Documentation Verification Report

ZeroObjects

📁 Source: Mathlib/CategoryTheory/Limits/Constructions/ZeroObjects.lean

Statistics

MetricCount
DefinitionsbinaryCofanZeroLeft, binaryCofanZeroLeftIsColimit, binaryCofanZeroRight, binaryCofanZeroRightIsColimit, binaryFanZeroLeft, binaryFanZeroLeftIsLimit, binaryFanZeroRight, binaryFanZeroRightIsLimit, coprodZeroIso, prodZeroIso, pullbackZeroZeroIso, pushoutZeroZeroIso, zeroCoprodIso, zeroProdIso
14
TheoremscoprodZeroIso_inv, hasBinaryCoproduct_zero_left, hasBinaryCoproduct_zero_right, hasBinaryProduct_zero_left, hasBinaryProduct_zero_right, hasPullback_over_zero, hasPushout_over_zero, inl_pushoutZeroZeroIso_hom, inl_pushoutZeroZeroIso_inv, inr_coprodZeroIso_hom, inr_pushoutZeroZeroIso_hom, inr_pushoutZeroZeroIso_inv, inr_zeroCoprodIso_hom, prodZeroIso_hom, prodZeroIso_iso_inv_snd, pullbackZeroZeroIso_hom_fst, pullbackZeroZeroIso_hom_snd, pullbackZeroZeroIso_inv_fst, pullbackZeroZeroIso_inv_snd, zeroCoprodIso_inv, zeroProdIso_hom, zeroProdIso_inv_snd
22
Total36

CategoryTheory.Limits

Definitions

NameCategoryTheorems
binaryCofanZeroLeft 📖CompOp
binaryCofanZeroLeftIsColimit 📖CompOp
binaryCofanZeroRight 📖CompOp
binaryCofanZeroRightIsColimit 📖CompOp
binaryFanZeroLeft 📖CompOp
binaryFanZeroLeftIsLimit 📖CompOp
binaryFanZeroRight 📖CompOp
binaryFanZeroRightIsLimit 📖CompOp
coprodZeroIso 📖CompOp
2 mathmath: coprodZeroIso_inv, inr_coprodZeroIso_hom
prodZeroIso 📖CompOp
2 mathmath: prodZeroIso_hom, prodZeroIso_iso_inv_snd
pullbackZeroZeroIso 📖CompOp
4 mathmath: pullbackZeroZeroIso_inv_fst, pullbackZeroZeroIso_hom_snd, pullbackZeroZeroIso_hom_fst, pullbackZeroZeroIso_inv_snd
pushoutZeroZeroIso 📖CompOp
4 mathmath: inr_pushoutZeroZeroIso_hom, inr_pushoutZeroZeroIso_inv, inl_pushoutZeroZeroIso_inv, inl_pushoutZeroZeroIso_hom
zeroCoprodIso 📖CompOp
2 mathmath: inr_zeroCoprodIso_hom, zeroCoprodIso_inv
zeroProdIso 📖CompOp
2 mathmath: zeroProdIso_hom, zeroProdIso_inv_snd

Theorems

NameKindAssumesProvesValidatesDepends On
coprodZeroIso_inv 📖mathematicalCategoryTheory.Iso.inv
coprod
HasZeroObject.zero'
hasBinaryCoproduct_zero_right
coprodZeroIso
coprod.inl
hasBinaryCoproduct_zero_right
hasBinaryCoproduct_zero_left 📖mathematicalHasBinaryCoproduct
HasZeroObject.zero'
hasBinaryCoproduct_zero_right 📖mathematicalHasBinaryCoproduct
HasZeroObject.zero'
hasBinaryProduct_zero_left 📖mathematicalHasBinaryProduct
HasZeroObject.zero'
hasBinaryProduct_zero_right 📖mathematicalHasBinaryProduct
HasZeroObject.zero'
hasPullback_over_zero 📖mathematicalHasPullback
HasZeroObject.zero'
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HasZeroMorphisms.zero
IsTerminal.hom_ext
hasPushout_over_zero 📖mathematicalHasPushout
HasZeroObject.zero'
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HasZeroMorphisms.zero
IsInitial.hom_ext
inl_pushoutZeroZeroIso_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
pushout
HasZeroObject.zero'
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
HasZeroMorphisms.zero
hasPushout_over_zero
coprod
pushout.inl
CategoryTheory.Iso.hom
pushoutZeroZeroIso
coprod.inl
hasPushout_over_zero
colimit.isoColimitCocone_ι_hom
inl_pushoutZeroZeroIso_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
coprod
pushout
HasZeroObject.zero'
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
HasZeroMorphisms.zero
hasPushout_over_zero
coprod.inl
CategoryTheory.Iso.inv
pushoutZeroZeroIso
pushout.inl
hasPushout_over_zero
inl_pushoutZeroZeroIso_hom
inr_coprodZeroIso_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
coprod
HasZeroObject.zero'
hasBinaryCoproduct_zero_right
coprod.inl
CategoryTheory.Iso.hom
coprodZeroIso
CategoryTheory.CategoryStruct.id
hasBinaryCoproduct_zero_right
colimit.isoColimitCocone_ι_hom
inr_pushoutZeroZeroIso_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
pushout
HasZeroObject.zero'
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
HasZeroMorphisms.zero
hasPushout_over_zero
coprod
pushout.inr
CategoryTheory.Iso.hom
pushoutZeroZeroIso
coprod.inr
hasPushout_over_zero
colimit.isoColimitCocone_ι_hom
inr_pushoutZeroZeroIso_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
coprod
pushout
HasZeroObject.zero'
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
HasZeroMorphisms.zero
hasPushout_over_zero
coprod.inr
CategoryTheory.Iso.inv
pushoutZeroZeroIso
pushout.inr
hasPushout_over_zero
inr_pushoutZeroZeroIso_hom
inr_zeroCoprodIso_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
coprod
HasZeroObject.zero'
hasBinaryCoproduct_zero_left
coprod.inr
CategoryTheory.Iso.hom
zeroCoprodIso
CategoryTheory.CategoryStruct.id
hasBinaryCoproduct_zero_left
colimit.isoColimitCocone_ι_hom
prodZeroIso_hom 📖mathematicalCategoryTheory.Iso.hom
prod
HasZeroObject.zero'
hasBinaryProduct_zero_right
prodZeroIso
prod.fst
hasBinaryProduct_zero_right
prodZeroIso_iso_inv_snd 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
prod
HasZeroObject.zero'
hasBinaryProduct_zero_right
CategoryTheory.Iso.inv
prodZeroIso
prod.fst
CategoryTheory.CategoryStruct.id
hasBinaryProduct_zero_right
limit.isoLimitCone_inv_π
pullbackZeroZeroIso_hom_fst 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
pullback
HasZeroObject.zero'
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
HasZeroMorphisms.zero
hasPullback_over_zero
prod
CategoryTheory.Iso.hom
pullbackZeroZeroIso
prod.fst
pullback.fst
hasPullback_over_zero
pullbackZeroZeroIso_inv_fst
pullbackZeroZeroIso_hom_snd 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
pullback
HasZeroObject.zero'
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
HasZeroMorphisms.zero
hasPullback_over_zero
prod
CategoryTheory.Iso.hom
pullbackZeroZeroIso
prod.snd
pullback.snd
hasPullback_over_zero
pullbackZeroZeroIso_inv_snd
pullbackZeroZeroIso_inv_fst 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
prod
pullback
HasZeroObject.zero'
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
HasZeroMorphisms.zero
hasPullback_over_zero
CategoryTheory.Iso.inv
pullbackZeroZeroIso
pullback.fst
prod.fst
hasPullback_over_zero
limit.isoLimitCone_inv_π
pullbackZeroZeroIso_inv_snd 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
prod
pullback
HasZeroObject.zero'
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
HasZeroMorphisms.zero
hasPullback_over_zero
CategoryTheory.Iso.inv
pullbackZeroZeroIso
pullback.snd
prod.snd
hasPullback_over_zero
limit.isoLimitCone_inv_π
zeroCoprodIso_inv 📖mathematicalCategoryTheory.Iso.inv
coprod
HasZeroObject.zero'
hasBinaryCoproduct_zero_left
zeroCoprodIso
coprod.inr
hasBinaryCoproduct_zero_left
zeroProdIso_hom 📖mathematicalCategoryTheory.Iso.hom
prod
HasZeroObject.zero'
hasBinaryProduct_zero_left
zeroProdIso
prod.snd
hasBinaryProduct_zero_left
zeroProdIso_inv_snd 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
prod
HasZeroObject.zero'
hasBinaryProduct_zero_left
CategoryTheory.Iso.inv
zeroProdIso
prod.snd
CategoryTheory.CategoryStruct.id
hasBinaryProduct_zero_left
limit.isoLimitCone_inv_π

---

← Back to Index