📁 Source: Mathlib/CategoryTheory/Limits/Final/Connected.lean
final_fst
final_snd
initial_fst
initial_snd
instFinalDiscreteOfIsConnected
instInitialDiscreteOfIsConnected
isConnected_iff_final_of_unique
isConnected_iff_initial_of_unique
Functor.Final
prod'
Prod.fst
Functor.final_comp
instFinalProdProd
Functor.final_of_isRightAdjoint
Functor.isRightAdjoint_of_isEquivalence
Functor.isEquivalence_refl
Equivalence.isEquivalence_functor
Prod.snd
Functor.Initial
Functor.initial_comp
instInitialProdProd
Functor.initial_of_isLeftAdjoint
Functor.isLeftAdjoint_of_isEquivalence
Discrete
discreteCategory
IsConnected
isConnected_iff_of_equivalence
Unique.instSubsingleton
Functor.Final.out
Functor.Initial.out
---
← Back to Index