Documentation Verification Report

Connected

📁 Source: Mathlib/CategoryTheory/Limits/Connected.lean

Statistics

MetricCount
DefinitionsisColimitOfIsIsoColimMapι, isLimitOfIsIsoLimMapπ, constCocone, constCone, isColimitConstCocone, isLimitConstCone, forgetCone, γ₁, γ₂, parallelPairInhabited
10
TheoremsisColimit_iff_isIso_colimMap_ι, isLimit_iff_isIso_limMap_π, isIso_colimMap_ι, isIso_limMap_π, constCocone_pt, constCocone_ι, constCone_pt, constCone_π, hasColimit_const_of_isConnected, hasLimit_const_of_isConnected, forgetCone_pt, forgetCone_π, γ₁_app, γ₂_app, parallel_pair_connected, prod_preservesConnectedLimits, widePullbackShape_connected, widePushoutShape_connected
18
Total28

CategoryTheory

Definitions

NameCategoryTheorems
parallelPairInhabited 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
parallel_pair_connected 📖mathematicalIsConnected
Limits.WalkingParallelPair
Limits.walkingParallelPairHomCategory
IsConnected.of_induct
prod_preservesConnectedLimits 📖mathematicalLimits.PreservesLimitsOfShape
Functor.obj
Functor
Functor.category
Limits.prod.functor
IsConnected.is_nonempty
Limits.prod.hom_ext
Category.assoc
Limits.limMap_π
Category.comp_id
Limits.limit.lift_π
nat_trans_from_is_connected
IsConnected.toIsPreconnected
Limits.prod.lift_map
Limits.IsLimit.fac
Limits.prod.map_fst
Limits.IsLimit.uniq
Limits.prod.map_snd
widePullbackShape_connected 📖mathematicalIsConnected
Limits.WidePullbackShape
Limits.WidePullbackShape.category
IsConnected.of_induct
widePushoutShape_connected 📖mathematicalIsConnected
Limits.WidePushoutShape
Limits.WidePushoutShape.category
IsConnected.of_induct

CategoryTheory.Limits

Definitions

NameCategoryTheorems
constCocone 📖CompOp
2 mathmath: constCocone_ι, constCocone_pt
constCone 📖CompOp
2 mathmath: constCone_pt, constCone_π
isColimitConstCocone 📖CompOp
isLimitConstCone 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
constCocone_pt 📖mathematicalCocone.pt
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
constCocone
constCocone_ι 📖mathematicalCocone.ι
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
constCocone
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
constCone_pt 📖mathematicalCone.pt
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
constCone
constCone_π 📖mathematicalCone.π
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
constCone
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
hasColimit_const_of_isConnected 📖mathematicalHasColimit
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
hasLimit_const_of_isConnected 📖mathematicalHasLimit
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const

CategoryTheory.Limits.Cocone

Definitions

NameCategoryTheorems
isColimitOfIsIsoColimMapι 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
isColimit_iff_isIso_colimMap_ι 📖mathematicalCategoryTheory.Limits.IsColimit
CategoryTheory.IsIso
CategoryTheory.Limits.colimit
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
pt
CategoryTheory.Limits.hasColimit_const_of_isConnected
CategoryTheory.Limits.colimMap
ι
CategoryTheory.Limits.hasColimit_const_of_isConnected
CategoryTheory.Limits.IsColimit.isIso_colimMap_ι

CategoryTheory.Limits.Cone

Definitions

NameCategoryTheorems
isLimitOfIsIsoLimMapπ 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
isLimit_iff_isIso_limMap_π 📖mathematicalCategoryTheory.Limits.IsLimit
CategoryTheory.IsIso
CategoryTheory.Limits.limit
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
pt
CategoryTheory.Limits.hasLimit_const_of_isConnected
CategoryTheory.Limits.limMap
π
CategoryTheory.Limits.hasLimit_const_of_isConnected
CategoryTheory.Limits.IsLimit.isIso_limMap_π

CategoryTheory.Limits.IsColimit

Theorems

NameKindAssumesProvesValidatesDepends On
isIso_colimMap_ι 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Limits.colimit
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.hasColimit_const_of_isConnected
CategoryTheory.Limits.colimMap
CategoryTheory.Limits.Cocone.ι
CategoryTheory.Limits.hasColimit_const_of_isConnected
CategoryTheory.Limits.colimit.hom_ext
CategoryTheory.Limits.ι_colimMap
CategoryTheory.Limits.colimit.comp_coconePointUniqueUpToIso_hom_assoc
CategoryTheory.Limits.colimit.comp_coconePointUniqueUpToIso_inv
CategoryTheory.Iso.isIso_hom

CategoryTheory.Limits.IsLimit

Theorems

NameKindAssumesProvesValidatesDepends On
isIso_limMap_π 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Limits.limit
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.hasLimit_const_of_isConnected
CategoryTheory.Limits.limMap
CategoryTheory.Limits.Cone.π
CategoryTheory.Limits.hasLimit_const_of_isConnected
CategoryTheory.Limits.limit.hom_ext
CategoryTheory.Limits.limMap_π
CategoryTheory.Category.assoc
CategoryTheory.Limits.limit.conePointUniqueUpToIso_hom_comp
CategoryTheory.Limits.limit.conePointUniqueUpToIso_inv_comp
CategoryTheory.Iso.isIso_hom

CategoryTheory.ProdPreservesConnectedLimits

Definitions

NameCategoryTheorems
forgetCone 📖CompOp
2 mathmath: forgetCone_π, forgetCone_pt
γ₁ 📖CompOp
1 mathmath: γ₁_app
γ₂ 📖CompOp
2 mathmath: γ₂_app, forgetCone_π

Theorems

NameKindAssumesProvesValidatesDepends On
forgetCone_pt 📖mathematicalCategoryTheory.Limits.Cone.pt
forgetCone
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.prod.functor
forgetCone_π 📖mathematicalCategoryTheory.Limits.Cone.π
forgetCone
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.Functor.comp
CategoryTheory.Limits.prod.functor
γ₂
γ₁_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.prod.functor
CategoryTheory.Functor.const
γ₁
CategoryTheory.Limits.prod.fst
γ₂_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.prod.functor
γ₂
CategoryTheory.Limits.prod.snd

---

← Back to Index