LeftHomologyData.ofIsLimitKernelFork_K, TopCat.induced_of_isLimit, CategoryTheory.Limits.Types.surjective_π_app_zero_of_surjective_map, CategoryTheory.Limits.coconeLeftOpOfCone_ι_app, AlgebraicGeometry.exists_mem_of_isClosed_of_nonempty', fromCostructuredArrow_obj_pt, isLimit_iff_isIso_limMap_π, TopCat.Presheaf.SheafConditionEqualizerProducts.fork_pt, CategoryTheory.Limits.coconeRightOpOfCone_ι, CategoryTheory.Limits.PullbackCone.combine_pt_map, CategoryTheory.Limits.Fork.IsLimit.lift_ι_assoc, Condensed.isColimitLocallyConstantPresheafDiagram_desc_apply, CategoryTheory.Limits.Multifork.app_right_eq_ι_comp_snd_assoc, CategoryTheory.Limits.PullbackCone.unop_pt, CategoryTheory.Limits.limit.lift_π_assoc, CategoryTheory.WithTerminal.isLimitEquiv_apply_lift_left, CategoryTheory.Limits.Fork.IsLimit.lift_ι', CategoryTheory.Limits.limit.pre_eq, CategoryTheory.Limits.limit.lift_map, AddCommGrpCat.HasLimit.lift_hom_apply, CategoryTheory.Limits.PullbackCone.combine_pt_obj, CategoryTheory.Limits.IsLimit.conePointsIsoOfEquivalence_hom, CategoryTheory.Limits.Fan.IsLimit.lift_proj_assoc, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivUnitIsoApp_inv_hom, CategoryTheory.Limits.PushoutCocone.op_pt, CategoryTheory.Limits.Multifork.ofPiFork_π_app_right, LightCondensed.epi_π_app_zero_of_epi, CategoryTheory.Functor.mapConeOp_inv_hom, CategoryTheory.Limits.FormalCoproduct.pullbackCone_condition, CategoryTheory.Limits.Multifork.ofPiFork_π_app_left, CategoryTheory.regularTopology.equalizerCondition_w, CategoryTheory.Functor.mapConePostcompose_hom_hom, CategoryTheory.ShortComplex.isoCyclesOfIsLimit_hom_iCycles, CategoryTheory.Subfunctor.equalizer.fork_pt, CategoryTheory.Limits.IsLimit.conePointsIsoOfEquivalence_inv, AlgebraicGeometry.exists_appTop_π_eq_of_isLimit, TopCat.Presheaf.isGluing_iff_pairwise, Alexandrov.lowerCone_pt, CategoryTheory.Over.ConstructProducts.conesEquivFunctor_obj_pt, CategoryTheory.Limits.pullbackConeOfRightIso_π_app_none, CategoryTheory.Limits.binaryBiconeOfIsSplitEpiOfKernel_fst, CategoryTheory.Limits.IsLimit.lift_comp_conePointsIsoOfNatIso_inv_assoc, HomologicalComplex.coneOfHasLimitEval_pt_X, whisker_pt, CategoryTheory.ComposableArrows.IsComplex.epi_cokerToKer', ModuleCat.HasLimit.lift_hom_apply, ModuleCat.binaryProductLimitCone_isLimit_lift, CategoryTheory.Comonad.beckEqualizer_lift, CategoryTheory.Comonad.ForgetCreatesLimits'.conePoint_A, CategoryTheory.Limits.MulticospanIndex.ofPiForkFunctor_obj, Profinite.Extend.cone_pt, CategoryTheory.isCoseparator_iff_of_isLimit_fan, CategoryTheory.WithTerminal.coneEquiv_unitIso_inv_app_hom_left, lightDiagramToLightProfinite_map, CategoryTheory.IsUniversalColimit.nonempty_isColimit_of_pullbackCone_right, CategoryTheory.RanIsSheafOfIsCocontinuous.fac, CategoryTheory.Limits.limit.isoLimitCone_inv_π, CategoryTheory.Limits.Bicone.toCone_π_app, CategoryTheory.Limits.KernelFork.mapIsoOfIsLimit_hom, CategoryTheory.ShortComplex.LeftHomologyData.ofIsLimitKernelFork_π, CategoryTheory.Limits.BinaryFan.leftUnitor_hom, CategoryTheory.Subobject.leInfCone_π_app_none, CategoryTheory.Limits.Fan.nonempty_isLimit_iff_isIso_piLift, unop_pt, CategoryTheory.Limits.IsLimit.lift_comp_conePointsIsoOfNatIso_hom_assoc, CategoryTheory.Limits.DiagramOfCones.comp, CategoryTheory.Limits.PullbackCone.condition_one, CategoryTheory.GrothendieckTopology.coneCompEvaluationOfConeCompDiagramFunctorCompEvaluation_π_app, CategoryTheory.ComposableArrows.Exact.isIso_cokerToKer', CategoryTheory.Presieve.piComparison_fac, CategoryTheory.Limits.BinaryBicone.ofLimitCone_fst, toUnder_π_app, CategoryTheory.Limits.IsLimit.assoc_lift, CategoryTheory.Limits.Cones.equivalenceOfReindexing_unitIso, CategoryTheory.Comonad.beckFork_pt, CategoryTheory.Limits.IsLimit.conePointUniqueUpToIso_inv_comp_assoc, CategoryTheory.Limits.MulticospanIndex.parallelPairDiagramOfIsLimit_obj, CategoryTheory.Over.ConstructProducts.conesEquivUnitIso_hom_app_hom, AlgebraicGeometry.Scheme.nonempty_of_isLimit, CategoryTheory.Limits.coconeOfConeLeftOp_ι_app, CategoryTheory.Limits.limit.coneMorphism_π, CategoryTheory.Limits.KernelFork.map_condition, AlgebraicGeometry.Scheme.compactSpace_of_isLimit, CategoryTheory.Limits.coconeOfConeUnop_ι, CategoryTheory.Limits.IsLimit.lift_self, CategoryTheory.Mon.limitCone_pt, AlgebraicGeometry.exists_mem_of_isClosed_of_nonempty, CategoryTheory.Limits.coconeEquivalenceOpConeOp_counitIso, CommRingCat.piFan_pt, CategoryTheory.Limits.Fork.op_ι_app_zero, CategoryTheory.Cat.HasLimits.limitConeLift_toFunctor, CategoryTheory.Limits.Trident.app_zero_assoc, CategoryTheory.Limits.PullbackCone.isIso_snd_of_mono_of_isLimit, CategoryTheory.Limits.combineCones_pt_map, toStructuredArrow_comp_proj, CategoryTheory.Abelian.epi_fst_of_isLimit, CategoryTheory.Limits.Cofork.op_π_app_one, SSet.StrictSegal.isPointwiseRightKanExtensionAt.fac_aux₁, CategoryTheory.Limits.IsLimit.conePointsIsoOfNatIso_inv_comp_assoc, CategoryTheory.Limits.limit.conePointUniqueUpToIso_inv_comp, CategoryTheory.Limits.IsLimit.map_π_assoc, mapConeToUnder_hom_hom, CategoryTheory.Limits.opProductIsoCoproduct'_inv_comp_lift, ModuleCat.HasLimit.productLimitCone_cone_pt_isAddCommGroup, CategoryTheory.Limits.BinaryFan.leftUnitor_inv, CategoryTheory.Limits.isColimitCoconeOfConeLeftOp_desc, CategoryTheory.Functor.mapConeOp_hom_hom, CategoryTheory.coherentTopology.isLocallySurjective_π_app_zero_of_isLocallySurjective_map, CategoryTheory.Limits.PullbackCone.IsLimit.lift_fst_assoc, LightCondensed.instFinalNatCostructuredArrowOppositeFintypeCatLightProfiniteOpToLightProfiniteOpPtAsLimitConeFunctorOp, CategoryTheory.Limits.KernelFork.map_ι, ModuleCat.binaryProductLimitCone_cone_pt, CategoryTheory.Limits.equalizer.fork_π_app_zero, CategoryTheory.Comma.coneOfPreserves_pt_left, CategoryTheory.Functor.structuredArrowMapCone_pt, CommGrpCat.binaryProductLimitCone_isLimit_lift, CategoryTheory.Limits.coneOfConeUncurry_pt, CategoryTheory.Limits.splitMonoOfIdempotentOfIsLimitFork_retraction, CategoryTheory.Limits.Multifork.hom_comp_ι, w_apply, CategoryTheory.Limits.isLimitOfCoconeUnopOfCone_lift, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiForkOfIsLimit_unitIso, overPost_π_app, toStructuredArrow_map, CategoryTheory.Limits.proj_comp_opProductIsoCoproduct'_hom, CategoryTheory.Limits.PushoutCocone.unop_pt, CategoryTheory.Limits.Multifork.pi_condition_assoc, CategoryTheory.Limits.SequentialProduct.cone_π_app, CategoryTheory.Limits.MulticospanIndex.ofPiForkFunctor_map_hom, CategoryTheory.Limits.limit.lift_π_app_assoc, w_assoc, AlgebraicGeometry.isAffineHom_π_app, LightProfinite.Extend.functor_obj, CategoryTheory.Limits.Multifork.ext_inv_hom, CategoryTheory.WithTerminal.coneEquiv_inverse_map_hom_left, op_pt, CategoryTheory.ShortComplex.exact_iff_of_forks, CategoryTheory.ShortComplex.HomologyData.ofEpiMonoFactorisation.f'_eq, HomologicalComplex.extend.leftHomologyData.lift_d_comp_eq_zero_iff, CategoryTheory.Monad.ForgetCreatesLimits.liftedCone_π_app_f, CategoryTheory.Limits.combineCones_pt_obj, CategoryTheory.Limits.coconeRightOpOfCone_pt, CategoryTheory.CategoryOfElements.CreatesLimitsAux.liftedCone_pt_snd, CategoryTheory.Over.ConstructProducts.conesEquivInverseObj_π_app, CategoryTheory.Functor.mapConeMapCone_inv_hom, CategoryTheory.GrothendieckTopology.liftToPlusObjLimitObj_fac, CategoryTheory.Limits.IsLimit.homEquiv_symm_naturality, CategoryTheory.Functor.IsEventuallyConstantTo.isIso_π_of_isLimit', LightProfinite.instEpiAppOppositeNatπAsLimitCone, CategoryTheory.FunctorToTypes.binaryProductCone_pt_map, CategoryTheory.Limits.PullbackCone.IsLimit.lift_snd_assoc, CategoryTheory.Limits.IsLimit.isZero_pt, CategoryTheory.Limits.BinaryFan.assocInv_snd, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_tensorProductIsBinaryProduct_lift_hom, CategoryTheory.Limits.coconeEquivalenceOpConeOp_inverse_map_hom, CategoryTheory.Limits.PullbackCone.isoMk_hom_hom, CategoryTheory.Comonad.ForgetCreatesLimits'.commuting, CategoryTheory.Limits.Multifork.ofPiFork_ι, CategoryTheory.Functor.Initial.extendCone_obj_π_app, CategoryTheory.Limits.Fork.condition_assoc, CategoryTheory.Limits.IsLimit.conePointsIsoOfNatIso_hom_comp, CategoryTheory.Limits.Cocone.unop_pt, CategoryTheory.preserves_lift_mapCone, instSecondCountableTopologyCarrierToTopTotallyDisconnectedSpacePtOppositeNatProfiniteCone, CategoryTheory.Functor.functorialityCompPostcompose_inv_app_hom, CategoryTheory.Limits.Wedge.condition_assoc, CategoryTheory.ComposableArrows.IsComplex.cokerToKer'_fac_assoc, CategoryTheory.Limits.coconeUnopOfCone_ι, CategoryTheory.Limits.BinaryFan.assocInv_fst, CategoryTheory.Limits.Fork.isoForkOfι_inv_hom, CategoryTheory.Limits.opCoproductIsoProduct'_hom_comp_proj_assoc, CategoryTheory.Limits.BinaryFan.π_app_left, CategoryTheory.Functor.mapConeWhisker_inv_hom, CategoryTheory.Limits.IsLimit.existsUnique, CategoryTheory.PreOneHypercover.Hom.mapMultiforkOfIsLimit_ι_assoc, toStructuredArrowCompToUnderCompForget_inv_app, CategoryTheory.ShortComplex.RightHomologyData.ofIsLimitKernelFork_H, CategoryTheory.mono_iff_isIso_fst, TopCat.Presheaf.SheafConditionEqualizerProducts.fork_π_app_walkingParallelPair_zero, CategoryTheory.WithTerminal.coneEquiv_functor_obj_pt, CategoryTheory.Limits.IsLimit.homIso_hom, CategoryTheory.Limits.PullbackCone.ofCone_pt, CategoryTheory.liftedLimitMapsToOriginal_hom_π, CategoryTheory.CartesianMonoidalCategory.ofChosenFiniteProducts.rightUnitor_naturality, CategoryTheory.Limits.PullbackCone.mk_π_app_left, CategoryTheory.CategoryOfElements.CreatesLimitsAux.map_lift_mapCone, TopCat.isSheaf_of_isLimit, CategoryTheory.Comonad.ComonadicityInternal.counitFork_pt, CategoryTheory.Limits.FormalCoproduct.homPullbackEquiv_apply_coe, extensions_app, CategoryTheory.Limits.pullbackConeEquivBinaryFan_unitIso, CategoryTheory.Limits.isColimitCoconeOfConeUnop_desc, AddGrpCat.binaryProductLimitCone_cone_pt, CategoryTheory.Limits.coneOfIsSplitMono_pt, CommRingCat.prodFan_pt, TopCat.Sheaf.interUnionPullbackCone_pt, CategoryTheory.Limits.HasLimit.lift_isoOfNatIso_inv, Profinite.exists_locallyConstant_finite_nonempty, CategoryTheory.Limits.BinaryFan.assoc_fst, CategoryTheory.ComposableArrows.IsComplex.cokerToKer'_fac, CategoryTheory.Limits.limit.lift_map_assoc, CategoryTheory.Limits.Types.Limit.lift_π_apply', CategoryTheory.mono_iff_isIso_snd, AddCommGrpCat.binaryProductLimitCone_cone_π_app_right, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverseObj_pt, CategoryTheory.PreOneHypercover.forkOfIsColimit_ι_map_inj, CategoryTheory.PreservesFiniteLimitsOfFlat.fac, CategoryTheory.Limits.PullbackCone.IsLimit.equivPullbackObj_symm_apply_snd, CategoryTheory.Comonad.ForgetCreatesLimits'.liftedConeIsLimit_lift_f, CategoryTheory.Limits.PullbackCone.mono_snd_of_is_pullback_of_mono, CategoryTheory.Limits.SequentialProduct.cone_π_app_comp_Pi_π_neg, CategoryTheory.IsPullback.of_isLimit_cone, CategoryTheory.Limits.limit.lift_π, CategoryTheory.PreOneHypercover.Hom.mapMultiforkOfIsLimit_ι, CategoryTheory.Limits.Cones.extendComp_hom_hom, CategoryTheory.Limits.wideEqualizer.trident_π_app_zero, CategoryTheory.Limits.BinaryFan.isLimit_iff_isIso_snd, CategoryTheory.Limits.Multifork.hom_comp_ι_assoc, CategoryTheory.Limits.Bicone.ofLimitCone_pt, CategoryTheory.RanIsSheafOfIsCocontinuous.liftAux_map, Profinite.exists_locallyConstant_fin_two, PresheafOfModules.limitCone_pt, toStructuredArrowCone_pt, CategoryTheory.Limits.IsLimit.OfNatIso.coneOfHom_homOfCone, CategoryTheory.GrothendieckTopology.OneHypercover.multiforkLift_map_assoc, CategoryTheory.Limits.Multifork.app_right_eq_ι_comp_fst, ProfiniteGrp.instIsTopologicalGroupCarrierToTopTotallyDisconnectedSpacePtProfiniteLimitConeCompForget₂ContinuousMonoidHomToProfiniteContinuousMap, CategoryTheory.Limits.BinaryFan.mk_pt, Profinite.Extend.functor_map, CategoryTheory.Limits.HasLimit.lift_isoOfNatIso_hom_assoc, CategoryTheory.Limits.BinaryBicone.ofLimitCone_pt, CategoryTheory.Limits.isIso_limit_cone_parallelPair_of_self, CategoryTheory.Functor.OneHypercoverDenseData.isSheaf_iff.lift_map, CategoryTheory.Limits.Trident.IsLimit.homIso_natural, CategoryTheory.Functor.OneHypercoverDenseData.isSheaf_iff.lift_map_assoc, CategoryTheory.Limits.Multifork.toPiFork_π_app_zero, CategoryTheory.Limits.biproduct.conePointUniqueUpToIso_hom, CategoryTheory.Limits.Types.isLimit_iff_bijective_sectionOfCone, CategoryTheory.Limits.Cones.postcomposeComp_hom_app_hom, CategoryTheory.Limits.Types.surjective_π_app_zero_of_surjective_map_aux, CategoryTheory.Limits.FormalCoproduct.pullbackCone_snd_f, CategoryTheory.Limits.Cones.postcompose_map_hom, CategoryTheory.Limits.IsLimit.isIso_π_app_of_isInitial, CategoryTheory.Limits.coneOfCoconeUnop_pt, CategoryTheory.Limits.Multifork.toSections_fac, Profinite.isIso_asLimitCone_lift, TopCat.coneOfConeForget_pt, CategoryTheory.CategoryOfElements.CreatesLimitsAux.liftedCone_pt_fst, CategoryTheory.Limits.Cones.postcomposeId_inv_app_hom, CategoryTheory.Limits.Fork.unop_π, CategoryTheory.WithTerminal.coneEquiv_counitIso_hom_app_hom, CategoryTheory.Limits.limit.lift_extend, TopCat.isTopologicalBasis_cofiltered_limit, CategoryTheory.Limits.binaryBiconeOfIsSplitEpiOfKernel_inr, CategoryTheory.IsPullback.of_is_product, CategoryTheory.Limits.Multifork.isLimit_types_iff, CategoryTheory.Limits.IsLimit.fac, CategoryTheory.Limits.Types.isLimit_iff, CategoryTheory.Over.ConstructProducts.conesEquivFunctor_obj_π_app, CategoryTheory.Limits.combineCones_π_app_app, CategoryTheory.Limits.instIsIsoHomHomCone, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_unitIso_hom_app_hom, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.instSndPullbackConeOfLeft, CategoryTheory.Limits.KernelFork.mapOfIsLimit_ι, CategoryTheory.Limits.Multifork.condition_assoc, Preorder.isGLB_of_isLimit, CategoryTheory.Over.ConstructProducts.conesEquivInverse_map_hom, CategoryTheory.Limits.FormalCoproduct.pullbackCone_snd_φ, CategoryTheory.Limits.WidePullbackCone.condition, CategoryTheory.Adjunction.functorialityCounit'_app_hom, CategoryTheory.WithTerminal.coneEquiv_inverse_obj_pt_right_as, CategoryTheory.Limits.Fork.app_one_eq_ι_comp_right, Profinite.exists_hom, CategoryTheory.Functor.OneHypercoverDenseData.isSheaf_iff.liftAux_fac, AlgebraicGeometry.Scheme.isAffine_of_isLimit, CategoryTheory.Limits.FormalCoproduct.isPullback, CategoryTheory.Comonad.ForgetCreatesLimits'.liftedCone_pt, CategoryTheory.Limits.pullbackConeEquivBinaryFan_inverse_map_hom, CategoryTheory.Limits.HasLimit.lift_isoOfNatIso_inv_assoc, CompHausLike.pullback.cone_pt, CategoryTheory.Limits.coconeLeftOpOfCone_pt, CategoryTheory.Limits.ConeMorphism.inv_hom_id, CategoryTheory.ShortComplex.isoCyclesOfIsLimit_inv_ι, CategoryTheory.Limits.Types.isLimitEquivSections_symm_apply, CategoryTheory.Functor.OneHypercoverDenseData.isSheaf_iff.fac, op_ι, CategoryTheory.WithTerminal.coneEquiv_functor_map_hom, AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_fst, CategoryTheory.Limits.IsLimit.homEquiv_apply, CategoryTheory.Limits.CompleteLattice.limitCone_cone_pt, CategoryTheory.Limits.Multifork.pi_condition, CategoryTheory.Limits.KernelFork.map_condition_assoc, CategoryTheory.Comma.coneOfPreserves_π_app_left
|
π 📖 | CompOp | 321 mathmath: CategoryTheory.Limits.limitConeOfUnique_cone_π, CategoryTheory.GrothendieckTopology.liftToDiagramLimitObjAux_fac, LightProfinite.Extend.functorOp_obj, CategoryTheory.Limits.Trident.app_zero, AlgebraicGeometry.opensCone_pt, unop_ι, CategoryTheory.Limits.ProductsFromFiniteCofiltered.liftToFinsetLimitCone_isLimit_lift, ofTrident_π, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverse_obj_π_app, CategoryTheory.Comonad.ComonadicityInternal.unitFork_π_app, CategoryTheory.Limits.pullbackConeOfLeftIso_π_app_left, CategoryTheory.GrothendieckTopology.liftToDiagramLimitObjAux_fac_assoc, CategoryTheory.Functor.isLimitConeOfIsRightKanExtension_lift, CategoryTheory.Limits.Pi.cone_π, Profinite.Extend.functorOp_map, AlgebraicGeometry.exists_isAffineOpen_preimage_eq, CategoryTheory.Limits.BinaryBicone.toCone_π_app_right, CategoryTheory.Limits.IsLimit.map_π, CategoryTheory.Limits.IsLimit.conePointUniqueUpToIso_hom_comp_assoc, CategoryTheory.Comonad.ForgetCreatesLimits'.liftedCone_π_app_f, CategoryTheory.Limits.PullbackCone.π_app_right, CategoryTheory.Limits.PushoutCocone.unop_π_app, CategoryTheory.Limits.Fork.unop_ι_app_zero, CategoryTheory.Limits.SequentialProduct.cone_π_app_comp_Pi_π_pos_assoc, Profinite.Extend.cone_π_app, CategoryTheory.Limits.Cocone.unop_π, CategoryTheory.WithTerminal.coneEquiv_inverse_obj_π_app_left, CategoryTheory.Enriched.FunctorCategory.isLimitConeFunctorEnrichedHom.fac, toCostructuredArrow_obj, CategoryTheory.Functor.IsEventuallyConstantTo.cone_π_app, CategoryTheory.Comma.coneOfPreserves_π_app_right, TopCat.Presheaf.SheafConditionEqualizerProducts.fork_π_app_walkingParallelPair_one, CategoryTheory.Functor.RightExtension.coneAt_π_app, CategoryTheory.Limits.coneOfDiagramTerminal_π_app, whisker_π, CategoryTheory.Under.liftCone_pt, CategoryTheory.Limits.PreservesLimit₂.isoObjConePointsOfIsColimit_inv_comp_map_π, CategoryTheory.Limits.PullbackCone.mk_π_app, CategoryTheory.Limits.IsLimit.conePointsIsoOfNatIso_inv_comp, CategoryTheory.Over.conePost_obj_π_app, ModuleCat.HasLimit.productLimitCone_cone_π, CategoryTheory.Limits.Cofork.unop_π_app_one, fromStructuredArrow_π_app, CategoryTheory.Limits.pullbackConeOfLeftIso_π_app_right, Profinite.exists_locallyConstant_finite_aux, fromCostructuredArrow_obj_π, CategoryTheory.Limits.IsLimit.conePointUniqueUpToIso_hom_comp, CategoryTheory.ProdPreservesConnectedLimits.forgetCone_π, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverseObj_π_app, CategoryTheory.Limits.ConeMorphism.w, extend_π, CategoryTheory.Limits.Bicone.toCone_π_app_mk, CategoryTheory.Limits.coneOfCoconeRightOp_π, CategoryTheory.Limits.BinaryBicone.toCone_π_app_left, CategoryTheory.WithTerminal.coneEquiv_functor_obj_π_app_star, Profinite.Extend.functorOp_obj, CategoryTheory.Limits.coneOfDiagramInitial_π_app, CategoryTheory.Limits.WidePullbackShape.mkCone_π_app, CategoryTheory.Monad.ForgetCreatesLimits.newCone_π_app, ModuleCat.binaryProductLimitCone_cone_π_app_right, CategoryTheory.Limits.PullbackCone.combine_π_app, CategoryTheory.CategoryOfElements.CreatesLimitsAux.liftedCone_π_app_coe, LightProfinite.lightToProfinite_map_proj_eq, CategoryTheory.Limits.Multiequalizer.multifork_π_app_left, CategoryTheory.Cat.HasLimits.limitCone_π_app, CategoryTheory.Limits.ConeMorphism.map_w_assoc, CategoryTheory.Limits.limit.isoLimitCone_hom_π_assoc, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctorObj_π_app, AlgebraicGeometry.isBasis_preimage_isAffineOpen, CategoryTheory.Limits.PullbackCone.op_ι_app, CategoryTheory.Limits.Fork.unop_ι_app_one, CategoryTheory.Functor.Initial.extendCone_obj_π_app', CategoryTheory.Enriched.FunctorCategory.coneFunctorEnrichedHom_π_app, AddCommGrpCat.binaryProductLimitCone_cone_π_app_left, CategoryTheory.Limits.coneOfCoconeLeftOp_π_app, CategoryTheory.Limits.coneOfCoconeUnop_π, PresheafOfModules.limitCone_π_app_app, CategoryTheory.Limits.Types.isLimitEquivSections_apply, CategoryTheory.Limits.SequentialProduct.cone_π_app_comp_Pi_π_neg_assoc, CategoryTheory.Limits.ProductsFromFiniteCofiltered.finiteSubproductsCocone_π_app_eq_sum, CategoryTheory.Limits.coneOfIsSplitMono_π_app, CategoryTheory.WithTerminal.coneEquiv_functor_obj_π_app_of, CategoryTheory.Limits.IsLimit.homEquiv_symm_π_app, LightCondensed.isColimitLocallyConstantPresheafDiagram_desc_apply, CategoryTheory.Limits.Cones.functoriality_obj_π_app, TopCat.nonempty_isLimit_iff_eq_induced, ofPullbackCone_π, AlgebraicGeometry.exists_appTop_π_eq_of_isAffine_of_isLimit, CategoryTheory.Limits.ConeMorphism.map_w, CategoryTheory.Limits.limit.isoLimitCone_hom_π, CategoryTheory.Limits.pullbackConeOfRightIso_π_app_right, CategoryTheory.Limits.Fork.ofι_π_app, CategoryTheory.Limits.IsLimit.hom_lift, CategoryTheory.Limits.PullbackCone.mk_π_app_right, CategoryTheory.Limits.Cofork.op_π_app_zero, CategoryTheory.Limits.coneOfConeCurry_π_app, CategoryTheory.Limits.Types.limitCone_π_app, toStructuredArrowCone_π_app, Profinite.instEpiAppDiscreteQuotientCarrierToTopTotallyDisconnectedSpaceπAsLimitCone, CategoryTheory.Limits.PreservesLimit₂.isoObjConePointsOfIsLimit_hom_comp_π, CategoryTheory.Over.ConstructProducts.conesEquivFunctor_map_hom, CategoryTheory.Limits.IsLimit.conePointsIsoOfNatIso_hom_comp_assoc, CategoryTheory.Limits.PullbackCone.mk_π_app_one, LightProfinite.Extend.functor_map, CategoryTheory.Over.conePost_map_hom, CategoryTheory.Limits.Fork.ofCone_π, AlgebraicGeometry.exists_preimage_eq, CategoryTheory.Limits.Types.limitConeIsLimit_lift_coe, Profinite.exists_isClopen_of_cofiltered, CategoryTheory.Limits.limit.conePointUniqueUpToIso_hom_comp_assoc, CategoryTheory.Limits.coneRightOpOfCocone_π, CategoryTheory.Limits.Multifork.app_right_eq_ι_comp_snd, CategoryTheory.Limits.PullbackCone.π_app_left, CategoryTheory.Limits.Multifork.app_left_eq_ι, CategoryTheory.Limits.coconeOfConeRightOp_ι, CategoryTheory.Limits.limit.conePointUniqueUpToIso_inv_comp_assoc, CategoryTheory.Under.liftCone_π_app, CategoryTheory.Limits.Fork.app_one_eq_ι_comp_left, CategoryTheory.CostructuredArrow.CreatesConnected.raiseCone_pt, CategoryTheory.Mon.limitCone_π_app_hom, CategoryTheory.Comma.limitAuxiliaryCone_π_app, CategoryTheory.WithTerminal.coneEquiv_inverse_obj_pt_hom, CategoryTheory.Limits.PreservesLimit₂.isoObjConePointsOfIsColimit_inv_comp_map_π_assoc, Profinite.Extend.functor_obj, CategoryTheory.Functor.Initial.extendCone_map_hom, toCostructuredArrow_map, CategoryTheory.Limits.BinaryFan.π_app_right, AlgebraicGeometry.opensCone_π_app, SSet.StrictSegal.isPointwiseRightKanExtensionAt.fac_aux₂, CategoryTheory.Limits.Cones.eta_inv_hom, CategoryTheory.Limits.PushoutCocone.op_π_app, CategoryTheory.Comonad.ForgetCreatesLimits'.newCone_π, CategoryTheory.Limits.limit.lift_π_app, equiv_inv_π, CategoryTheory.biconeMk_map, CategoryTheory.Limits.Types.Small.limitCone_π_app, CategoryTheory.Limits.Fork.app_one_eq_ι_comp_right_assoc, overPost_pt, CategoryTheory.Functor.Initial.limit_cone_comp_aux, CategoryTheory.Limits.isLimitConeOfAdj_lift, CategoryTheory.Limits.Types.Limit.lift_π_apply, equiv_hom_snd, CategoryTheory.Limits.ConeMorphism.w_assoc, CategoryTheory.Limits.PullbackCone.unop_ι_app, CategoryTheory.Limits.Multifork.toPiFork_π_app_one, CategoryTheory.Limits.pullbackConeOfLeftIso_π_app_none, CategoryTheory.Limits.Concrete.to_product_injective_of_isLimit, CategoryTheory.Limits.Cones.eta_hom_hom, CategoryTheory.Limits.PullbackCone.isoMk_inv_hom, AddCommGrpCat.HasLimit.productLimitCone_cone_π, CategoryTheory.Limits.limit.isoLimitCone_inv_π_assoc, SSet.StrictSegal.isPointwiseRightKanExtensionAt.fac_aux₃, CategoryTheory.Limits.Cones.postcompose_obj_π, CategoryTheory.Functor.mapCone₂_π_app, CategoryTheory.Limits.Cones.functoriality_map_hom, CategoryTheory.Limits.SequentialProduct.cone_π_app_comp_Pi_π_pos, CategoryTheory.Limits.PreservesLimit₂.isoObjConePointsOfIsLimit_hom_comp_π_assoc, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_functor_obj_π_app, LightProfinite.Extend.functorOp_map, Alexandrov.lowerCone_π_app, CategoryTheory.Limits.coneLeftOpOfCocone_π_app, ModuleCat.binaryProductLimitCone_cone_π_app_left, CategoryTheory.liftedLimitMapsToOriginal_inv_map_π, CategoryTheory.Limits.KernelFork.app_one, CategoryTheory.Functor.coneOfIsRightKanExtension_π, CategoryTheory.Limits.Fork.app_zero_eq_ι, CategoryTheory.Limits.limit.cone_π, CategoryTheory.Limits.IsLimit.isIso_limMap_π, CategoryTheory.Limits.limit.lift_π_apply, CategoryTheory.Limits.pullbackConeOfRightIso_π_app_left, ProfiniteGrp.cone_π_app, CategoryTheory.Limits.Trident.ofCone_π, CompHausLike.pullback.cone_π, CategoryTheory.Limits.Types.Small.limitConeIsLimit_lift, CategoryTheory.Limits.limit.conePointUniqueUpToIso_hom_comp, CategoryTheory.Functor.mapCone_π_app, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctor_obj_π_app, CategoryTheory.Sheaf.coneΓ_π_app, CategoryTheory.Limits.coneOfConeUncurry_π_app, CategoryTheory.Limits.asEmptyCone_π_app, CategoryTheory.Limits.Fork.op_ι_app, CategoryTheory.Functor.IsEventuallyConstantTo.isIso_π_of_isLimit, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_inverse_obj_π_app, CategoryTheory.Limits.Trident.ofι_π_app, CategoryTheory.Limits.coneOfSectionCompYoneda_π, CategoryTheory.Limits.Concrete.surjective_π_app_zero_of_surjective_map, Profinite.exists_locallyConstant, CategoryTheory.Limits.Trident.equalizer_ext, CategoryTheory.CostructuredArrow.CreatesConnected.raiseCone_π_app, CategoryTheory.Limits.IsLimit.conePointUniqueUpToIso_inv_comp, CategoryTheory.extendFan_π_app, CategoryTheory.Limits.BinaryBicone.ofLimitCone_snd, CategoryTheory.Over.conePost_obj_pt, CategoryTheory.Limits.limitConeOfUnique_isLimit_lift, CategoryTheory.coherentTopology.epi_π_app_zero_of_epi, CategoryTheory.Limits.Trident.ι_eq_app_zero, CategoryTheory.Limits.Fork.op_ι_app_one, w, CategoryTheory.Limits.PullbackCone.ofCone_π, AlgebraicGeometry.ExistsHomHomCompEqCompAux.hab, CategoryTheory.Limits.Cofork.unop_π_app_zero, toStructuredArrow_obj, CategoryTheory.Limits.IsLimit.fac_assoc, CategoryTheory.Limits.IsLimit.homEquiv_symm_π_app_assoc, CategoryTheory.Limits.limit.homIso_hom, TopCat.coneOfConeForget_π_app, CategoryTheory.Limits.Bicone.ofLimitCone_π, ofFork_π, TopCat.induced_of_isLimit, CategoryTheory.Limits.Types.surjective_π_app_zero_of_surjective_map, CategoryTheory.Limits.coconeLeftOpOfCone_ι_app, AlgebraicGeometry.exists_mem_of_isClosed_of_nonempty', isLimit_iff_isIso_limMap_π, CategoryTheory.Limits.coconeRightOpOfCone_ι, CategoryTheory.Limits.PullbackCone.combine_pt_map, Condensed.isColimitLocallyConstantPresheafDiagram_desc_apply, CategoryTheory.Limits.PullbackCone.equalizer_ext, CategoryTheory.Limits.Multifork.app_right_eq_ι_comp_snd_assoc, Preorder.coneOfLowerBound_π_app, CategoryTheory.Limits.limit.lift_π_assoc, AddCommGrpCat.HasLimit.lift_hom_apply, CategoryTheory.Limits.ProductsFromFiniteCofiltered.finiteSubproductsCone_π_app, CategoryTheory.Limits.Multifork.ofPiFork_π_app_right, LightCondensed.epi_π_app_zero_of_epi, AlgebraicGeometry.exists_appTop_π_eq_of_isLimit, TopCat.Presheaf.isGluing_iff_pairwise, CategoryTheory.Over.ConstructProducts.conesEquivFunctor_obj_pt, CategoryTheory.Limits.ProductsFromFiniteCofiltered.liftToFinsetLimitCone_cone_π_app, CategoryTheory.Limits.pullbackConeOfRightIso_π_app_none, ModuleCat.HasLimit.lift_hom_apply, CategoryTheory.FunctorToTypes.binaryProductCone_π_app, ModuleCat.binaryProductLimitCone_isLimit_lift, CategoryTheory.Limits.Multifork.ofι_π_app, CategoryTheory.Limits.limit.isoLimitCone_inv_π, CategoryTheory.Limits.Bicone.toCone_π_app, HomologicalComplex.coneOfHasLimitEval_π_app_f, CategoryTheory.Subobject.leInfCone_π_app_none, CategoryTheory.Limits.PullbackCone.condition_one, CategoryTheory.GrothendieckTopology.coneCompEvaluationOfConeCompDiagramFunctorCompEvaluation_π_app, CategoryTheory.Limits.BinaryBicone.ofLimitCone_fst, toUnder_π_app, CategoryTheory.Limits.coneOfSectionCompCoyoneda_π, CategoryTheory.Limits.IsLimit.conePointUniqueUpToIso_inv_comp_assoc, CategoryTheory.Limits.coconeOfConeLeftOp_ι_app, CategoryTheory.Limits.limit.coneMorphism_π, CategoryTheory.Limits.Cocone.op_π, CategoryTheory.Limits.coconeOfConeUnop_ι, AlgebraicGeometry.exists_mem_of_isClosed_of_nonempty, CategoryTheory.Limits.Fork.op_ι_app_zero, CategoryTheory.Cat.HasLimits.limitConeLift_toFunctor, CategoryTheory.Limits.Trident.app_zero_assoc, CategoryTheory.Limits.combineCones_pt_map, CategoryTheory.Limits.Cofork.op_π_app_one, SSet.StrictSegal.isPointwiseRightKanExtensionAt.fac_aux₁, CategoryTheory.Limits.IsLimit.conePointsIsoOfNatIso_inv_comp_assoc, CategoryTheory.Limits.limit.conePointUniqueUpToIso_inv_comp, CategoryTheory.Limits.IsLimit.map_π_assoc, CategoryTheory.coherentTopology.isLocallySurjective_π_app_zero_of_isLocallySurjective_map, CategoryTheory.Limits.equalizer.fork_π_app_zero, w_apply, overPost_π_app, toStructuredArrow_map, CategoryTheory.Limits.SequentialProduct.cone_π_app, CategoryTheory.Limits.limit.lift_π_app_assoc, w_assoc, AlgebraicGeometry.isAffineHom_π_app, LightProfinite.Extend.functor_obj, CategoryTheory.WithTerminal.coneEquiv_inverse_map_hom_left, CategoryTheory.Monad.ForgetCreatesLimits.liftedCone_π_app_f, CategoryTheory.Over.ConstructProducts.conesEquivInverseObj_π_app, CategoryTheory.GrothendieckTopology.liftToPlusObjLimitObj_fac, CategoryTheory.Limits.CompleteLattice.limitCone_cone_π_app, CategoryTheory.Functor.IsEventuallyConstantTo.isIso_π_of_isLimit', LightProfinite.instEpiAppOppositeNatπAsLimitCone, CategoryTheory.Limits.PullbackCone.isoMk_hom_hom, CategoryTheory.Comonad.ForgetCreatesLimits'.commuting, CategoryTheory.Functor.Initial.extendCone_obj_π_app, CategoryTheory.Limits.IsLimit.conePointsIsoOfNatIso_hom_comp, CategoryTheory.Limits.coconeUnopOfCone_ι, CategoryTheory.Limits.BinaryFan.π_app_left, TopCat.Presheaf.SheafConditionEqualizerProducts.fork_π_app_walkingParallelPair_zero, CategoryTheory.Limits.IsLimit.homIso_hom, CategoryTheory.liftedLimitMapsToOriginal_hom_π, CategoryTheory.Limits.PullbackCone.mk_π_app_left, extensions_app, CategoryTheory.Limits.coneUnopOfCocone_π, Profinite.exists_locallyConstant_finite_nonempty, CategoryTheory.Limits.CompleteLattice.finiteLimitCone_cone_π_app, CategoryTheory.Limits.Types.Limit.lift_π_apply', AddCommGrpCat.binaryProductLimitCone_cone_π_app_right, CategoryTheory.PreservesFiniteLimitsOfFlat.fac, CategoryTheory.Limits.constCone_π, CategoryTheory.Limits.SequentialProduct.cone_π_app_comp_Pi_π_neg, CategoryTheory.IsPullback.of_isLimit_cone, CategoryTheory.Limits.limit.lift_π, CategoryTheory.Limits.wideEqualizer.trident_π_app_zero, Profinite.exists_locallyConstant_fin_two, CategoryTheory.Comonad.beckCoalgebraFork_π_app, TopCat.piFan_π_app, CategoryTheory.Limits.Fan.mk_π_app, CategoryTheory.Limits.Multifork.app_right_eq_ι_comp_fst, Profinite.Extend.functor_map, CategoryTheory.Limits.coneOfAdj_π, AlgebraicGeometry.Scheme.exists_isOpenCover_and_isAffine, CategoryTheory.Under.forgetCone_π_app, CategoryTheory.Limits.Types.surjective_π_app_zero_of_surjective_map_aux, CategoryTheory.Limits.Cones.postcompose_map_hom, CategoryTheory.Limits.IsLimit.isIso_π_app_of_isInitial, TopCat.isTopologicalBasis_cofiltered_limit, CategoryTheory.Limits.IsLimit.fac, CategoryTheory.Over.ConstructProducts.conesEquivFunctor_obj_π_app, CategoryTheory.Limits.combineCones_π_app_app, CategoryTheory.Limits.Fork.app_one_eq_ι_comp_right, Profinite.exists_hom, CategoryTheory.Limits.Fork.equalizer_ext, CategoryTheory.Limits.Types.isLimitEquivSections_symm_apply, op_ι, CategoryTheory.WithTerminal.coneEquiv_functor_map_hom, CategoryTheory.Functor.structuredArrowMapCone_π_app, CategoryTheory.Limits.IsLimit.homEquiv_apply, CategoryTheory.Comma.coneOfPreserves_π_app_left
|