Documentation Verification Report

Elements

📁 Source: Mathlib/CategoryTheory/Limits/Elements.lean

Statistics

MetricCount
DefinitionsisLimit, isValidLift, liftedCone, liftedConeElement, liftedConeElement', instCreatesLimitElementsπ, instCreatesLimitsOfShapeElementsπ, Elements, Elements
9
TheoremsliftedCone_pt_fst, liftedCone_pt_snd, liftedCone_π_app_coe, map_lift_mapCone, map_π_liftedConeElement, π_liftedConeElement', instHasInitialElementsOfIsCorepresentable, instHasInitialElementsOppositeOfIsRepresentable, instHasLimitsOfShapeElements
9
Total18

CategoryTheory.CategoryOfElements

Definitions

NameCategoryTheorems
instCreatesLimitElementsπ 📖CompOp
instCreatesLimitsOfShapeElementsπ 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
instHasInitialElementsOfIsCorepresentable 📖mathematicalCategoryTheory.Limits.HasInitial
CategoryTheory.Functor.Elements
CategoryTheory.categoryOfElements
CategoryTheory.Limits.IsInitial.hasInitial
instHasInitialElementsOppositeOfIsRepresentable 📖mathematicalCategoryTheory.Limits.HasInitial
CategoryTheory.Functor.Elements
Opposite
CategoryTheory.Category.opposite
CategoryTheory.categoryOfElements
CategoryTheory.Limits.IsInitial.hasInitial
instHasLimitsOfShapeElements 📖mathematicalCategoryTheory.Limits.HasLimitsOfShape
CategoryTheory.Functor.Elements
CategoryTheory.categoryOfElements
CategoryTheory.hasLimitsOfShape_of_hasLimitsOfShape_createsLimitsOfShape

CategoryTheory.CategoryOfElements.CreatesLimitsAux

Definitions

NameCategoryTheorems
isLimit 📖CompOp
isValidLift 📖CompOp
liftedCone 📖CompOp
3 mathmath: liftedCone_π_app_coe, liftedCone_pt_snd, liftedCone_pt_fst
liftedConeElement 📖CompOp
4 mathmath: liftedCone_π_app_coe, liftedCone_pt_snd, map_lift_mapCone, map_π_liftedConeElement
liftedConeElement' 📖CompOp
1 mathmath: π_liftedConeElement'

Theorems

NameKindAssumesProvesValidatesDepends On
liftedCone_pt_fst 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.types
CategoryTheory.Limits.Cone.pt
CategoryTheory.Functor.Elements
CategoryTheory.categoryOfElements
liftedCone
CategoryTheory.Limits.limit
CategoryTheory.Functor.comp
CategoryTheory.CategoryOfElements.π
liftedCone_pt_snd 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.types
CategoryTheory.Limits.Cone.pt
CategoryTheory.Functor.Elements
CategoryTheory.categoryOfElements
liftedCone
liftedConeElement
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
liftedCone_π_app_coe 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.types
CategoryTheory.Functor.Elements
CategoryTheory.categoryOfElements
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.limit
CategoryTheory.Functor.comp
CategoryTheory.CategoryOfElements.π
liftedConeElement
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cone.π
liftedCone
CategoryTheory.Limits.limit.π
map_lift_mapCone 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.types
CategoryTheory.Limits.Cone.pt
CategoryTheory.Functor.comp
CategoryTheory.Functor.Elements
CategoryTheory.categoryOfElements
CategoryTheory.CategoryOfElements.π
CategoryTheory.Functor.mapCone
CategoryTheory.Limits.limit
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.limit.lift
CategoryTheory.Functor.obj
liftedConeElement
Equiv.injective
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.instHasLimitCompOfPreservesLimit
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.Limits.Types.limit_ext
CategoryTheory.preservesLimitIso_hom_π
CategoryTheory.Limits.limit.lift_π
CategoryTheory.inv_hom_id_apply
π_liftedConeElement'
map_π_liftedConeElement 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.types
CategoryTheory.Limits.limit
CategoryTheory.Functor.comp
CategoryTheory.Functor.Elements
CategoryTheory.categoryOfElements
CategoryTheory.CategoryOfElements.π
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Functor.obj
CategoryTheory.Limits.limit.π
liftedConeElement
CategoryTheory.Limits.instHasLimitCompOfPreservesLimit
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.preservesLimitIso_inv_π
π_liftedConeElement'
π_liftedConeElement' 📖mathematicalCategoryTheory.Limits.limit.π
CategoryTheory.types
CategoryTheory.Functor.comp
CategoryTheory.Functor.Elements
CategoryTheory.categoryOfElements
CategoryTheory.CategoryOfElements.π
CategoryTheory.Limits.Types.hasLimit
liftedConeElement'
CategoryTheory.Functor.obj
CategoryTheory.Limits.Types.hasLimit

CategoryTheory.Functor

Definitions

NameCategoryTheorems
Elements 📖CompOp
91 mathmath: CategoryTheory.CategoryOfElements.instHasLimitsOfShapeElements, CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalenceInverseπ_hom_app, CategoryTheory.CategoryOfElements.fromStructuredArrow_map, CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalence_functor, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_unitIso, CategoryTheory.CategoryOfElements.structuredArrowEquivalence_functor, CategoryTheory.Presheaf.coconeOfRepresentable_pt, CategoryTheory.CategoryOfElements.map_map_coe, CategoryTheory.Presheaf.functorToRepresentables_map, SSet.S.equivElements_symm_apply_dim, CategoryTheory.Grothendieck.grothendieckTypeToCat_inverse_map_base, CategoryTheory.Grothendieck.grothendieckTypeToCat_counitIso_inv_app_coe, CategoryTheory.Grothendieck.grothendieckTypeToCatFunctor_obj_snd, CategoryTheory.Grothendieck.grothendieckTypeToCat_unitIso_hom_app_fiber, CategoryTheory.CategoryOfElements.to_comma_map_right, CategoryTheory.Grothendieck.grothendieckTypeToCat_unitIso_inv_app_fiber, CategoryTheory.CategoryOfElements.structuredArrowEquivalence_counitIso, CategoryTheory.CategoryOfElements.instHasInitialElementsOppositeOfIsRepresentable, CategoryTheory.CategoryOfElements.CreatesLimitsAux.liftedCone_π_app_coe, CategoryTheory.Grothendieck.grothendieckTypeToCat_unitIso_inv_app_base, CategoryTheory.CategoryOfElements.toStructuredArrow_obj, CategoryTheory.CategoryOfElements.map_π, CategoryTheory.Grothendieck.grothendieckTypeToCat_functor_obj_fst, CategoryTheory.CategoryOfElements.isoMk_inv, CategoryTheory.Grothendieck.grothendieckTypeToCat_unitIso_hom_app_base, CategoryTheory.Presheaf.functorToRepresentables_obj, CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalence_counitIso, CategoryTheory.CategoryOfElements.comp_val, CategoryTheory.Grothendieck.grothendieckTypeToCat_inverse_obj_base, CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalence_inverse, CategoryTheory.Grothendieck.grothendieckTypeToCatFunctor_map_coe, CategoryTheory.CategoryOfElements.fromStructuredArrow_obj, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_functor_obj, CategoryTheory.CategoryOfElements.instFaithfulElementsπ, CategoryTheory.NatTrans.mapElements_map_coe, CategoryTheory.CategoryOfElements.map_obj_fst, CategoryTheory.CategoryOfElements.fromCostructuredArrow_obj_snd, CategoryTheory.instIsCofilteredElementsCompOfRepresentablyFlat, CategoryTheory.Grothendieck.grothendieckTypeToCat_counitIso_hom_app_coe, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_functor_map, CategoryTheory.CategoryOfElements.structuredArrowEquivalence_inverse, CategoryTheory.CategoryOfElements.map_obj_snd, CategoryTheory.CategoryOfElements.instReflectsIsomorphismsElementsπ, elementsFunctor_map, CategoryTheory.Grothendieck.grothendieckTypeToCatFunctor_obj_fst, CategoryTheory.CategoryOfElements.π_map, isCofiltered_elements, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_counitIso, CategoryTheory.CategoryOfElements.fromCostructuredArrow_map_coe, SSet.S.equivElements_apply_fst, CategoryTheory.CategoryOfElements.instLocallySmallElements, CategoryTheory.CategoryOfElements.instHasInitialElementsOfIsCorepresentable, CategoryTheory.CategoryOfElements.π_obj, CategoryTheory.NatTrans.mapElements_obj, CategoryTheory.CategoryOfElements.costructuredArrow_yoneda_equivalence_naturality, CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalence_unitIso, CategoryTheory.CategoryOfElements.toCostructuredArrow_obj, CategoryTheory.Presheaf.coconeOfRepresentable_naturality, CategoryTheory.GrothendieckTopology.Point.instHasExactColimitsOfShapeOppositeElementsFiberOfLocallySmallOfAB5OfSizeOfHasFiniteLimits, CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalenceFunctorProj_hom_app, CategoryTheory.GrothendieckTopology.Point.instHasColimitsOfShapeOppositeElementsFiber, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_inverse_obj, elementsFunctor_obj, SSet.S.equivElements_apply_snd, CategoryTheory.Grothendieck.grothendieckTypeToCat_inverse_obj_fiber_as, SSet.S.le_iff_nonempty_hom, CategoryTheory.CategoryOfElements.structuredArrowEquivalence_unitIso, SSet.S.equivElements_symm_apply_simplex, CategoryTheory.Presheaf.coconeOfRepresentable_ι_app, CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalenceInverseπ_inv_app, CategoryTheory.CategoryOfElements.id_val, CategoryTheory.GrothendieckTopology.Point.instPreservesColimitsOfShapeOppositeElementsFiberForget, CategoryTheory.CategoryOfElements.fromCostructuredArrow_obj_mk, CategoryTheory.CategoryOfElements.CreatesLimitsAux.liftedCone_pt_snd, CategoryTheory.Grothendieck.grothendieckTypeToCatInverse_obj_base, CategoryTheory.CategoryOfElements.CreatesLimitsAux.map_lift_mapCone, CategoryTheory.Grothendieck.grothendieckTypeToCatInverse_map_base, CategoryTheory.FunctorToTypes.instIsCofilteredElementsOverFromOverFunctor, CategoryTheory.Grothendieck.grothendieckTypeToCat_functor_map_coe, CategoryTheory.CategoryOfElements.CreatesLimitsAux.map_π_liftedConeElement, CategoryTheory.GrothendieckTopology.Point.isCofiltered, CategoryTheory.Grothendieck.grothendieckTypeToCat_functor_obj_snd, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_inverse_map, CategoryTheory.Grothendieck.grothendieckTypeToCatInverse_obj_fiber_as, CategoryTheory.CategoryOfElements.isoMk_hom, CategoryTheory.CategoryOfElements.CreatesLimitsAux.liftedCone_pt_fst, CategoryTheory.CategoryOfElements.fromCostructuredArrow_obj_fst, CategoryTheory.CategoryOfElements.toCostructuredArrow_map, CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalenceFunctorProj_inv_app, CategoryTheory.CategoryOfElements.CreatesLimitsAux.π_liftedConeElement', CategoryTheory.GrothendieckTopology.Point.initiallySmall

PresheafOfModules

Definitions

NameCategoryTheorems
Elements 📖CompOp

---

← Back to Index