Documentation Verification Report

FinallySmall

📁 Source: Mathlib/CategoryTheory/Limits/FinallySmall.lean

Statistics

MetricCount
DefinitionsFinalModel, FinallySmall, InitialModel, InitiallySmall, fromFinalModel, fromInitialModel, smallCategoryFinalModel, smallCategoryInitialModel
8
Theoremsexists_small_weakly_terminal_set, final_smallCategory, mk', exists_small_weakly_initial_set, initial_smallCategory, mk', hasColimitsOfShape_of_finallySmall, hasLimitsOfShape_of_initiallySmall, final_fromFinalModel, finallySmall_iff_exists_small_weakly_terminal_set, finallySmall_of_essentiallySmall, finallySmall_of_final_of_essentiallySmall, finallySmall_of_final_of_finallySmall, finallySmall_of_small_weakly_terminal_set, initial_fromInitialModel, initiallySmall_iff_exists_small_weakly_initial_set, initiallySmall_of_essentiallySmall, initiallySmall_of_initial_of_essentiallySmall, initiallySmall_of_initial_of_initiallySmall, initiallySmall_of_small_weakly_initial_set, instFinallySmallOfHasTerminal, instFinallySmallOppositeOfInitiallySmall, instInitiallySmallOfHasInitial, instInitiallySmallOppositeOfFinallySmall, instInitiallySmallOverOfLocallySmall
25
Total33

CategoryTheory

Definitions

NameCategoryTheorems
FinalModel 📖CompOp
1 mathmath: final_fromFinalModel
FinallySmall 📖CompData
10 mathmath: finallySmall_of_small_weakly_terminal_set, instFinallySmallOfHasTerminal, Limits.isIndObject_iff, Limits.IsIndObject.finallySmall, finallySmall_of_final_of_finallySmall, finallySmall_of_essentiallySmall, instFinallySmallOppositeOfInitiallySmall, finallySmall_of_final_of_essentiallySmall, FinallySmall.mk', finallySmall_iff_exists_small_weakly_terminal_set
InitialModel 📖CompOp
1 mathmath: initial_fromInitialModel
InitiallySmall 📖CompData
10 mathmath: initiallySmall_of_initial_of_initiallySmall, instInitiallySmallOverOfLocallySmall, initiallySmall_of_small_weakly_initial_set, initiallySmall_of_essentiallySmall, instInitiallySmallOfHasInitial, initiallySmall_of_initial_of_essentiallySmall, InitiallySmall.mk', initiallySmall_iff_exists_small_weakly_initial_set, instInitiallySmallOppositeOfFinallySmall, GrothendieckTopology.Point.initiallySmall
fromFinalModel 📖CompOp
1 mathmath: final_fromFinalModel
fromInitialModel 📖CompOp
1 mathmath: initial_fromInitialModel
smallCategoryFinalModel 📖CompOp
1 mathmath: final_fromFinalModel
smallCategoryInitialModel 📖CompOp
1 mathmath: initial_fromInitialModel

Theorems

NameKindAssumesProvesValidatesDepends On
final_fromFinalModel 📖mathematicalFunctor.Final
FinalModel
smallCategoryFinalModel
fromFinalModel
FinallySmall.final_smallCategory
finallySmall_iff_exists_small_weakly_terminal_set 📖mathematicalFinallySmall
Set
Set.instMembership
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
FinallySmall.exists_small_weakly_terminal_set
finallySmall_of_small_weakly_terminal_set
finallySmall_of_essentiallySmall 📖mathematicalFinallySmallFinallySmall.mk'
Functor.final_of_isRightAdjoint
Functor.isRightAdjoint_of_isEquivalence
Equivalence.isEquivalence_inverse
finallySmall_of_final_of_essentiallySmall 📖mathematicalFinallySmallfinallySmall_of_essentiallySmall
finallySmall_of_final_of_finallySmall
finallySmall_of_final_of_finallySmall 📖mathematicalFinallySmallFunctor.final_comp
final_fromFinalModel
FinallySmall.mk'
finallySmall_of_small_weakly_terminal_set 📖mathematicalSet
Set.instMembership
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
FinallySmallFunctor.final_of_exists_of_isFiltered_of_fullyFaithful
ObjectProperty.full_ι
ObjectProperty.faithful_ι
finallySmall_of_final_of_essentiallySmall
essentiallySmall_fullSubcategory_mem
locallySmall_of_univLE
UnivLE.self
initial_fromInitialModel 📖mathematicalFunctor.Initial
InitialModel
smallCategoryInitialModel
fromInitialModel
InitiallySmall.initial_smallCategory
initiallySmall_iff_exists_small_weakly_initial_set 📖mathematicalInitiallySmall
Set
Set.instMembership
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
InitiallySmall.exists_small_weakly_initial_set
initiallySmall_of_small_weakly_initial_set
initiallySmall_of_essentiallySmall 📖mathematicalInitiallySmallInitiallySmall.mk'
Functor.initial_of_isLeftAdjoint
Functor.isLeftAdjoint_of_isEquivalence
Equivalence.isEquivalence_inverse
initiallySmall_of_initial_of_essentiallySmall 📖mathematicalInitiallySmallinitiallySmall_of_essentiallySmall
initiallySmall_of_initial_of_initiallySmall
initiallySmall_of_initial_of_initiallySmall 📖mathematicalInitiallySmallFunctor.initial_comp
initial_fromInitialModel
InitiallySmall.mk'
initiallySmall_of_small_weakly_initial_set 📖mathematicalSet
Set.instMembership
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
InitiallySmallFunctor.initial_of_exists_of_isCofiltered_of_fullyFaithful
ObjectProperty.full_ι
ObjectProperty.faithful_ι
initiallySmall_of_initial_of_essentiallySmall
essentiallySmall_fullSubcategory_mem
locallySmall_of_univLE
UnivLE.self
instFinallySmallOfHasTerminal 📖mathematicalFinallySmallFunctor.final_const_terminal
isFiltered_of_directed_le_nonempty
OrderTop.instIsDirectedOrder
FinallySmall.mk'
instFinallySmallOppositeOfInitiallySmall 📖mathematicalFinallySmall
Opposite
Category.opposite
Functor.final_op_of_initial
initial_fromInitialModel
instInitiallySmallOfHasInitial 📖mathematicalInitiallySmallFunctor.initial_const_initial
isCofiltered_of_directed_ge_nonempty
OrderBot.instIsCodirectedOrder
InitiallySmall.mk'
instInitiallySmallOppositeOfFinallySmall 📖mathematicalInitiallySmall
Opposite
Category.opposite
Functor.initial_op_of_final
final_fromFinalModel
instInitiallySmallOverOfLocallySmall 📖mathematicalInitiallySmall
Over
instCategoryOver
initiallySmall_of_essentiallySmall
CostructuredArrow.essentiallySmall
essentiallySmall_of_small_of_locallySmall
UnivLE.small
UnivLE.self
locallySmall_of_univLE
initiallySmall_of_initial_of_initiallySmall
instInitialCostructuredArrowOverToOver
initial_fromInitialModel

CategoryTheory.FinallySmall

Theorems

NameKindAssumesProvesValidatesDepends On
exists_small_weakly_terminal_set 📖mathematicalSet
Set.instMembership
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
small_range
UnivLE.small
UnivLE.self
CategoryTheory.IsConnected.is_nonempty
CategoryTheory.Functor.Final.out
CategoryTheory.final_fromFinalModel
Set.mem_range_self
final_smallCategory 📖mathematicalCategoryTheory.Functor.Final
mk' 📖mathematicalCategoryTheory.FinallySmall

CategoryTheory.InitiallySmall

Theorems

NameKindAssumesProvesValidatesDepends On
exists_small_weakly_initial_set 📖mathematicalSet
Set.instMembership
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
small_range
UnivLE.small
UnivLE.self
CategoryTheory.IsConnected.is_nonempty
CategoryTheory.Functor.Initial.out
CategoryTheory.initial_fromInitialModel
Set.mem_range_self
initial_smallCategory 📖mathematicalCategoryTheory.Functor.Initial
mk' 📖mathematicalCategoryTheory.InitiallySmall

CategoryTheory.Limits

Theorems

NameKindAssumesProvesValidatesDepends On
hasColimitsOfShape_of_finallySmall 📖mathematicalHasColimitsOfShapeCategoryTheory.Functor.Final.hasColimitsOfShape_of_final
CategoryTheory.final_fromFinalModel
hasColimitsOfShapeOfHasColimitsOfSize
hasLimitsOfShape_of_initiallySmall 📖mathematicalHasLimitsOfShapeCategoryTheory.Functor.Initial.hasLimitsOfShape_of_initial
CategoryTheory.initial_fromInitialModel
hasLimitsOfShapeOfHasLimits

---

← Back to Index