Documentation Verification Report

HasLimits

📁 Source: Mathlib/CategoryTheory/Limits/HasLimits.lean

Statistics

MetricCount
DefinitionsColimitCocone, cocone, isColimit, HasColimit, isoOfEquivalence, isoOfNatIso, HasColimitsOfShape, HasColimitsOfSize, HasLimit, isoOfEquivalence, isoOfNatIso, HasLimits, HasLimitsOfShape, HasLimitsOfSize, op, unop, op, unop, LimitCone, cone, isLimit, colim, colimConstAdj, colimCoyoneda, colimMap, colimit, cocone, coconeMorphism, desc, homIso, homIso', isColimit, isoColimitCocone, post, pre, ι, coneOfAdj, constLimAdj, getColimitCocone, getLimitCone, isColimitEquivIsLimitOp, isColimitOfOp, isColimitOfUnop, isLimitConeOfAdj, isLimitEquivIsColimitOp, isLimitOfOp, isLimitOfUnop, lim, limMap, limYoneda, limit, cone, coneMorphism, homIso, homIso', isLimit, isoLimitCone, post, pre, π
60
Theoremsexists_colimit, isoOfEquivalence_hom_π, isoOfEquivalence_inv_π, isoOfNatIso_hom_desc, isoOfNatIso_hom_desc_assoc, isoOfNatIso_inv_desc, isoOfNatIso_inv_desc_assoc, isoOfNatIso_ι_hom, isoOfNatIso_ι_hom_assoc, isoOfNatIso_ι_inv, isoOfNatIso_ι_inv_assoc, mk, ofCoconesIso, hasColimitsOfShape, has_colimit, of_essentiallySmall, of_small, has_colimits_of_shape, exists_limit, isoOfEquivalence_hom_π, isoOfEquivalence_inv_π, isoOfNatIso_hom_π, isoOfNatIso_hom_π_assoc, isoOfNatIso_inv_π, isoOfNatIso_inv_π_assoc, lift_isoOfNatIso_hom, lift_isoOfNatIso_hom_assoc, lift_isoOfNatIso_inv, lift_isoOfNatIso_inv_assoc, mk, ofConesIso, has_limits_of_shape, has_limit, of_essentiallySmall, of_small, has_limits_of_shape, colimMap_epi, colimMap_epi', colimMap_eq, colim_map, colim_obj, coconeMorphism_hom, cocone_x, cocone_ι, comp_coconePointUniqueUpToIso_hom, comp_coconePointUniqueUpToIso_hom_assoc, comp_coconePointUniqueUpToIso_inv, comp_coconePointUniqueUpToIso_inv_assoc, desc_cocone, desc_extend, eqToHom_comp_ι, eqToHom_comp_ι_assoc, existsUnique, homIso_hom, hom_ext, hom_ext_iff, isColimit_desc, isoColimitCocone_ι_hom, isoColimitCocone_ι_hom_assoc, isoColimitCocone_ι_inv, isoColimitCocone_ι_inv_assoc, map_desc, map_desc_assoc, map_post, post_desc, post_post, pre_desc, pre_desc_assoc, pre_eq, pre_id, pre_map, pre_map', pre_post, pre_pre, w, w_assoc, ι_coconeMorphism, ι_desc, ι_desc_assoc, ι_inv_pre, ι_inv_pre_assoc, ι_map, ι_map_assoc, ι_post, ι_post_assoc, ι_pre, ι_pre_assoc, coneOfAdj_pt, coneOfAdj_π, hasColimitOfHasColimitsOfShape, hasColimit_equivalence_comp, hasColimit_iff_of_iso, hasColimit_of_equivalence_comp, hasColimit_of_iso, hasColimitsOfShapeOfHasColimitsOfSize, hasColimitsOfShape_of_equivalence, hasColimitsOfSizeOfUnivLE, hasColimitsOfSizeShrink, hasLimitOfHasLimitsOfShape, hasLimit_equivalence_comp, hasLimit_iff_of_iso, hasLimit_of_equivalence_comp, hasLimit_of_iso, hasLimitsOfShapeOfHasLimits, hasLimitsOfShape_of_equivalence, hasLimitsOfSizeOfUnivLE, hasLimitsOfSizeShrink, hasSmallestColimitsOfHasColimits, hasSmallestLimitsOfHasLimits, instIsLeftAdjointFunctorColim, instIsRightAdjointFunctorLim, isLimitConeOfAdj_lift, limMap_eq, limMap_mono, limMap_mono', limMap_π, limMap_π_assoc, lim_map, lim_obj, coneMorphism_hom, coneMorphism_π, conePointUniqueUpToIso_hom_comp, conePointUniqueUpToIso_hom_comp_assoc, conePointUniqueUpToIso_inv_comp, conePointUniqueUpToIso_inv_comp_assoc, cone_x, cone_π, existsUnique, homIso_hom, hom_ext, hom_ext_iff, id_pre, isLimit_lift, isoLimitCone_hom_π, isoLimitCone_hom_π_assoc, isoLimitCone_inv_π, isoLimitCone_inv_π_assoc, lift_cone, lift_extend, lift_map, lift_map_assoc, lift_post, lift_pre, lift_π, lift_π_assoc, map_post, map_pre, map_pre', post_post, post_π, post_π_assoc, pre_eq, pre_post, pre_pre, pre_π, pre_π_assoc, w, w_assoc, π_comp_eqToHom, π_comp_eqToHom_assoc, ι_colimMap, ι_colimMap_assoc
162
Total222

CategoryTheory.Limits

Definitions

NameCategoryTheorems
ColimitCocone 📖CompData
2 mathmath: CategoryTheory.Presieve.piComparison_fac, HasColimit.exists_colimit
HasColimit 📖CompData
80 mathmath: hasColimit_of_equivalence_comp, CategoryTheory.comp_comparison_hasColimit, CategoryTheory.Functor.instHasColimitGrothendieckFunctorCompGrothendieckProj, hasColimit_iff_of_iso, hasColimitOfHasColimitsOfShape, CategoryTheory.Monad.forget_creates_colimits_of_monad_preserves, AlgebraicGeometry.instHasColimitOverSchemeTopMorphismProperty, Preorder.hasColimit_iff_hasLUB, ModuleCat.HasColimit.instHasColimit, instHasColimitProd, AddCommGrpCat.hasColimit_of_small_quot, hasColimitCompEvaluation, hasColimit_of_hasLimit_leftOp, hasColimit_equivalence_comp, CategoryTheory.comp_comparison_forget_hasColimit, CategoryTheory.Functor.Final.hasColimit_of_comp, CategoryTheory.Functor.hasColimit_map_comp_ι_comp_grothendieckProj, hasColimit_span_of_hasColimit_pair_of_hasColimit_parallelPair, Types.instHasColimitConstPUnitFunctor, instHasColimitObjFunctorConstInitial, CategoryTheory.Functor.Final.hasColimit_comp_iff, hasColimit_of_domain_hasInitial, hasReflexiveCoequalizer_iff_hasCoequalizer, ofIsReflexivePair_hasColimit_of_hasCoequalizer, CategoryTheory.Comma.hasColimit, CategoryTheory.IsFiltered.instHasColimitOfIsEventuallyConstant, hasColimit_of_iso, instHasColimitDiscreteOppositeCompInverseOppositeOpFunctor, HasColimit.mk, PartOrdEmb.Limits.instHasColimit, AddCommGrpCat.hasColimit, CategoryTheory.Arrow.hasColimit, CategoryTheory.hasColimit_of_coreflective, CategoryTheory.Monad.MonadicityInternal.instHasColimitWalkingParallelPairParallelPairMapAppCounitObjOfHasCoequalizerAA, Types.hasColimit, AlgebraicGeometry.instHasColimitOverScheme, Types.hasColimit_iff_small_colimitType, hasColimit_of_hasLimit_rightOp, TopCat.hasColimit_iff_small_colimitType, CategoryTheory.Over.hasColimit_of_hasColimit_comp_forget, hasColimit_of_domain_hasTerminal, CategoryTheory.Adjunction.hasColimit_of_comp_equivalence, hasColimit_of_hasLimit_unop, hasColimit_leftOp_of_hasLimit, hasColimit_of_coequalizer_and_coproduct, hasInitialChangeDiagram, CategoryTheory.Coyoneda.instHasColimitObjOppositeFunctorTypeCoyoneda, Under.hasColimit_of_hasColimit_liftFromUnder, CategoryTheory.MorphismProperty.Comma.hasColimit_of_closedUnderColimitsOfShape, ColimitPresentation.hasColimit, hasColimit_rightOp_of_hasLimit, CategoryTheory.CostructuredArrow.hasColimit, HasColimit.ofCoconesIso, CategoryTheory.NormalEpiCategory.hasColimit_parallelPair, instHasColimitCompOfPreservesColimit, hasColimit_iff_hasInitial_cocone, CategoryTheory.GlueData.hasColimit_multispan_comp, CategoryTheory.PreGaloisCategory.PointedGaloisObject.instHasColimitOppositeFunctorTypeCompOpInclCoyoneda, localCohomology.hasColimitDiagram, instHasColimitOppositeDiscreteOpFunctor, TopModuleCat.instHasColimitOfModuleCatCompForget₂ContinuousLinearMapIdCarrierLinearMap, CategoryTheory.ShortComplex.hasColimit_of_hasColimitπ, CategoryTheory.Adjunction.hasColimit_comp_equivalence, hasColimit_unop_of_hasLimit, CategoryTheory.Functor.Final.comp_hasColimit, hasColimit_const_of_isConnected, HomologicalComplex.instHasColimitDiscreteWalkingPairCompPairEval, CategoryTheory.NormalEpiCategory.pushout_of_epi, hasColimit_of_closedUnderColimits, HasBinaryBiproduct.hasColimit_pair, HasColimitsOfShape.has_colimit, instHasColimitProdObjFunctorUncurryWhiskeringLeft₂OfPreservesColimit₂, CategoryTheory.hasColimit_of_created, reflexivePair_hasColimit_of_hasCoequalizer, AlgebraicGeometry.Scheme.IsLocallyDirected.instHasColimit, AddCommGrpCat.hasColimit_iff_small_quot, CategoryTheory.Functor.IsEventuallyConstantFrom.hasColimit, hasColimit_of_hasLimit_op, CategoryTheory.Comonad.hasColimit_of_comp_forget_hasColimit, hasColimit_op_of_hasLimit
HasColimitsOfShape 📖CompData
79 mathmath: hasColimitsOfShape_skeleton, Types.hasColimitsOfShape, CategoryTheory.CosimplicialObject.instHasColimitsOfShape, hasColimitsOfShape_thinSkeleton, FGModuleCat.instHasColimitsOfShapeOfFinCategory, TopCat.instHasColimitsOfShapePresheaf, CategoryTheory.Comma.hasColimitsOfShape, hasColimitsOfShape_of_essentiallySmall, instHasColimitsOfShapeUnderOfWithInitial, CategoryTheory.Adjunction.hasColimitsOfShape_of_equivalence, HasIterationOfShape.hasColimitsOfShape, hasColimitsOfShape_widePushoutShape, hasColimitsOfShape_of_initialSeg, CategoryTheory.FintypeCat.instHasColimitsOfShapeSingleObjFintypeCatOfFinite, TopCat.topCat_hasColimitsOfShape, CategoryTheory.instHasColimitsOfShapeWalkingParallelPairInd, CategoryTheory.HasCardinalFilteredColimits.hasColimitsOfShape, CategoryTheory.Sheaf.instHasColimitsOfShape, hasInitialChangeUniverse, hasColimitsOfShape_discrete, CategoryTheory.Over.instHasColimitsOfShape, CategoryTheory.ShortComplex.hasColimitsOfShape, CategoryTheory.Functor.Final.hasColimitsOfShape_of_final, CategoryTheory.hasColimitsOfShape_of_coreflective, AlgebraicGeometry.PresheafedSpace.instHasColimitsOfShape, hasColimitsOfShape_op_of_hasLimitsOfShape, CategoryTheory.hasColimitsOfShape_of_hasColimitsOfShape_createsColimitsOfShape, Action.hasColimitsOfShape, CategoryTheory.PreGaloisCategory.instHasColimitsOfShapeSingleObjOfFinite, hasColimitsOfShape_of_hasLimitsOfShape_op, Preorder.instHasColimitsOfShape, CategoryTheory.hasColimitsOfShape_of_reflective, HasColimits.hasColimitsOfShape, hasColimitsOfShape_of_closedUnderColimits, hasColimitsOfShape_iff_isRightAdjoint_const, PresheafOfModules.hasColimitsOfShape, AlgebraicGeometry.instHasColimitsOfShapeDiscreteSchemeOfSmall, instHasColimitsOfShapeOfHasCountableColimitsOfCountableCategory, HasFiniteCoproducts.out, HomologicalComplex.instHasColimitsOfShape, SheafOfModules.instHasColimitsOfShapeOfPresheafOfModulesValRingCat, HasColimitsOfShape.of_essentiallySmall, HasFilteredColimitsOfSize.HasColimitsOfShape, CategoryTheory.OrthogonalReflection.D₂.hasColimitsOfShape, hasReflexiveCoequalizers_iff, CategoryTheory.SimplicialObject.instHasColimitsOfShape, hasColimitsOfShape_of_finallySmall, AlgebraicGeometry.LocallyRingedSpace.instHasColimitsOfShapeDiscrete, CategoryTheory.MorphismProperty.Comma.hasColimitsOfShape_of_closedUnderColimitsOfShape, CategoryTheory.GrothendieckTopology.Point.instHasColimitsOfShapeOppositeElementsFiber, hasColimitsOfShape_of_equivalence, hasColimitsOfShape_of_hasFiniteColimits, AddCommGrpCat.hasColimitsOfShape, CategoryTheory.PreGaloisCategory.hasQuotientsByFiniteGroups, PartOrdEmb.Limits.instHasColimitsOfShape, HasColimitsOfShape.of_small, TopModuleCat.instHasColimitsOfShapeOfModuleCat, CategoryTheory.CosimplicialObject.Truncated.instHasColimitsOfShape, HasCountableColimits.out, CategoryTheory.CostructuredArrow.hasColimitsOfShape, hasColimitsOfShape_of_has_filtered_colimits, HasIterationOfShape.hasColimitsOfShape_of_isSuccLimit, hasColimitsOfShape_of_isSuccLimit', functorCategoryHasColimitsOfShape, CategoryTheory.instHasColimitsOfShapeDiscreteIndOfFinite, LightCondensed.instHasColimitsOfShapeCostructuredArrowOppositeFintypeCatLightProfiniteOpToLightProfiniteType, ModuleCat.hasColimitsOfShape, CategoryTheory.SimplicialObject.Truncated.instHasColimitsOfShape, hasColimitsOfShapeOfHasColimitsOfSize, HasColimitsOfSize.has_colimits_of_shape, CategoryTheory.SmallObject.hasColimitsOfShape_discrete, CategoryTheory.Arrow.hasColimitsOfShape, FintypeCat.instHasColimitsOfShapeFintypeCatOfFinCategory, HasFiniteColimits.out, CompHausLike.instHasColimitsOfShapeDiscreteOfHasExplicitFiniteCoproductsOfFinite, HasFiniteWidePushouts.out, instHasColimitsOfShapeCondensedOfHasWeakSheafifyCompHausCoherentTopology, AlgebraicGeometry.SheafedSpace.instHasColimitsOfShapeOfSmallOfHasLimitsOfShapeOpposite, hasColimitsOfShape_of_isSuccLimit
HasColimitsOfSize 📖CompData
32 mathmath: Types.hasColimitsOfSize, CategoryTheory.Subobject.hasColimitsOfSize, CategoryTheory.hasColimits_of_reflective, CategoryTheory.MonoOver.hasColimitsOfSize_of_hasStrongEpiMonoFactorisations, CategoryTheory.IsCardinalLocallyPresentable.toHasColimitsOfSize, CategoryTheory.Comma.hasColimitsOfSize, has_colimits_of_hasCoequalizers_and_coproducts, hasColimitsOfSize_thinSkeleton, instHasColimitsOfSizeUnder, hasColimitsOfSizeOfUnivLE, instHasColimitsOfSizeDiscretePUnit, ModuleCat.hasColimitsOfSize, CategoryTheory.CostructuredArrow.hasColimitsOfSize, TopCat.instHasColimitsOfSizePresheafOfHasColimits, CategoryTheory.hasColimits_of_coreflective, CategoryTheory.hasColimits_of_hasColimits_createsColimits, has_colimits_of_finite_and_filtered, SheafOfModules.instHasColimitsOfSizeOfPresheafOfModulesValRingCat, CategoryTheory.IsGrothendieckAbelian.hasColimits, hasSmallestColimitsOfHasColimits, CompleteLattice.hasColimits_of_completeLattice, CategoryTheory.Sheaf.instHasColimitsOfSize, AddCommGrpCat.hasColimitsOfSize, TopCat.topCat_hasColimitsOfSize, functorCategoryHasColimitsOfSize, CategoryTheory.hasColimitsEssentiallySmallSite, PresheafOfModules.hasColimitsOfSize, hasColimits_op_of_hasLimits, hasColimitsOfSize_skeleton, CategoryTheory.Adjunction.has_colimits_of_equivalence, hasColimits_of_hasLimits_op, hasColimitsOfSizeShrink
HasLimit 📖CompData
99 mathmath: CategoryTheory.Over.ConstructProducts.has_over_limit_discrete_of_widePullback_limit, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.hasLimit_cospan_forget_of_right', SemiRingCat.hasLimit, hasLimit_iff_hasTerminal_cone, CategoryTheory.hasLimit_of_created, LimitPresentation.hasLimit, AlgebraicGeometry.IsOpenImmersion.hasLimit_cospan_forget_of_right', CategoryTheory.StructuredArrow.hasLimit, AddCommGrpCat.hasLimit, hasLimit_iff_of_iso, CommGrpCat.hasLimit_iff_small_sections, CategoryTheory.Arrow.hasLimit, hasLimit_leftOp_of_hasColimit, CategoryTheory.comp_comparison_forget_hasLimit, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.hasLimit_cospan_forget_of_left', TopModuleCat.hasLimit_of_hasLimit_forget₂, CategoryTheory.Over.hasLimit_of_hasLimit_liftFromOver, CategoryTheory.ShortComplex.hasLimit_of_hasLimitπ, HasBinaryBiproduct.hasLimit_pair, CommRingCat.hasLimit, PresheafOfModules.hasLimit, CategoryTheory.Functor.Initial.hasLimit_comp_iff, AlgebraicGeometry.IsOpenImmersion.hasLimit_cospan_forget_of_left, ProfiniteGrp.instHasLimit, CategoryTheory.Functor.Initial.comp_hasLimit, hasLimit_of_hasColimit_rightOp, CommSemiRingCat.hasLimit, CategoryTheory.NormalMonoCategory.hasLimit_parallelPair, instHasLimitProd, hasLimit_of_hasColimit_op, hasLimit_of_iso, AlgebraicGeometry.IsOpenImmersion.hasLimit_cospan_forget_of_right, TopCat.hasLimit_iff_small_sections, ωCPO.instHasLimitWalkingParallelPairParallelPair, Preorder.hasLimit_iff_hasGLB, instHasLimitCompOfPreservesLimit, HomologicalComplex.instHasLimitDiscreteWalkingPairCompPairEval, hasLimit_cospan_of_hasLimit_pair_of_hasLimit_parallelPair, hasLimit_of_closedUnderLimits, instHasLimitOppositeDiscreteOpFunctor, CategoryTheory.CechNerveTerminalFrom.hasLimit_wideCospan, AddGrpCat.hasLimit_iff_small_sections, GrpCat.hasLimit_iff_small_sections, hasLimitOfHasLimitsOfShape, CategoryTheory.Enriched.HasConicalLimit.toHasLimit, CategoryTheory.Monad.hasLimit_of_comp_forget_hasLimit, MonCat.HasLimits.hasLimit, hasLimit_unop_of_hasColimit, hasLimit_of_hasColimit_leftOp, CategoryTheory.Adjunction.hasLimit_comp_equivalence, hasLimit_op_of_hasColimit, SemiNormedGrp.hasLimit_parallelPair, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.hasLimit_cospan_forget_of_right, Types.hasLimit, instHasLimitDiscreteOppositeCompInverseOppositeOpFunctor, hasLimit_rightOp_of_hasColimit, HasLimit.mk, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.hasLimit_cospan_forget_of_left, hasTerminalChangeDiagram, CategoryTheory.comp_comparison_hasLimit, hasLimit_of_hasColimit_unop, CompHausLike.instHasLimitWalkingCospanCospan, PresheafOfModules.instHasLimitModuleCatCarrierObjOppositeRingCatCompEvaluationRestrictScalarsHomMap, hasLimit_of_equivalence_comp, CategoryTheory.NormalMonoCategory.pullback_of_mono, CommMonCat.hasLimit, CategoryTheory.Comonad.forget_creates_limits_of_comonad_preserves, CategoryTheory.Functor.Initial.hasLimit_of_comp, Types.hasLimit_iff_small_sections, CategoryTheory.MonoOver.hasLimit, hasLimitCompEvaluation, CategoryTheory.Comma.hasLimit, HasLimitsOfShape.has_limit, AddGrpCat.hasLimit, hasLimit_const_of_isConnected, RingCat.hasLimit, AddMonCat.HasLimits.hasLimit, HasLimit.ofConesIso, CommGrpCat.hasLimit, ModuleCat.hasLimit, CategoryTheory.Adjunction.hasLimit_of_comp_equivalence, CategoryTheory.Under.hasLimit_of_hasLimit_comp_forget, SheafOfModules.hasLimit, GrpCat.hasLimit, hasLimit_equivalence_comp, hasLimit_of_equalizer_and_product, CategoryTheory.Comonad.ComonadicityInternal.instHasLimitWalkingParallelPairParallelPairMapAppUnitObjOfHasEqualizerAA, instHasLimitProdObjFunctorUncurryWhiskeringLeft₂OfPreservesLimit₂, ProfiniteAddGrp.instHasLimit, AlgebraicGeometry.IsOpenImmersion.hasLimit_cospan_forget_of_left', hasLimit_of_domain_hasTerminal, CategoryTheory.Functor.IsEventuallyConstantTo.hasLimit, instHasLimitObjFunctorConstTerminal, CategoryTheory.MorphismProperty.Comma.hasLimit_of_closedUnderLimitsOfShape, AddCommGrpCat.hasLimit_iff_small_sections, CategoryTheory.IsCofiltered.instHasLimitOfIsEventuallyConstant, CategoryTheory.hasLimit_of_reflective, hasLimit_of_domain_hasInitial, AddCommMonCat.hasLimit
HasLimits 📖MathDef
41 mathmath: AddGrpCat.hasLimits, CategoryTheory.SimplicialObject.Truncated.instHasLimits, ModuleCat.hasLimits', Action.instHasLimits, AlgebraicGeometry.AffineScheme.hasLimits, AddCommGrpCat.hasLimits, AlgebraicGeometry.Scheme.Modules.instHasLimits, instHasLimitsCommAlgCat, CommGrpCat.hasLimits, ModuleCat.hasLimits, CategoryTheory.Arrow.hasLimits, TopCat.topCat_hasLimits, DeltaGenerated.hasLimits, CategoryTheory.instHasLimitsInd, instHasLimitsCondensedMod, instHasLimitsCondensedSet, CommMonCat.hasLimits, CategoryTheory.Cat.instHasLimits, CommRingCat.hasLimits, RingCat.hasLimits, Compactum.instHasLimits, AddMonCat.hasLimits, ωCPO.instHasLimits, hasLimits_of_hasColimits_of_isSeparating, SemiRingCat.hasLimits, CategoryTheory.Under.instHasLimits, CompHaus.hasLimits, CommSemiRingCat.hasLimits, CategoryTheory.CosimplicialObject.Truncated.instHasLimits, CategoryTheory.CosimplicialObject.instHasLimits, SSet.hasLimits, TopModuleCat.instHasLimits, TopCat.instHasLimitsPresheaf, Profinite.hasLimits, AddCommMonCat.hasLimits, CategoryTheory.SimplicialObject.instHasLimits, AlgCat.hasLimits, hasLimits_of_hasColimits_of_hasSeparator, GrpCat.hasLimits, MonCat.hasLimits, SSet.Truncated.hasLimits
HasLimitsOfShape 📖CompData
81 mathmath: AddGrpCat.hasLimitsOfShape, CategoryTheory.CategoryOfElements.instHasLimitsOfShapeElements, HasLimitsOfShape.of_small, HasLimitsOfSize.has_limits_of_shape, hasLimitsOfShapeOfHasLimits, CategoryTheory.Under.instHasLimitsOfShape, AddCommGrpCat.hasLimitsOfShape, hasLimitsOfShape_of_closedUnderLimits, HasCofilteredLimitsOfSize.HasLimitsOfShape, CommRingCat.hasLimitsOfShape, hasLimitsOfShape_op_of_hasColimitsOfShape, hasLimitsOfShape_of_hasColimitsOfShape_op, CategoryTheory.CosimplicialObject.instHasLimitsOfShape, RingCat.hasLimitsOfShape, hasLimitsOfShape_iff_isLeftAdjoint_const, CategoryTheory.ShortComplex.hasLimitsOfShape, HasLimits.has_limits_of_shape, hasLimitsOfShape_thinSkeleton, CategoryTheory.Adjunction.hasLimitsOfShape_of_equivalence, instHasLimitsOfShapeOfHasCountableLimitsOfCountableCategory, CategoryTheory.Subobject.hasLimitsOfShape, TopCat.topCat_hasLimitsOfShape, CategoryTheory.SimplicialObject.instHasLimitsOfShape, CategoryTheory.hasLimitsOfShape_of_coreflective, TopCat.instHasLimitsOfShapePresheaf, CategoryTheory.Arrow.hasLimitsOfShape, Action.hasLimitsOfShape, HomologicalComplex.instHasLimitsOfShape, hasLimitsOfShape_of_initiallySmall, hasLimitsOfShape_widePullbackShape, CategoryTheory.StructuredArrow.hasLimitsOfShape, GrpCat.hasLimitsOfShape, instHasLimitsOfShapeCondensed, CategoryTheory.ShrinkHoms.hasLimitsOfShape, CategoryTheory.CosimplicialObject.Truncated.instHasLimitsOfShape, SemiRingCat.hasLimitsOfShape, CategoryTheory.Enriched.HasConicalLimitsOfShape.hasLimitsOfShape, AddMonCat.HasLimits.hasLimitsOfShape, hasLimitsOfShape_of_equivalence, hasLimitsOfShape_skeleton, CategoryTheory.MonoOver.hasLimitsOfShape, Preorder.instHasLimitsOfShape, CategoryTheory.instHasLimitsOfShapeWalkingParallelPairInd, ModuleCat.hasLimitsOfShape, CategoryTheory.instHasLimitsOfShapeOverOfWithTerminal, CategoryTheory.Comma.hasLimitsOfShape, SheafOfModules.hasLimitsOfShape, MonCat.HasLimits.hasLimitsOfShape, CategoryTheory.Sheaf.instHasLimitsOfShape, functorCategoryHasLimitsOfShape, HasLimitsOfShape.of_essentiallySmall, CategoryTheory.CostructuredArrow.hasLimitsOfShape_of_isConnected, CategoryTheory.SimplicialObject.Truncated.instHasLimitsOfShape, FGModuleCat.instHasLimitsOfShapeOfFinCategory, CategoryTheory.Mon.hasLimitsOfShape, HasCountableLimits.out, CategoryTheory.instHasLimitsOfShapeDiscreteInd, Types.hasLimitsOfShape, FintypeCat.instHasLimitsOfShapeFintypeCatOfFinCategory, CategoryTheory.hasLimitsOfShape_of_reflective, HasFiniteProducts.out, HasFiniteWidePullbacks.out, TopCat.instHasLimitsOfShapeSheaf, hasTerminalChangeUniverse, CategoryTheory.hasLimitsOfShape_of_hasLimitsOfShape_createsLimitsOfShape, hasLimitsOfShape_of_essentiallySmall, TopModuleCat.instHasLimitsOfShapeOfModuleCat, HasFiniteLimits.out, PresheafOfModules.hasLimitsOfShape, hasLimitsOfShape_of_has_cofiltered_limits, AddCommMonCat.hasLimitsOfShape, hasLimitsOfShape_discrete, CategoryTheory.Over.ConstructProducts.over_product_of_widePullback, CategoryTheory.AsSmall.hasLimitsOfShape, CommSemiRingCat.hasLimitsOfShape, CommMonCat.hasLimitsOfShape, CategoryTheory.MorphismProperty.Comma.hasLimitsOfShape_of_closedUnderLimitsOfShape, hasLimitsOfShape_of_hasFiniteLimits, CategoryTheory.Functor.Initial.hasLimitsOfShape_of_initial, CategoryTheory.Over.hasLimitsOfShape_of_isConnected, CommGrpCat.hasLimitsOfShape
HasLimitsOfSize 📖CompData
53 mathmath: AddMonCat.hasLimitsOfSize, hasLimitsOfSize_skeleton, hasLimitsOfSize_thinSkeleton, SheafOfModules.hasLimitsOfSize, CategoryTheory.instHasLimitsOfSizeOver, AddGrpCat.hasLimitsOfSize, hasLimitsOfSizeOfUnivLE, AddCommGrpCat.hasLimitsOfSize, functorCategoryHasLimitsOfSize, CategoryTheory.IsGrothendieckAbelian.hasLimits, hasLimitsOfSizeShrink, AddCommMonCat.hasLimitsOfSize, CommSemiRingCat.hasLimitsOfSize, CategoryTheory.hasLimitsEssentiallySmallSite, ModuleCat.hasLimitsOfSize, TopCat.topCat_hasLimitsOfSize, CategoryTheory.hasLimits_of_reflective, hasSmallestLimitsOfHasLimits, CommMonCat.hasLimitsOfSize, instHasLimitsOfSizeLightCondSet, CategoryTheory.Adjunction.has_limits_of_equivalence, CompleteLattice.hasLimits_of_completeLattice, Condensed.instHasLimitsOfSizeModuleCat, CommRingCat.hasLimitsOfSize, CategoryTheory.Enriched.HasConicalLimitsOfSize.hasLimitsOfSize, CategoryTheory.hasLimits_of_hasLimits_createsLimits, instHasLimitsOfSizeDiscretePUnit, TopCat.instHasLimitsOfSizeSheafOfHasLimits, hasLimits_of_hasColimits_op, CategoryTheory.StructuredArrow.hasLimitsOfSize, has_limits_of_finite_and_cofiltered, instHasLimitsOfSizeCondensedMod, RingCat.hasLimitsOfSize, CategoryTheory.Comma.hasLimitsOfSize, instHasLimitsOfSizeLightCondMod_1, hasLimits_op_of_hasColimits, MonCat.hasLimitsOfSize, has_limits_of_hasEqualizers_and_products, CategoryTheory.hasLimits_of_coreflective, instHasLimitsOfSizeCondensedSet, GrpCat.hasLimitsOfSize, PresheafOfModules.hasLimitsOfSize, instHasLimitsOfSizeLightCondMod, Types.hasLimitsOfSize, CondensedMod.instHasLimitsOfSizeModuleCat, CommGrpCat.hasLimitsOfSize, CategoryTheory.Sheaf.hasLimitsOfSize, ModuleCat.instHasLimitsOfSize, SemiRingCat.hasLimitsOfSize, CategoryTheory.MonoOver.hasLimitsOfSize, CategoryTheory.Over.hasLimits, CategoryTheory.Subobject.hasLimitsOfSize, AlgCat.hasLimitsOfSize
LimitCone 📖CompData
1 mathmath: HasLimit.exists_limit
colim 📖CompOp
77 mathmath: colimitIsoFlipCompColim_inv_app, colimitLimitToLimitColimit_isIso, DiagramOfCocones.mkOfHasColimits_coconePoints, colimitUncurryIsoColimitCompColim_ι_ι_inv, CategoryTheory.IsSifted.colim_preservesBinaryProducts_of_isSifted, colimitCurrySwapCompColimIsoColimitCurryCompColim_ι_ι_hom, colimitIsoSwapCompColim_hom_app, colimit.ι_map, CategoryTheory.IsSifted.factorization_prodComparison_colim, colimitIsoColimitCurryCompColim_ι_hom_assoc, colimitCurrySwapCompColimIsoColimitCurryCompColim_ι_ι_inv, colimMap_eq, CategoryTheory.IsSifted.instIsIsoObjFunctorTypeColimTensorObjProdComparison, CategoryTheory.Adjunction.colim_preservesColimits, CategoryTheory.preservesColimitNatIso_inv_app, CategoryTheory.HasExactColimitsOfShape.preservesFiniteLimits, ι_colimitLimitToLimitColimit_π, colimitUncurryIsoColimitCompColim_ι_hom_assoc, colimitUncurryIsoColimitCompColim_ι_hom, CategoryTheory.IsSifted.colim_preservesLimits_pair_of_sSifted, pointwiseCocone_ι_app_app, colimitIsoColimitCurryCompColim_ι_hom, colimitLimitToLimitColimitCone_hom, pointwiseCocone_pt, colim_map, Types.Colimit.ι_map_apply', colimitIsoColimitCurryCompColim_ι_ι_inv_assoc, CategoryTheory.instPreservesFiniteProductsFunctorColimOfPreadditive, colimitIsoSwapCompColim_inv_app, Types.Colimit.ι_map_apply, CategoryTheory.IsSifted.colim_preservesFiniteProducts_of_isSifted, CategoryTheory.Functor.lanCompColimIso_inv_app, CategoryTheory.preservesColimitNatIso_hom_app, fiberwiseColim_map_app, colimCompFlipIsoWhiskerColim_hom_app_app, DiagramOfCocones.mkOfHasColimits_map_hom, colimit.map_post, colimitFlipIsoCompColim_hom_app, colimIsoFlipCompWhiskerColim_hom_app_app, colim_obj, filtered_colim_preservesFiniteLimits, colimitLimitToLimitColimitCone_iso, instPreservesFiniteLimitsFunctorAddCommGrpCatColim, instPreservesFiniteLimitsFunctorColimOfPreservesColimitsOfShapeOfHasFiniteLimitsOfReflectsIsomorphismsForget, instIsLeftAdjointFunctorColim, fiberwiseColimCompEvaluationIso_hom_app, colimit.pre_map', colimitFlipCompColimIsoColimitCompColim_ι_ι_inv_assoc, colimIsoFlipCompWhiskerColim_inv_app_app, colimit.pre_id, colimit.pre_map, colimitIsoFlipCompColim_hom_app, instPreservesHomologyFunctorAddCommGrpCatColim, colimit.ι_map_assoc, fiberwiseColimCompColimIso_hom_app, CategoryTheory.instPreservesLimitsOfShapeFunctorColim, fiberwiseColimCompColimIso_inv_app, ι_colimitLimitToLimitColimit_π_apply, fiberwiseColimCompEvaluationIso_inv_app, CategoryTheory.IsSifted.colim_preservesLimitsOfShape_pempty_of_isSifted, CategoryTheory.IsSifted.colim_preservesTerminal_of_isSifted, colimitIsoColimitCurryCompColim_ι_ι_inv, colimitFlipCompColimIsoColimitCompColim_ι_ι_hom_assoc, HasBiproductsOfShape.colimIsoLim_hom_app, isIndObject_limit_comp_yoneda_comp_colim, ι_colimitLimitToLimitColimit_π_assoc, colimCompFlipIsoWhiskerColim_inv_app_app, colimitLimitToLimitColimit_injective, HasBiproductsOfShape.colimIsoLim_inv_app, filtered_colim_preservesFiniteLimits_of_types, colimitUncurryIsoColimitCompColim_ι_ι_inv_assoc, CategoryTheory.Functor.lanCompColimIso_hom_app, instAdditiveFunctorColim, colimitFlipCompColimIsoColimitCompColim_ι_ι_inv, colimitFlipIsoCompColim_inv_app, colimitLimitToLimitColimit_surjective, colimitFlipCompColimIsoColimitCompColim_ι_ι_hom
colimConstAdj 📖CompOp
colimCoyoneda 📖CompOp
colimMap 📖CompOp
36 mathmath: fiberwiseColimit_map, map_π_preserves_coequalizer_inv_colimMap, Bimod.whiskerLeft_hom, colimMap_epi', colimitObjIsoColimitCompEvaluation_inv_colimit_map_assoc, colimitIsoSwapCompColim_hom_app, colimMap_eq, Condensed.lanPresheafExt_inv, colimit.map_desc, map_π_preserves_coequalizer_inv_colimMap_desc, HomologicalComplex.coconeOfHasColimitEval_pt_d, colimitObjIsoColimitCompEvaluation_inv_colimit_map, ι_colimMap, id_tensor_π_preserves_coequalizer_inv_colimMap_desc, IsColimit.isIso_colimMap_ι, ι_colimMap_assoc, colim_map, colimitIsoSwapCompColim_inv_app, map_π_preserves_coequalizer_inv_colimMap_assoc, CategoryTheory.MorphismProperty.colimitsOfShape_colimMap, Cocone.isColimit_iff_isIso_colimMap_ι, PresheafOfModules.colimitPresheafOfModules_map, ModuleCat.HasColimit.coconePointSMul_apply, HomologicalComplex.coconeOfHasColimitEval_ι_app_f, colimit.map_desc_assoc, LightCondensed.lanPresheafExt_inv, Condensed.lanPresheafExt_hom, colimit_map_colimitObjIsoColimitCompEvaluation_hom, colimit_map_colimitObjIsoColimitCompEvaluation_hom_assoc, Bimod.whiskerRight_hom, colimMap_epi, CategoryTheory.MorphismProperty.colimMap, LightCondensed.lanPresheafExt_hom, map_π_preserves_coequalizer_inv_colimMap_desc_assoc, coequalizer.π_colimMap_desc, π_tensor_id_preserves_coequalizer_inv_colimMap_desc
colimit 📖CompOp
372 mathmath: ModuleCat.HasColimit.colimitCocone_pt_isAddCommGroup, colimitHomIsoLimitYoneda'_hom_comp_π, smoothSheafCommRing.ι_forgetStalk_inv, IndizationClosedUnderFilteredColimitsAux.exists_nonempty_limit_obj_of_isColimit, colimitHomIsoLimitYoneda_hom_comp_π, limitUnopIsoUnopColimit_hom_comp_ι, isIso_ι_terminal, CategoryTheory.Functor.ι_colimitIsoOfIsLeftKanExtension_inv_assoc, colimitIsoFlipCompColim_inv_app, colimit.isoColimitCocone_ι_inv, colimitLimitToLimitColimit_isIso, colimitObjIsoColimitCompEvaluation_ι_app_hom_assoc, colimit.eqToHom_comp_ι_assoc, CategoryTheory.ObjectProperty.ColimitOfShape.colimit_toColimitPresentation, fiberwiseColimit_map, colimit.ι_pre_assoc, map_π_preserves_coequalizer_inv_colimMap, ι_comp_colimitOpIsoOpLimit_hom_assoc, HasColimit.isoOfEquivalence_inv_π, ι_colimitCompWhiskeringLeftIsoCompColimit_hom_assoc, CategoryTheory.IsGrothendieckAbelian.IsPresentable.surjectivity.hf, colimit_ι_zero_cokernel_desc_assoc, AlgebraicGeometry.SheafedSpace.colimit_exists_rep, colimitUncurryIsoColimitCompColim_ι_ι_inv, colimit.pre_post, MultispanIndex.multicoforkEquivSigmaCofork_functor_obj_ι_app, MultispanIndex.multicoforkEquivSigmaCofork_counitIso_inv_app_hom, CategoryTheory.GrothendieckTopology.ι_plusCompIso_hom_assoc, smoothSheafCommRing.ι_evalHom_apply, CategoryTheory.Functor.leftKanExtensionUnit_leftKanExtension_map_leftKanExtensionObjIsoColimit_hom, CategoryTheory.ObjectProperty.prop_colimit, colimitCoyonedaHomIsoLimit'_π_apply, colimMap_epi', limitOpIsoOpColimit_hom_comp_ι_assoc, fiberwiseColimit_obj, colimitObjIsoColimitCompEvaluation_ι_inv_assoc, CompleteLattice.colimit_eq_iSup, Sigma.ι_isoColimit_inv, colimitObjIsoColimitCompEvaluation_inv_colimit_map_assoc, colimit.desc_extend, colimit.homIso_hom, ι_colimitPointwiseProductToProductColimit_π, CategoryTheory.Functor.ι_leftKanExtensionObjIsoColimit_inv, AlgebraicGeometry.Scheme.Cover.RelativeGluingData.toBase_preimage_eq_opensRange_ι, Concrete.colimit_rep_eq_iff_exists, colimitCurrySwapCompColimIsoColimitCurryCompColim_ι_ι_hom, colimitIsoSwapCompColim_hom_app, SingleObj.Types.colimitEquivQuotient_symm_apply, colimit.ι_map, CategoryTheory.IsSifted.factorization_prodComparison_colim, CategoryTheory.PreGaloisCategory.isGalois_iff_aux, colimitIsoColimitCurryCompColim_ι_hom_assoc, PreservesColimit₂.map_ι_comp_isoColimitUncurryWhiskeringLeft₂_inv_assoc, colimitCurrySwapCompColimIsoColimitCurryCompColim_ι_ι_inv, CoproductsFromFiniteFiltered.liftToFinsetColimIso_aux_assoc, colimitYonedaHomIsoLimit'_π_apply, π_comp_colimitLeftOpIsoUnopLimit_inv, CategoryTheory.preservesColimitNatIso_inv_app, colimit.ι_post, colimitHomIsoLimitYoneda'_hom_comp_π_assoc, AlgebraicGeometry.PresheafedSpace.colimitPresheafObjIsoComponentwiseLimit_hom_π, AlgebraicGeometry.PresheafedSpace.componentwiseDiagram_map, MultispanIndex.multicoforkEquivSigmaCofork_counitIso_hom_app_hom, colimit.map_desc, ModuleCat.HasColimit.colimitCocone_ι_app, HasColimit.isoOfEquivalence_hom_π, CategoryTheory.Functor.ι_colimitIsoColimitGrothendieck_inv_assoc, TopCat.colimit_topology, isIso_ι_of_isInitial, HasColimit.isoOfNatIso_ι_inv, fiberwiseColimitLimitIso_hom_app, PreservesColimit₂.map_ι_comp_isoColimitUncurryWhiskeringLeft₂_inv, CategoryTheory.Functor.ι_leftKanExtensionObjIsoColimit_inv_assoc, ι_colimitLimitIso_limit_π, CategoryTheory.Functor.Final.ι_colimitIso_hom_assoc, map_π_preserves_coequalizer_inv_colimMap_desc, ι_colimitLimitToLimitColimit_π, π_comp_colimitUnopIsoOpLimit_inv, smoothSheaf.ι_evalHom_assoc, colimit.toOver_ι_app, CategoryTheory.Functor.ι_colimitIsoColimitGrothendieck_hom, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.sigma_ι_isOpenImmersion, CategoryTheory.ι_preservesColimitIso_inv_assoc, coyonedaOpColimitIsoLimitCoyoneda_hom_comp_π_assoc, colimitObjIsoColimitCompEvaluation_inv_colimit_map, CategoryTheory.Functor.Final.ι_colimitIso_inv, ι_comp_colimitRightOpIsoUnopLimit_hom_assoc, SingleObj.Types.colimitEquivQuotient_apply, CategoryTheory.ι_preservesColimitIso_hom_assoc, ModuleCat.HasColimit.colimitCocone_pt_isModule, CoproductsFromFiniteFiltered.liftToFinsetColimitCocone_isColimit_desc, colimitUncurryIsoColimitCompColim_ι_hom_assoc, CategoryTheory.Functor.Final.colimitIso_hom, colimit.ι_inv_pre, colimitUncurryIsoColimitCompColim_ι_hom, CategoryTheory.Functor.leftAdjointObjIsDefined_colimit, coyonedaOpColimitIsoLimitCoyoneda'_inv_comp_π, CategoryTheory.preservesColimitIso_inv_comp_desc, CategoryTheory.Functor.pointwiseLeftKanExtension_obj, CategoryTheory.Functor.pointwiseLeftKanExtension_map, ι_colimMap, HasColimit.isoOfNatIso_inv_desc_assoc, CategoryTheory.Functor.ι_colimitIsoOfIsLeftKanExtension_inv, π_reflexiveCoequalizerIsoCoequalizer_inv_assoc, id_tensor_π_preserves_coequalizer_inv_colimMap_desc, HasColimit.isoOfNatIso_hom_desc, AlgebraicGeometry.Scheme.Cover.RelativeGluingData.ι_toBase, IsColimit.isIso_colimMap_ι, coyonedaOpColimitIsoLimitCoyoneda_inv_comp_π_assoc, IsIPC.isIso, AlgebraicGeometry.Scheme.IsLocallyDirected.openCover_f, ι_colimMap_assoc, colimit.ι_pre, colimit.comp_coconePointUniqueUpToIso_inv_assoc, colimitYonedaHomIsoLimit_π_apply, colimitIsoColimitCurryCompColim_ι_hom, colimit.comp_coconePointUniqueUpToIso_hom_assoc, smoothSheafCommRing.ι_evalHom, CategoryTheory.IsGrothendieckAbelian.IsPresentable.surjectivity.isIso_f, ι_colimitCompWhiskeringLeftIsoCompColimit_hom, CoproductsFromFiniteFiltered.liftToFinsetColimitCocone_cocone_ι_app, AlgebraicGeometry.Scheme.Cover.RelativeGluingData.ι_toBase_assoc, HomologicalComplex.coconeOfHasColimitEval_pt_X, ι_colimitFiberwiseColimitIso_hom_assoc, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.ι_isoColimit_hom, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.image_preimage_is_empty, coconePointwiseProduct_ι_app, π_comp_colimitLeftOpIsoUnopLimit_inv_assoc, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.fst_gluedCocone_ι, ι_colimitFiberwiseColimitIso_inv_assoc, limitUnopIsoUnopColimit_inv_comp_π_assoc, colimitCoyonedaHomIsoLimitUnop_π_apply, AlgebraicGeometry.PresheafedSpace.ColimitCoconeIsColimit.desc_c_naturality, colimit.pre_pre, limitRightOpIsoOpColimit_hom_comp_ι, Types.instSubsingletonColimitPUnit, CategoryTheory.Functor.ι_colimitIsoColimitGrothendieck_hom_assoc, colimitIsoColimitCurryCompColim_ι_ι_inv_assoc, CategoryTheory.Functor.final_iff_isIso_colimit_pre, colimit_obj_ext_iff, CompleteLattice.finite_colimit_eq_finset_univ_sup, Sigma.ι_isoColimit_hom_assoc, π_comp_colimitOpIsoOpLimit_inv_assoc, colimitIsoSwapCompColim_inv_app, colimit.hom_ext_iff, isIndObject_colimit, CategoryTheory.Functor.lanCompColimIso_inv_app, coyonedaOpColimitIsoLimitCoyoneda'_hom_comp_π, CategoryTheory.Functor.ι_colimitIsoOfIsLeftKanExtension_hom, map_π_preserves_coequalizer_inv_colimMap_assoc, CategoryTheory.preservesColimitNatIso_hom_app, colimitHomIsoLimitYoneda_hom_comp_π_assoc, CategoryTheory.MorphismProperty.colimitsOfShape_colimMap, colimit.w_apply, smoothSheafCommRing.ι_forgetStalk_inv_apply, ClosedUnderColimitsOfShape.colimit, colimCompFlipIsoWhiskerColim_hom_app_app, CategoryTheory.ι_colimitCompWhiskeringRightIsoColimitComp_hom, fiberwiseColimitLimitIso_inv_app, isIso_ι_initial, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.ι_isoColimit_hom_assoc, colimit.map_post, colimitFlipIsoCompColim_hom_app, colimit.isoColimitCocone_ι_inv_assoc, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.ι_isoColimit_inv_assoc, Cocone.isColimit_iff_isIso_colimMap_ι, π_comp_colimitOpIsoOpLimit_inv, colimitHomIsoLimitYoneda'_inv_comp_π_assoc, FGModuleCat.instFiniteCarrierColimitModuleCatCompForget₂LinearMapIdObjIsFG, CategoryTheory.preservesColimitIso_inv_comp_desc_assoc, limitRightOpIsoOpColimit_hom_comp_ι_assoc, CategoryTheory.whiskerRight_ι_colimitCompWhiskeringRightIsoColimitComp_inv_assoc, CategoryTheory.SmallObject.SuccStruct.arrowι_def, ι_colimitLimitIso_limit_π_assoc, colimIsoFlipCompWhiskerColim_hom_app_app, smoothSheafCommRing.ι_forgetStalk_inv_assoc, colimitPointwiseProductToProductColimit_app, colim_obj, AlgebraicGeometry.Scheme.IsLocallyDirected.ι_eq_ι_iff, colimit.ι_post_assoc, AlgebraicGeometry.Scheme.IsLocallyDirected.openCover_I₀, colimitObjIsoColimitCompEvaluation_ι_app_hom, colimit.pre_desc_assoc, colimit.pre_desc, AlgebraicGeometry.instIsOpenImmersionLeftSchemeDiscretePUnitιOverTopMorphismProperty, limitOpIsoOpColimit_inv_comp_π_assoc, PresheafOfModules.colimitPresheafOfModules_map, colimit.ι_desc_apply, ι_comp_colimitRightOpIsoUnopLimit_hom, ModuleCat.HasColimit.coconePointSMul_apply, AlgebraicGeometry.PresheafedSpace.colimit_presheaf, MultispanIndex.multicoforkEquivSigmaCofork_inverse_obj_pt, Sigma.ι_isoColimit_hom, AlgebraicGeometry.Scheme.IsLocallyDirected.openCover_X, coyonedaOpColimitIsoLimitCoyoneda_inv_comp_π, colimit.desc_cocone, AlgebraicGeometry.PresheafedSpace.componentwiseDiagram_obj, colimit.ι_desc, ι_colimitOfIsReflexivePairIsoCoequalizer_hom, fiberwiseColimCompEvaluationIso_hom_app, CategoryTheory.ι_preservesColimitIso_hom, colimit.post_post, colimit.pre_map', colimitFlipCompColimIsoColimitCompColim_ι_ι_inv_assoc, Types.isConnected_iff_colimit_constPUnitFunctor_iso_pUnit, HasColimit.isoOfNatIso_ι_hom_assoc, CategoryTheory.FunctorToTypes.colimit.map_ι_apply, AlgebraicGeometry.Scheme.IsLocallyDirected.instIsOpenImmersionι, CategoryTheory.Functor.leftKanExtensionUnit_leftKanExtensionObjIsoColimit_hom, colimIsoFlipCompWhiskerColim_inv_app_app, MultispanIndex.multicoforkEquivSigmaCofork_inverse_obj_ι_app, CategoryTheory.Functor.Final.ι_colimitIso_inv_assoc, HasColimit.isoOfNatIso_hom_desc_assoc, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.sigma_ι_isOpenImmersion_aux, CategoryTheory.instIsIsoPost_1, HomologicalComplex.coconeOfHasColimitEval_ι_app_f, colimit.pre_map, ι_comp_colimitOpIsoOpLimit_hom, limitLeftOpIsoUnopColimit_inv_comp_π, Concrete.colimit_rep_eq_of_exists, coyonedaOpColimitIsoLimitCoyoneda'_inv_comp_π_assoc, CategoryTheory.FunctorToTypes.jointly_surjective', CategoryTheory.SmallObject.SuccStruct.Iteration.obj_limit, colimitConstInitial_inv, colimit.existsUnique, ι_colimitFiberwiseColimitIso_hom, AlgebraicGeometry.Scheme.IsLocallyDirected.ι_jointly_surjective, colimitIsoFlipCompColim_hom_app, colimit.ι_coconeMorphism, smoothSheafCommRing.ι_forgetStalk_hom_apply, colimit.ι_map_assoc, fiberwiseColimCompColimIso_hom_app, limitUnopIsoUnopColimit_hom_comp_ι_assoc, colimit_ι_zero_cokernel_desc, CategoryTheory.Functor.leftKanExtensionIsoFiberwiseColimit_hom_app, colimitQuotientCoproduct_epi, smoothSheafCommRing.ι_forgetStalk_hom_assoc, CategoryTheory.Functor.Final.colimit_pre_isIso, colimit.comp_coconePointUniqueUpToIso_hom, π_comp_colimitRightOpIsoUnopLimit_inv, ι_comp_colimitUnopIsoOpLimit_hom_assoc, AlgebraicGeometry.PresheafedSpace.pushforwardDiagramToColimit_map, colimit.ι_desc_assoc, CategoryTheory.ι_colimitCompWhiskeringRightIsoColimitComp_hom_assoc, colimit.ι_desc_app_assoc, π_colimitOfIsReflexivePairIsoCoequalizer_inv, colimit.eqToHom_comp_ι, coconePointwiseProduct_pt, ι_colimitFiberwiseColimitIso_inv, coyonedaOpColimitIsoLimitCoyoneda_hom_comp_π, colimit.map_desc_assoc, ModuleCat.HasColimit.colimitCocone_pt_carrier, π_reflexiveCoequalizerIsoCoequalizer_inv, ι_reflexiveCoequalizerIsoCoequalizer_hom, coyonedaOpColimitIsoLimitCoyoneda'_hom_comp_π_assoc, colimit.isoColimitCocone_ι_hom_assoc, fiberwiseColimCompColimIso_inv_app, PreservesColimit₂.ι_comp_isoColimitUncurryWhiskeringLeft₂_hom_assoc, HasColimit.isoOfNatIso_ι_hom, AlgebraicGeometry.PresheafedSpace.pushforwardDiagramToColimit_obj, colimit.cocone_x, limitOpIsoOpColimit_inv_comp_π, smoothSheaf.ι_evalHom, fiberwiseColimCompEvaluationIso_inv_app, smoothSheafCommRing.ι_evalHom_assoc, CategoryTheory.PreGaloisCategory.IsGalois.quotientByAutTerminal, CoproductsFromFiniteFiltered.liftToFinsetColimitCocone_cocone_pt, colimitCoyonedaHomIsoLimit_π_apply, smoothSheafCommRing.ι_forgetStalk_hom, ι_colimitPointwiseProductToProductColimit_π_assoc, colimitYonedaHomIsoLimitOp_π_apply, colimit.post_desc, colimit_map_colimitObjIsoColimitCompEvaluation_hom, coconeOfCoconeFiberwiseColimit_ι_app, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.sigma_ι_isOpenEmbedding, AlgebraicGeometry.PresheafedSpace.colimitPresheafObjIsoComponentwiseLimit_inv_ι_app, colimit_map_colimitObjIsoColimitCompEvaluation_hom_assoc, colimit.w_assoc, CategoryTheory.GrothendieckTopology.ι_plusCompIso_hom, MultispanIndex.multicoforkEquivSigmaCofork_inverse_map_hom, colimitIsoColimitCurryCompColim_ι_ι_inv, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.ι_isoColimit_inv, colimitFlipCompColimIsoColimitCompColim_ι_ι_hom_assoc, ι_colimitConstInitial_hom, π_comp_colimitRightOpIsoUnopLimit_inv_assoc, CommRingCat.FilteredColimits.instNontrivialCarrierColimitOfIsFilteredOrEmptyOfObj, AlgebraicGeometry.Scheme.Cover.RelativeGluingData.preimage_toBase_eq_range_ι, Concrete.colimit_exists_rep, colimit.w, CategoryTheory.SmallObject.SuccStruct.Iteration.mkOfLimit.arrowMap_functor_to_top, CategoryTheory.Functor.ι_leftKanExtensionObjIsoColimit_hom, limitRightOpIsoOpColimit_inv_comp_π_assoc, CategoryTheory.Functor.ι_colimitIsoOfIsLeftKanExtension_hom_assoc, limitLeftOpIsoUnopColimit_hom_comp_ι_assoc, CategoryTheory.whiskerRight_ι_colimitCompWhiskeringRightIsoColimitComp_inv, AlgebraicGeometry.PresheafedSpace.colimit_carrier, π_colimitOfIsReflexivePairIsoCoequalizer_inv_assoc, colimMap_epi, TopCat.colimit_isOpen_iff, AlgebraicGeometry.PresheafedSpace.GlueData.ιInvApp_π, CategoryTheory.MorphismProperty.colimMap, colimitObjIsoColimitCompEvaluation_ι_inv, π_comp_colimitUnopIsoOpLimit_inv_assoc, PresheafOfModules.colimitPresheafOfModules_obj, IndizationClosedUnderFilteredColimitsAux.isFiltered, CategoryTheory.instSmallHomFunctorOppositeTypeColimitCompYoneda, ι_comp_colimitLeftOpIsoUnopLimit_hom_assoc, HasBiproductsOfShape.colimIsoLim_hom_app, whiskerLeft_ι_colimitCompWhiskeringLeftIsoCompColimit_inv, CategoryTheory.Functor.Final.ι_colimitIso_hom, IndizationClosedUnderFilteredColimitsAux.exists_nonempty_limit_obj_of_colimit, Sigma.ι_isoColimit_inv_assoc, limitLeftOpIsoUnopColimit_inv_comp_π_assoc, ι_colimitLimitToLimitColimit_π_assoc, CategoryTheory.IsGrothendieckAbelian.IsPresentable.injectivity₀.hf, CategoryTheory.ι_preservesColimitIso_inv, ι_reflexiveCoequalizerIsoCoequalizer_hom_assoc, CategoryTheory.Functor.leftKanExtensionUnit_leftKanExtensionObjIsoColimit_hom_assoc, ι_comp_colimitLeftOpIsoUnopLimit_hom, colimitHomIsoLimitYoneda_inv_comp_π, CategoryTheory.yonedaYonedaColimit_app_inv, limitLeftOpIsoUnopColimit_hom_comp_ι, colimCompFlipIsoWhiskerColim_inv_app_app, colimit.toCostructuredArrow_map, PreservesColimit₂.ι_comp_isoColimitUncurryWhiskeringLeft₂_hom, whiskerLeft_ι_colimitCompWhiskeringLeftIsoCompColimit_inv_assoc, colimit.toCostructuredArrow_obj, CoproductsFromFiniteFiltered.liftToFinsetColimIso_aux, colimitYonedaHomIsoLimitRightOp_π_apply, CategoryTheory.Functor.ι_leftKanExtensionObjIsoColimit_hom_assoc, colimit.toOver_pt, colimit.isoColimitCocone_ι_hom, colimitLimitToLimitColimit_injective, colimit.comp_coconePointUniqueUpToIso_inv, Types.isIso_colimitPointwiseProductToProductColimit, CategoryTheory.Functor.ι_colimitIsoColimitGrothendieck_inv, colimitCoyonedaHomIsoLimitLeftOp_π_apply, colimitHomIsoLimitYoneda_inv_comp_π_assoc, limitUnopIsoUnopColimit_inv_comp_π, HasColimit.isoOfNatIso_inv_desc, Types.colimitEquivColimitType_symm_apply, colimit.ι_inv_pre_assoc, HasBiproductsOfShape.colimIsoLim_inv_app, HasColimit.isoOfNatIso_ι_inv_assoc, CategoryTheory.Functor.leftKanExtensionIsoFiberwiseColimit_inv_app, map_π_preserves_coequalizer_inv_colimMap_desc_assoc, AlgebraicGeometry.PresheafedSpace.colimitCocone_ι_app_c, CategoryTheory.IsGrothendieckAbelian.IsPresentable.injectivity₀.epi_f, ι_colimitOfIsReflexivePairIsoCoequalizer_hom_assoc, colimit.pre_eq, colimitUncurryIsoColimitCompColim_ι_ι_inv_assoc, colimit.ι_desc_app, limitOpIsoOpColimit_hom_comp_ι, coequalizer.π_colimMap_desc, CategoryTheory.IsGrothendieckAbelian.IsPresentable.surjectivity.epi_f, CategoryTheory.MonoidalCategory.DayFunctor.ι_comp_isoPointwiseLeftKanExtension_inv, AlgebraicGeometry.Scheme.Cover.RelativeGluingData.isPullback_natTrans_ι_toBase, CategoryTheory.Functor.lanCompColimIso_hom_app, isIso_ι_of_isTerminal, ι_colimitConstInitial_hom_assoc, Types.colimitEquivColimitType_apply, colimitFlipCompColimIsoColimitCompColim_ι_ι_inv, limitRightOpIsoOpColimit_inv_comp_π, instEpiDescι, CategoryTheory.colimitYonedaHomEquiv_π_apply, π_tensor_id_preserves_coequalizer_inv_colimMap_desc, colimitFlipIsoCompColim_inv_app, colimitLimitToLimitColimit_surjective, CategoryTheory.Functor.Final.colimitIso_inv, ι_comp_colimitUnopIsoOpLimit_hom, colimitHomIsoLimitYoneda'_inv_comp_π, colimitFlipCompColimIsoColimitCompColim_ι_ι_hom
coneOfAdj 📖CompOp
3 mathmath: coneOfAdj_pt, isLimitConeOfAdj_lift, coneOfAdj_π
constLimAdj 📖CompOp
1 mathmath: CategoryTheory.Localization.HasProductsOfShapeAux.adj_counit_app
getColimitCocone 📖CompOp
getLimitCone 📖CompOp
isColimitEquivIsLimitOp 📖CompOp
isColimitOfOp 📖CompOp
isColimitOfUnop 📖CompOp
isLimitConeOfAdj 📖CompOp
1 mathmath: isLimitConeOfAdj_lift
isLimitEquivIsColimitOp 📖CompOp
isLimitOfOp 📖CompOp
isLimitOfUnop 📖CompOp
lim 📖CompOp
66 mathmath: colimitLimitToLimitColimit_isIso, yonedaCompLimIsoCocones_inv_app, coyonedaCompLimIsoCones_inv_app, limitIsoLimitCurryCompLim_hom_π_π_assoc, CategoryTheory.HasExactLimitsOfShape.preservesFiniteColimits, lim_map, CategoryTheory.Localization.HasProductsOfShapeAux.adj_counit_app, CategoryTheory.Functor.ranCompLimIso_inv_app, instIsRightAdjointFunctorLim, ι_colimitLimitToLimitColimit_π, limitFlipCompLimIsoLimitCompLim_hom_π_π, limitIsoSwapCompLim_hom_app, limitIsoFlipCompLim_hom_app, opHomCompWhiskeringLimYonedaIsoCocones_hom_app_app_app, limCompFlipIsoWhiskerLim_inv_app_app, CategoryTheory.Mon.limit_mon_mul, limitCurrySwapCompLimIsoLimitCurryCompLim_inv_π_π, yonedaCompLimIsoCocones_hom_app_app, colimitLimitToLimitColimitCone_hom, DiagramOfCones.mkOfHasLimits_map_hom, limitFlipCompLimIsoLimitCompLim_inv_π_π, lim_ε_π_assoc, LightCondensed.instPreservesEpimorphismsFunctorDiscreteNatLightCondModLim, whiskeringLimYonedaIsoCones_inv_app_app, CategoryTheory.preservesLimitNatIso_inv_app, lim_obj, lim_ε_π, limitUncurryIsoLimitCompLim_inv_π, limitFlipIsoCompLim_inv_app, limitFlipCompLimIsoLimitCompLim_hom_π_π_assoc, limitCurrySwapCompLimIsoLimitCurryCompLim_hom_π_π, lim_μ_π_assoc, limIsoFlipCompWhiskerLim_hom_app_app, limitUncurryIsoLimitCompLim_hom_π_π_assoc, limitIsoSwapCompLim_inv_app, limit.map_pre', limitIsoLimitCurryCompLim_inv_π, CategoryTheory.Localization.HasProductsOfShapeAux.inverts, whiskeringLimYonedaIsoCones_hom_app_app_app, limMap_eq, ι_colimitLimitToLimitColimit_π_apply, limitIsoLimitCurryCompLim_inv_π_assoc, limCompFlipIsoWhiskerLim_hom_app_app, limitIsoLimitCurryCompLim_hom_π_π, CategoryTheory.Mon.limit_mon_one, limitFlipIsoCompLim_hom_app, limitUncurryIsoLimitCompLim_hom_π_π, limIsoFlipCompWhiskerLim_inv_app_app, limit.id_pre, limitIsoFlipCompLim_inv_app, limit.map_pre, HasBiproductsOfShape.colimIsoLim_hom_app, DiagramOfCones.mkOfHasLimits_conePoints, CategoryTheory.preservesLimitNatIso_hom_app, ι_colimitLimitToLimitColimit_π_assoc, CategoryTheory.Adjunction.lim_preservesLimits, CategoryTheory.Functor.ranCompLimIso_hom_app, coyonedaCompLimIsoCones_hom_app_app, colimitLimitToLimitColimit_injective, lim_μ_π, limitUncurryIsoLimitCompLim_inv_π_assoc, opHomCompWhiskeringLimYonedaIsoCocones_inv_app_app, HasBiproductsOfShape.colimIsoLim_inv_app, limitFlipCompLimIsoLimitCompLim_inv_π_π_assoc, colimitLimitToLimitColimit_surjective, CategoryTheory.instPreservesColimitsOfShapeFunctorLim
limMap 📖CompOp
26 mathmath: limMap_π, HomologicalComplex.coneOfHasLimitEval_pt_d, PresheafOfModules.limitPresheafOfModules_map, lim_map, limitIsoSwapCompLim_hom_app, CategoryTheory.Mon.limit_mon_mul, Types.Limit.map_π_apply', limMap_π_assoc, limMap_mono, CategoryTheory.MorphismProperty.limMap, limit.map_post, IsLimit.isIso_limMap_π, limitObjIsoLimitCompEvaluation_inv_limit_map, limit_map_limitObjIsoLimitCompEvaluation_hom_assoc, limMap_mono', limitIsoSwapCompLim_inv_app, Cone.isLimit_iff_isIso_limMap_π, Types.Limit.map_π_apply, limit.lift_map, limMap_eq, HomologicalComplex.coneOfHasLimitEval_π_app_f, CategoryTheory.Mon.limit_mon_one, limit.lift_map_assoc, limitObjIsoLimitCompEvaluation_inv_limit_map_assoc, CategoryTheory.MorphismProperty.limitsOfShape_limMap, limit_map_limitObjIsoLimitCompEvaluation_hom
limYoneda 📖CompOp
limit 📖CompOp
295 mathmath: limMap_π, colimitHomIsoLimitYoneda'_hom_comp_π, IndizationClosedUnderFilteredColimitsAux.exists_nonempty_limit_obj_of_isColimit, CategoryTheory.GrothendieckTopology.liftToDiagramLimitObjAux_fac, colimitHomIsoLimitYoneda_hom_comp_π, isIndObject_limit_of_discrete, limitUnopIsoUnopColimit_hom_comp_ι, limit.toStructuredArrow_obj, MulticospanIndex.multiforkEquivPiFork_counitIso_hom_app_hom, ProductsFromFiniteCofiltered.liftToFinsetLimitCone_isLimit_lift, colimitLimitToLimitColimit_isIso, isIso_π_of_isTerminal, limitSubobjectProduct_mono, ι_comp_colimitOpIsoOpLimit_hom_assoc, CategoryTheory.GrothendieckTopology.liftToDiagramLimitObjAux_fac_assoc, HasLimit.isoOfNatIso_inv_π_assoc, HasLimit.lift_isoOfNatIso_hom, CategoryTheory.Functor.Initial.limitIso_hom, yonedaCompLimIsoCocones_inv_app, PresheafOfModules.limitPresheafOfModules_map, colimitCoyonedaHomIsoLimit'_π_apply, coyonedaCompLimIsoCones_inv_app, limitConstTerminal_inv_π_assoc, limitOpIsoOpColimit_hom_comp_ι_assoc, CategoryTheory.IsFiltered.iff_nonempty_limit, limit.w_assoc, limitIsoLimitCurryCompLim_hom_π_π_assoc, limitObjIsoLimitCompEvaluation_inv_π_app, CategoryTheory.Functor.ranCompLimIso_inv_app, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.sheafedSpace_pullback_to_base_isOpenImmersion, limit.toStructuredArrow_map, colimitYonedaHomIsoLimit'_π_apply, π_comp_colimitLeftOpIsoUnopLimit_inv, CategoryTheory.limitCompWhiskeringRightIsoLimitComp_hom_whiskerRight_π_assoc, colimitHomIsoLimitYoneda'_hom_comp_π_assoc, AlgebraicGeometry.PresheafedSpace.colimitPresheafObjIsoComponentwiseLimit_hom_π, CategoryTheory.Functor.Initial.limitIso_inv, CategoryTheory.limitCompWhiskeringRightIsoLimitComp_inv_π_assoc, isIso_π_terminal, CategoryTheory.IsCofiltered.iff_nonempty_limit, fiberwiseColimitLimitIso_hom_app, limit.lift_post, ι_colimitLimitIso_limit_π, ι_colimitLimitToLimitColimit_π, π_comp_colimitUnopIsoOpLimit_inv, limit.pre_post, limitConstTerminal_hom, limitFlipCompLimIsoLimitCompLim_hom_π_π, instMonoLiftπ, limitIsoSwapCompLim_hom_app, coyonedaOpColimitIsoLimitCoyoneda_hom_comp_π_assoc, limitIsoFlipCompLim_hom_app, limitCompCoyonedaIsoCone_hom_app, ι_comp_colimitRightOpIsoUnopLimit_hom_assoc, limit.post_π, CategoryTheory.CategoryOfElements.CreatesLimitsAux.liftedCone_π_app_coe, CategoryTheory.Cat.HasLimits.limitCone_π_app, PreservesFiniteLimitsOfIsFilteredCostructuredArrowYonedaAux.iso_hom, coyonedaOpColimitIsoLimitCoyoneda'_inv_comp_π, limit.isoLimitCone_hom_π_assoc, AlgebraicGeometry.IsOpenImmersion.instπWalkingCospanSchemeCospanOne, limit.pre_π_assoc, coyonedaOpColimitIsoLimitCoyoneda_inv_comp_π_assoc, limCompFlipIsoWhiskerLim_inv_app_app, CategoryTheory.Cat.HasLimits.limitConeX_α, CategoryTheory.Mon.limit_mon_mul, colimitYonedaHomIsoLimit_π_apply, limitCurrySwapCompLimIsoLimitCurryCompLim_inv_π_π, CategoryTheory.preservesLimitIso_inv_π_assoc, MulticospanIndex.multiforkEquivPiFork_inverse_map_hom, Pi.isoLimit_inv_π, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.pullbackToBaseIsOpenImmersion, colimitLimitToLimitColimitCone_hom, FGModuleCat.instFiniteCarrierLimitModuleCatCompForget₂LinearMapIdObjIsFG, limit.isoLimitCone_hom_π, π_comp_colimitLeftOpIsoUnopLimit_inv_assoc, limMap_π_assoc, limitFlipCompLimIsoLimitCompLim_inv_π_π, CategoryTheory.lift_comp_preservesLimitIso_hom_assoc, limitUnopIsoUnopColimit_inv_comp_π_assoc, CategoryTheory.preservesLimitIso_inv_π, whiskeringLimYonedaIsoCones_inv_app_app, limit.π_comp_eqToHom_assoc, colimitCoyonedaHomIsoLimitUnop_π_apply, AlgebraicGeometry.PresheafedSpace.ColimitCoconeIsColimit.desc_c_naturality, limitRightOpIsoOpColimit_hom_comp_ι, limit.π_comp_eqToHom, HasLimit.isoOfEquivalence_hom_π, limitConstTerminal_inv_π, CategoryTheory.preservesLimitNatIso_inv_app, CategoryTheory.Cat.HasLimits.limit_π_homDiagram_eqToHom, π_comp_colimitOpIsoOpLimit_inv_assoc, SingleObj.Types.limitEquivFixedPoints_symm_apply, limMap_mono, CategoryTheory.ObjectProperty.prop_limit, CategoryTheory.lift_comp_preservesLimitIso_hom, TopCat.isOpenEmbedding_of_pullback, coyonedaOpColimitIsoLimitCoyoneda'_hom_comp_π, MulticospanIndex.multiforkEquivPiFork_counitIso_inv_app_hom, isIndObject_limit_of_discrete_of_hasLimitsOfShape, HasLimit.isoOfNatIso_inv_π, limit.cone_x, CategoryTheory.Cat.HasLimits.limitConeX_str, colimitHomIsoLimitYoneda_hom_comp_π_assoc, limit.existsUnique, Types.limitEquivSections_symm_apply, CategoryTheory.MorphismProperty.limMap, limitObjIsoLimitCompEvaluation_hom_π, limit.post_π_assoc, CategoryTheory.Functor.ranObjObjIsoLimit_inv_π_assoc, CategoryTheory.Cat.HasLimits.id_def, limitCompWhiskeringLeftIsoCompLimit_inv_π_assoc, fiberwiseColimitLimitIso_inv_app, PreservesFiniteLimitsOfIsFilteredCostructuredArrowYonedaAux.isoAux_hom_app, CategoryTheory.Functor.limitIsoOfIsRightKanExtension_hom_π_assoc, lim_obj, CategoryTheory.CechNerveTerminalFrom.wideCospan.limitIsoPi_inv_comp_pi, isIndObject_limit_comp_yoneda, limit.post_post, CategoryTheory.CechNerveTerminalFrom.wideCospan.limitIsoPi_hom_comp_pi_assoc, limit.lift_π_app, limit_obj_ext_iff, TopCat.limit_isSheaf, π_comp_colimitOpIsoOpLimit_inv, colimitHomIsoLimitYoneda'_inv_comp_π_assoc, limitRightOpIsoOpColimit_hom_comp_ι_assoc, CompleteLattice.finite_limit_eq_finset_univ_inf, CategoryTheory.Functor.ranObjObjIsoLimit_hom_π_assoc, ι_colimitLimitIso_limit_π_assoc, limitUncurryIsoLimitCompLim_inv_π, AlgebraicGeometry.PresheafedSpace.GlueData.componentwise_diagram_π_isIso, limit.map_post, limit.isoLimitCone_inv_π_assoc, limitFlipIsoCompLim_inv_app, HasLimit.isoOfNatIso_hom_π_assoc, MulticospanIndex.multiforkEquivPiFork_functor_obj_π_app, limitOpIsoOpColimit_inv_comp_π_assoc, limitFlipCompLimIsoLimitCompLim_hom_π_π_assoc, ι_comp_colimitRightOpIsoUnopLimit_hom, CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtensionAt.isoLimit_inv_π, AlgebraicGeometry.PresheafedSpace.colimit_presheaf, IsLimit.isIso_limMap_π, limit.lift_π_apply, coyonedaOpColimitIsoLimitCoyoneda_inv_comp_π, limitObjIsoLimitCompEvaluation_inv_limit_map, limit_map_limitObjIsoLimitCompEvaluation_hom_assoc, limitCurrySwapCompLimIsoLimitCurryCompLim_hom_π_π, ProductsFromFiniteCofiltered.liftToFinsetLimitCone_cone_pt, limMap_mono', AlgebraicGeometry.Scheme.Pullback.openCoverOfBase'_f, limitCompYonedaIsoCocone_inv, MulticospanIndex.multiforkEquivPiFork_inverse_obj_π_app, PreservesLimit₂.isoLimitUncurryWhiskeringLeft₂_inv_comp_π, CommRingCat.equalizer_ι_isLocalHom', CategoryTheory.preservesLimitIso_hom_π_assoc, lim_μ_π_assoc, limit.lift_pre, limIsoFlipCompWhiskerLim_hom_app_app, CategoryTheory.Functor.pointwiseRightKanExtension_obj, MulticospanIndex.multiforkEquivPiFork_inverse_obj_pt, limitCompCoyonedaIsoCone_inv, CategoryTheory.Functor.rightAdjointObjIsDefined_limit, limitUncurryIsoLimitCompLim_hom_π_π_assoc, limitIsoSwapCompLim_inv_app, SingleObj.Types.limitEquivFixedPoints_apply_coe, ι_comp_colimitOpIsoOpLimit_hom, limitLeftOpIsoUnopColimit_inv_comp_π, coyonedaOpColimitIsoLimitCoyoneda'_inv_comp_π_assoc, PreservesLimit₂.isoLimitUncurryWhiskeringLeft₂_inv_comp_π_assoc, limit.homIso_hom, limit.map_pre', limitUnopIsoUnopColimit_hom_comp_ι_assoc, π_comp_colimitRightOpIsoUnopLimit_inv, ι_comp_colimitUnopIsoOpLimit_hom_assoc, PreservesLimit₂.isoLimitUncurryWhiskeringLeft₂_hom_comp_map_π, CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtensionAt.isoLimit_inv_π_assoc, Cone.isLimit_iff_isIso_limMap_π, limitIsoLimitCurryCompLim_inv_π, CategoryTheory.Functor.limitIsoOfIsRightKanExtension_inv_π_assoc, limit.hom_ext_iff, limit.lift_π_assoc, CategoryTheory.Functor.ranObjObjIsoLimit_hom_π, CategoryTheory.Mon.limit_X, CommRingCat.equalizer_ι_isLocalHom, coyonedaOpColimitIsoLimitCoyoneda_hom_comp_π, limit.pre_eq, limit.lift_map, CategoryTheory.Functor.pointwiseRightKanExtension_map, limitObjIsoLimitCompEvaluation_inv_π_app_assoc, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.pullback_to_base_isOpenImmersion, PreservesLimit₂.isoLimitUncurryWhiskeringLeft₂_hom_comp_map_π_assoc, ProductsFromFiniteCofiltered.liftToFinsetLimitCone_cone_π_app, coyonedaOpColimitIsoLimitCoyoneda'_hom_comp_π_assoc, CategoryTheory.Cat.HasLimits.comp_def, HomologicalComplex.coneOfHasLimitEval_pt_X, ClosedUnderLimitsOfShape.limit, limit.isoLimitCone_inv_π, limitOpIsoOpColimit_inv_comp_π, HomologicalComplex.coneOfHasLimitEval_π_app_f, isIso_π_of_isInitial, Types.limitEquivSections_apply, CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtensionAt.isoLimit_hom_π, CategoryTheory.preservesLimitIso_hom_π, limitIsoLimitCurryCompLim_inv_π_assoc, limitCompWhiskeringLeftIsoCompLimit_hom_whiskerLeft_π_assoc, colimitCoyonedaHomIsoLimit_π_apply, CategoryTheory.CechNerveTerminalFrom.wideCospan.limitIsoPi_inv_comp_pi_assoc, limitObjIsoLimitCompEvaluation_hom_π_assoc, limCompFlipIsoWhiskerLim_hom_app_app, limitIsoLimitCurryCompLim_hom_π_π, limitCompYonedaIsoCocone_hom_app, colimitYonedaHomIsoLimitOp_π_apply, limitCompWhiskeringLeftIsoCompLimit_inv_π, CategoryTheory.Cat.HasLimits.limitConeLift_toFunctor, CategoryTheory.Mon.limit_mon_one, CategoryTheory.Functor.ranObjObjIsoLimit_inv_π, AlgebraicGeometry.PresheafedSpace.colimitPresheafObjIsoComponentwiseLimit_inv_ι_app, Pi.isoLimit_hom_π, limit_π_isIso_of_is_strict_terminal, π_comp_colimitRightOpIsoUnopLimit_inv_assoc, CompleteLattice.limit_eq_iInf, limitFlipIsoCompLim_hom_app, limitUncurryIsoLimitCompLim_hom_π_π, limIsoFlipCompWhiskerLim_inv_app_app, limit.lift_π_app_assoc, limitRightOpIsoOpColimit_inv_comp_π_assoc, limitIsoFlipCompLim_inv_app, limitLeftOpIsoUnopColimit_hom_comp_ι_assoc, limit.map_pre, AlgebraicGeometry.PresheafedSpace.GlueData.ιInvApp_π, CategoryTheory.GrothendieckTopology.liftToPlusObjLimitObj_fac, π_comp_colimitUnopIsoOpLimit_inv_assoc, Pi.isoLimit_hom_π_assoc, AlgebraicGeometry.PresheafedSpace.GlueData.π_ιInvApp_π, PresheafOfModules.limitPresheafOfModules_obj, isIso_π_initial, ι_comp_colimitLeftOpIsoUnopLimit_hom_assoc, HasLimit.isoOfNatIso_hom_π, HasBiproductsOfShape.colimIsoLim_hom_app, CategoryTheory.preservesLimitNatIso_hom_app, IndizationClosedUnderFilteredColimitsAux.exists_nonempty_limit_obj_of_colimit, CategoryTheory.Functor.limitIsoOfIsRightKanExtension_hom_π, limitLeftOpIsoUnopColimit_inv_comp_π_assoc, ι_colimitLimitToLimitColimit_π_assoc, CategoryTheory.CategoryOfElements.CreatesLimitsAux.map_lift_mapCone, ι_comp_colimitLeftOpIsoUnopLimit_hom, Pi.isoLimit_inv_π_assoc, colimitHomIsoLimitYoneda_inv_comp_π, CategoryTheory.limitCompWhiskeringRightIsoLimitComp_inv_π, PreservesFiniteLimitsOfIsFilteredCostructuredArrowYonedaAux.isIso_post, limitLeftOpIsoUnopColimit_hom_comp_ι, HasLimit.isoOfEquivalence_inv_π, CategoryTheory.Functor.Initial.limit_pre_isIso, CategoryTheory.Functor.ranCompLimIso_hom_app, limit.pre_pre, TopCat.limit_topology, HasLimit.lift_isoOfNatIso_inv, limit.lift_map_assoc, CategoryTheory.Functor.limitIsoOfIsRightKanExtension_inv_π, CategoryTheory.CategoryOfElements.CreatesLimitsAux.map_π_liftedConeElement, limit.lift_π, colimitYonedaHomIsoLimitRightOp_π_apply, limitObjIsoLimitCompEvaluation_inv_limit_map_assoc, limit.lift_cone, colimitLimitToLimitColimit_injective, AlgebraicGeometry.PresheafedSpace.GlueData.π_ιInvApp_eq_id, CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtensionAt.isoLimit_hom_π_assoc, lim_μ_π, colimitCoyonedaHomIsoLimitLeftOp_π_apply, limitUncurryIsoLimitCompLim_inv_π_assoc, HasLimit.lift_isoOfNatIso_hom_assoc, colimitHomIsoLimitYoneda_inv_comp_π_assoc, limitUnopIsoUnopColimit_inv_comp_π, opHomCompWhiskeringLimYonedaIsoCocones_inv_app_app, HasBiproductsOfShape.colimIsoLim_inv_app, CategoryTheory.CechNerveTerminalFrom.wideCospan.limitIsoPi_hom_comp_pi, limit.w_apply, limitFlipCompLimIsoLimitCompLim_inv_π_π_assoc, CategoryTheory.CategoryOfElements.CreatesLimitsAux.liftedCone_pt_fst, limit.lift_extend, CategoryTheory.instIsIsoPost, limitOpIsoOpColimit_hom_comp_ι, CategoryTheory.MorphismProperty.limitsOfShape_limMap, limit.w, limit.pre_π, limitCompWhiskeringLeftIsoCompLimit_hom_whiskerLeft_π, HasLimit.lift_isoOfNatIso_inv_assoc, CategoryTheory.limitCompWhiskeringRightIsoLimitComp_hom_whiskerRight_π, limitRightOpIsoOpColimit_inv_comp_π, limit_map_limitObjIsoLimitCompEvaluation_hom, CategoryTheory.colimitYonedaHomEquiv_π_apply, colimitLimitToLimitColimit_surjective, TopCat.isEmbedding_of_pullback, ι_comp_colimitUnopIsoOpLimit_hom, colimitHomIsoLimitYoneda'_inv_comp_π

Theorems

NameKindAssumesProvesValidatesDepends On
colimMap_epi 📖mathematicalCategoryTheory.Epi
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
colimit
colimMap
colimit.hom_ext
CategoryTheory.cancel_epi
ι_colimMap_assoc
CategoryTheory.whisker_eq
colimMap_epi' 📖mathematicalCategoryTheory.Epi
colimit
hasColimitOfHasColimitsOfShape
colimMap
CategoryTheory.Functor.map_epi
CategoryTheory.Functor.preservesEpimorphisms_of_isLeftAdjoint
instIsLeftAdjointFunctorColim
colimMap_eq 📖mathematicalcolimMap
hasColimitOfHasColimitsOfShape
CategoryTheory.Functor.map
CategoryTheory.Functor
CategoryTheory.Functor.category
colim
hasColimitOfHasColimitsOfShape
colim_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Functor
CategoryTheory.Functor.category
colim
colimMap
hasColimitOfHasColimitsOfShape
hasColimitOfHasColimitsOfShape
colim_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
colim
colimit
hasColimitOfHasColimitsOfShape
coneOfAdj_pt 📖mathematicalCone.pt
coneOfAdj
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
coneOfAdj_π 📖mathematicalCone.π
coneOfAdj
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.const
CategoryTheory.Functor.id
CategoryTheory.Adjunction.counit
hasColimitOfHasColimitsOfShape 📖mathematicalHasColimitHasColimitsOfShape.has_colimit
hasColimit_equivalence_comp 📖mathematicalHasColimit
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.functor
hasColimit_iff_of_iso 📖mathematicalHasColimithasColimit_of_iso
hasColimit_of_equivalence_comp 📖mathematicalHasColimithasColimit_of_iso
hasColimit_equivalence_comp
hasColimit_of_iso 📖mathematicalHasColimit
hasColimitsOfShapeOfHasColimitsOfSize 📖mathematicalHasColimitsOfShapeHasColimitsOfSize.has_colimits_of_shape
hasColimitsOfShape_of_equivalence 📖mathematicalHasColimitsOfShapehasColimit_of_equivalence_comp
hasColimitOfHasColimitsOfShape
hasColimitsOfSizeOfUnivLE 📖mathematicalHasColimitsOfSizehasColimitsOfShape_of_equivalence
UnivLE.small
CategoryTheory.locallySmall_of_univLE
hasColimitsOfShapeOfHasColimitsOfSize
hasColimitsOfSizeShrink 📖mathematicalHasColimitsOfSizehasColimitsOfSizeOfUnivLE
univLE_of_max
UnivLE.self
hasLimitOfHasLimitsOfShape 📖mathematicalHasLimitHasLimitsOfShape.has_limit
hasLimit_equivalence_comp 📖mathematicalHasLimit
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.functor
hasLimit_iff_of_iso 📖mathematicalHasLimithasLimit_of_iso
hasLimit_of_equivalence_comp 📖mathematicalHasLimithasLimit_of_iso
hasLimit_equivalence_comp
hasLimit_of_iso 📖mathematicalHasLimit
hasLimitsOfShapeOfHasLimits 📖mathematicalHasLimitsOfShapeHasLimitsOfSize.has_limits_of_shape
hasLimitsOfShape_of_equivalence 📖mathematicalHasLimitsOfShapehasLimit_of_equivalence_comp
hasLimitOfHasLimitsOfShape
hasLimitsOfSizeOfUnivLE 📖mathematicalHasLimitsOfSizehasLimitsOfShape_of_equivalence
UnivLE.small
CategoryTheory.locallySmall_of_univLE
hasLimitsOfShapeOfHasLimits
hasLimitsOfSizeShrink 📖mathematicalHasLimitsOfSizehasLimitsOfSizeOfUnivLE
univLE_of_max
UnivLE.self
hasSmallestColimitsOfHasColimits 📖mathematicalHasColimitsOfSizehasColimitsOfSizeShrink
hasSmallestLimitsOfHasLimits 📖mathematicalHasLimitsOfSizehasLimitsOfSizeShrink
instIsLeftAdjointFunctorColim 📖mathematicalCategoryTheory.Functor.IsLeftAdjoint
CategoryTheory.Functor
CategoryTheory.Functor.category
colim
instIsRightAdjointFunctorLim 📖mathematicalCategoryTheory.Functor.IsRightAdjoint
CategoryTheory.Functor
CategoryTheory.Functor.category
lim
isLimitConeOfAdj_lift 📖mathematicalIsLimit.lift
coneOfAdj
isLimitConeOfAdj
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Functor
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.Functor.const
Cone.pt
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.Adjunction.homEquiv
Cone.π
limMap_eq 📖mathematicallimMap
hasLimitOfHasLimitsOfShape
CategoryTheory.Functor.map
CategoryTheory.Functor
CategoryTheory.Functor.category
lim
hasLimitOfHasLimitsOfShape
limMap_mono 📖mathematicalCategoryTheory.Mono
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
limit
limMap
limit.hom_ext
CategoryTheory.cancel_mono
CategoryTheory.Category.assoc
limMap_π
CategoryTheory.eq_whisker
limMap_mono' 📖mathematicalCategoryTheory.Mono
limit
hasLimitOfHasLimitsOfShape
limMap
CategoryTheory.Functor.map_mono
CategoryTheory.Functor.preservesMonomorphisms_of_isRightAdjoint
instIsRightAdjointFunctorLim
limMap_π 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
limit
CategoryTheory.Functor.obj
limMap
limit.π
CategoryTheory.NatTrans.app
limit.lift_π
limMap_π_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
limit
limMap
CategoryTheory.Functor.obj
limit.π
CategoryTheory.NatTrans.app
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
limMap_π
lim_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Functor
CategoryTheory.Functor.category
lim
limMap
hasLimitOfHasLimitsOfShape
hasLimitOfHasLimitsOfShape
lim_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
lim
limit
hasLimitOfHasLimitsOfShape
ι_colimMap 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
colimit
colimit.ι
colimMap
CategoryTheory.NatTrans.app
colimit.ι_desc
ι_colimMap_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
colimit
colimit.ι
colimMap
CategoryTheory.NatTrans.app
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι_colimMap

CategoryTheory.Limits.ColimitCocone

Definitions

NameCategoryTheorems
cocone 📖CompOp
25 mathmath: CategoryTheory.Functor.Final.colimitCoconeComp_cocone, CategoryTheory.Limits.colimit.isoColimitCocone_ι_inv, CategoryTheory.Functor.Final.colimitCoconeOfComp_isColimit, CategoryTheory.Limits.CoproductsFromFiniteFiltered.liftToFinsetColimIso_aux_assoc, Preorder.colimitCoconeOfIsLUB_cocone, CategoryTheory.Functor.Final.colimitCoconeComp_isColimit, CategoryTheory.Limits.CompleteLattice.colimitCocone_cocone_pt, CategoryTheory.Limits.CompleteLattice.finiteColimitCocone_cocone_ι_app, CategoryTheory.Limits.CompleteLattice.colimitCocone_cocone_ι_app, CategoryTheory.Limits.coproductUniqueIso_hom, CategoryTheory.Limits.CoproductsFromFiniteFiltered.liftToFinsetColimitCocone_cocone_ι_app, CategoryTheory.Limits.colimit.isoColimitCocone_ι_inv_assoc, CategoryTheory.Limits.combineCocones_pt_obj, CategoryTheory.Limits.colimit.isoColimitCocone_ι_hom_assoc, CategoryTheory.Limits.combineCocones_ι_app_app, CategoryTheory.Limits.CoproductsFromFiniteFiltered.liftToFinsetColimitCocone_cocone_pt, CategoryTheory.Limits.colimitCoconeOfUnique_cocone_pt, CategoryTheory.Limits.combineCocones_pt_map, CategoryTheory.Limits.CompleteLattice.finiteColimitCocone_cocone_pt, CategoryTheory.Limits.colimitCoconeOfUnique_cocone_ι, CategoryTheory.Limits.cokernelCoforkBiproductFromSubtype_cocone, CategoryTheory.Limits.CoproductsFromFiniteFiltered.liftToFinsetColimIso_aux, CategoryTheory.Limits.colimit.isoColimitCocone_ι_hom, CategoryTheory.Limits.colimit.pre_eq, CategoryTheory.Functor.Final.colimitCoconeOfComp_cocone
isColimit 📖CompOp
12 mathmath: CategoryTheory.Functor.Final.colimitCoconeOfComp_isColimit, CategoryTheory.Limits.cokernelCoforkBiproductFromSubtype_isColimit, CategoryTheory.Limits.CoproductsFromFiniteFiltered.liftToFinsetColimitCocone_isColimit_desc, CategoryTheory.Functor.Final.colimitCoconeComp_isColimit, Preorder.colimitCoconeOfIsLUB_isColimit, CategoryTheory.Limits.limitBiconeOfUnique_isBilimit_isColimit, CategoryTheory.Limits.combineCocones_ι_app_app, CategoryTheory.Limits.combineCocones_pt_map, CategoryTheory.Limits.CompleteLattice.colimitCocone_isColimit_desc, CategoryTheory.Limits.CompleteLattice.finiteColimitCocone_isColimit_desc, CategoryTheory.Limits.colimitCoconeOfUnique_isColimit_desc, CategoryTheory.Limits.colimit.pre_eq

CategoryTheory.Limits.HasColimit

Definitions

NameCategoryTheorems
isoOfEquivalence 📖CompOp
2 mathmath: isoOfEquivalence_inv_π, isoOfEquivalence_hom_π
isoOfNatIso 📖CompOp
18 mathmath: CategoryTheory.IsSifted.factorization_prodComparison_colim, isoOfNatIso_ι_inv, CategoryTheory.Limits.fiberwiseColimitLimitIso_hom_app, isoOfNatIso_inv_desc_assoc, isoOfNatIso_hom_desc, CategoryTheory.Limits.colimCompFlipIsoWhiskerColim_hom_app_app, CategoryTheory.Limits.fiberwiseColimitLimitIso_inv_app, CategoryTheory.Limits.colimitFlipIsoCompColim_hom_app, CategoryTheory.Limits.colimitPointwiseProductToProductColimit_app, isoOfNatIso_ι_hom_assoc, isoOfNatIso_hom_desc_assoc, CategoryTheory.Functor.leftKanExtensionIsoFiberwiseColimit_hom_app, isoOfNatIso_ι_hom, CategoryTheory.Limits.colimCompFlipIsoWhiskerColim_inv_app_app, isoOfNatIso_inv_desc, isoOfNatIso_ι_inv_assoc, CategoryTheory.Functor.leftKanExtensionIsoFiberwiseColimit_inv_app, CategoryTheory.Limits.colimitFlipIsoCompColim_inv_app

Theorems

NameKindAssumesProvesValidatesDepends On
exists_colimit 📖mathematicalCategoryTheory.Limits.ColimitCocone
isoOfEquivalence_hom_π 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.colimit
CategoryTheory.Limits.colimit.ι
CategoryTheory.Iso.hom
isoOfEquivalence
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.functor
CategoryTheory.Equivalence.inverse
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Equivalence.unit
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.colimit.ι_desc
CategoryTheory.NatTrans.naturality_assoc
CategoryTheory.Limits.colimit.w
isoOfEquivalence_inv_π 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.colimit
CategoryTheory.Limits.colimit.ι
CategoryTheory.Iso.inv
isoOfEquivalence
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.inverse
CategoryTheory.Equivalence.functor
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Equivalence.counitInv
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.colimit.ι_desc
CategoryTheory.Category.assoc
CategoryTheory.Equivalence.invFunIdAssoc_inv_app
isoOfNatIso_hom_desc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.colimit
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Iso.hom
isoOfNatIso
CategoryTheory.Limits.colimit.desc
CategoryTheory.Functor.obj
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
CategoryTheory.Limits.Cocones.precompose
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.IsColimit.coconePointsIsoOfNatIso_hom_desc
isoOfNatIso_hom_desc_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.colimit
CategoryTheory.Iso.hom
isoOfNatIso
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.colimit.desc
CategoryTheory.Functor.obj
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
CategoryTheory.Limits.Cocones.precompose
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
isoOfNatIso_hom_desc
isoOfNatIso_inv_desc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.colimit
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Iso.inv
isoOfNatIso
CategoryTheory.Limits.colimit.desc
CategoryTheory.Functor.obj
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
CategoryTheory.Limits.Cocones.precompose
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.IsColimit.coconePointsIsoOfNatIso_inv_desc
isoOfNatIso_inv_desc_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.colimit
CategoryTheory.Iso.inv
isoOfNatIso
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.colimit.desc
CategoryTheory.Functor.obj
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
CategoryTheory.Limits.Cocones.precompose
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
isoOfNatIso_inv_desc
isoOfNatIso_ι_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.colimit
CategoryTheory.Limits.colimit.ι
CategoryTheory.Iso.hom
isoOfNatIso
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.IsColimit.comp_coconePointsIsoOfNatIso_hom
isoOfNatIso_ι_hom_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.colimit
CategoryTheory.Limits.colimit.ι
CategoryTheory.Iso.hom
isoOfNatIso
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
isoOfNatIso_ι_hom
isoOfNatIso_ι_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.colimit
CategoryTheory.Limits.colimit.ι
CategoryTheory.Iso.inv
isoOfNatIso
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.IsColimit.comp_coconePointsIsoOfNatIso_inv
isoOfNatIso_ι_inv_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.colimit
CategoryTheory.Limits.colimit.ι
CategoryTheory.Iso.inv
isoOfNatIso
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
isoOfNatIso_ι_inv
mk 📖mathematicalCategoryTheory.Limits.HasColimit
ofCoconesIso 📖mathematicalCategoryTheory.Limits.HasColimit

CategoryTheory.Limits.HasColimits

Theorems

NameKindAssumesProvesValidatesDepends On
hasColimitsOfShape 📖mathematicalCategoryTheory.Limits.HasColimitsOfShapeCategoryTheory.Limits.HasColimitsOfSize.has_colimits_of_shape

CategoryTheory.Limits.HasColimitsOfShape

Theorems

NameKindAssumesProvesValidatesDepends On
has_colimit 📖mathematicalCategoryTheory.Limits.HasColimit
of_essentiallySmall 📖mathematicalCategoryTheory.Limits.HasColimitsOfShapeof_small
UnivLE.small
UnivLE.self
CategoryTheory.instLocallySmallSmallModel
CategoryTheory.Limits.hasColimitsOfShape_of_equivalence
of_small 📖mathematicalCategoryTheory.Limits.HasColimitsOfShapeCategoryTheory.Shrink.instLocallySmallShrink
CategoryTheory.Limits.HasColimitsOfSize.has_colimits_of_shape
CategoryTheory.Limits.hasColimitsOfShape_of_equivalence

CategoryTheory.Limits.HasColimitsOfSize

Theorems

NameKindAssumesProvesValidatesDepends On
has_colimits_of_shape 📖mathematicalCategoryTheory.Limits.HasColimitsOfShape

CategoryTheory.Limits.HasLimit

Definitions

NameCategoryTheorems
isoOfEquivalence 📖CompOp
2 mathmath: isoOfEquivalence_hom_π, isoOfEquivalence_inv_π
isoOfNatIso 📖CompOp
14 mathmath: isoOfNatIso_inv_π_assoc, lift_isoOfNatIso_hom, CategoryTheory.Limits.fiberwiseColimitLimitIso_hom_app, CategoryTheory.Limits.limCompFlipIsoWhiskerLim_inv_app_app, isoOfNatIso_inv_π, CategoryTheory.Limits.fiberwiseColimitLimitIso_inv_app, CategoryTheory.Limits.limitFlipIsoCompLim_inv_app, isoOfNatIso_hom_π_assoc, CategoryTheory.Limits.limCompFlipIsoWhiskerLim_hom_app_app, CategoryTheory.Limits.limitFlipIsoCompLim_hom_app, isoOfNatIso_hom_π, lift_isoOfNatIso_inv, lift_isoOfNatIso_hom_assoc, lift_isoOfNatIso_inv_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
exists_limit 📖mathematicalCategoryTheory.Limits.LimitCone
isoOfEquivalence_hom_π 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.limit
CategoryTheory.Functor.obj
CategoryTheory.Iso.hom
isoOfEquivalence
CategoryTheory.Limits.limit.π
CategoryTheory.Equivalence.inverse
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.functor
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.map
CategoryTheory.Equivalence.counit
CategoryTheory.Limits.limit.lift_π
CategoryTheory.Equivalence.invFunIdAssoc_hom_app
isoOfEquivalence_inv_π 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.limit
CategoryTheory.Functor.obj
CategoryTheory.Iso.inv
isoOfEquivalence
CategoryTheory.Limits.limit.π
CategoryTheory.Equivalence.functor
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.limit.lift_π
isoOfNatIso_hom_π 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.limit
CategoryTheory.Functor.obj
CategoryTheory.Iso.hom
isoOfNatIso
CategoryTheory.Limits.limit.π
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.IsLimit.conePointsIsoOfNatIso_hom_comp
isoOfNatIso_hom_π_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.limit
CategoryTheory.Iso.hom
isoOfNatIso
CategoryTheory.Functor.obj
CategoryTheory.Limits.limit.π
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
isoOfNatIso_hom_π
isoOfNatIso_inv_π 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.limit
CategoryTheory.Functor.obj
CategoryTheory.Iso.inv
isoOfNatIso
CategoryTheory.Limits.limit.π
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.IsLimit.conePointsIsoOfNatIso_inv_comp
isoOfNatIso_inv_π_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.limit
CategoryTheory.Iso.inv
isoOfNatIso
CategoryTheory.Functor.obj
CategoryTheory.Limits.limit.π
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
isoOfNatIso_inv_π
lift_isoOfNatIso_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.limit
CategoryTheory.Limits.limit.lift
CategoryTheory.Iso.hom
isoOfNatIso
CategoryTheory.Functor.obj
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
CategoryTheory.Limits.Cones.postcompose
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.IsLimit.lift_comp_conePointsIsoOfNatIso_hom
lift_isoOfNatIso_hom_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.limit
CategoryTheory.Limits.limit.lift
CategoryTheory.Iso.hom
isoOfNatIso
CategoryTheory.Functor.obj
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
CategoryTheory.Limits.Cones.postcompose
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift_isoOfNatIso_hom
lift_isoOfNatIso_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.limit
CategoryTheory.Limits.limit.lift
CategoryTheory.Iso.inv
isoOfNatIso
CategoryTheory.Functor.obj
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
CategoryTheory.Limits.Cones.postcompose
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.IsLimit.lift_comp_conePointsIsoOfNatIso_inv
lift_isoOfNatIso_inv_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.limit
CategoryTheory.Limits.limit.lift
CategoryTheory.Iso.inv
isoOfNatIso
CategoryTheory.Functor.obj
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
CategoryTheory.Limits.Cones.postcompose
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift_isoOfNatIso_inv
mk 📖mathematicalCategoryTheory.Limits.HasLimit
ofConesIso 📖mathematicalCategoryTheory.Limits.HasLimit

CategoryTheory.Limits.HasLimits

Theorems

NameKindAssumesProvesValidatesDepends On
has_limits_of_shape 📖mathematicalCategoryTheory.Limits.HasLimitsOfShapeCategoryTheory.Limits.HasLimitsOfSize.has_limits_of_shape

CategoryTheory.Limits.HasLimitsOfShape

Theorems

NameKindAssumesProvesValidatesDepends On
has_limit 📖mathematicalCategoryTheory.Limits.HasLimit
of_essentiallySmall 📖mathematicalCategoryTheory.Limits.HasLimitsOfShapeof_small
UnivLE.small
UnivLE.self
CategoryTheory.instLocallySmallSmallModel
CategoryTheory.Limits.hasLimitsOfShape_of_equivalence
of_small 📖mathematicalCategoryTheory.Limits.HasLimitsOfShapeCategoryTheory.Shrink.instLocallySmallShrink
CategoryTheory.Limits.HasLimitsOfSize.has_limits_of_shape
CategoryTheory.Limits.hasLimitsOfShape_of_equivalence

CategoryTheory.Limits.HasLimitsOfSize

Theorems

NameKindAssumesProvesValidatesDepends On
has_limits_of_shape 📖mathematicalCategoryTheory.Limits.HasLimitsOfShape

CategoryTheory.Limits.IsColimit

Definitions

NameCategoryTheorems
op 📖CompOp
unop 📖CompOp

CategoryTheory.Limits.IsLimit

Definitions

NameCategoryTheorems
op 📖CompOp
unop 📖CompOp

CategoryTheory.Limits.LimitCone

Definitions

NameCategoryTheorems
cone 📖CompOp
45 mathmath: CategoryTheory.Limits.limitConeOfUnique_cone_π, AddCommGrpCat.binaryProductLimitCone_cone_pt, CategoryTheory.Limits.kernelForkBiproductToSubtype_cone, ModuleCat.HasLimit.productLimitCone_cone_π, CategoryTheory.Limits.Types.binaryProductLimitCone_cone, GrpCat.binaryProductLimitCone_cone_pt, ModuleCat.binaryProductLimitCone_cone_π_app_right, CategoryTheory.Functor.Initial.limitConeComp_isLimit, CategoryTheory.CartesianMonoidalCategory.ofChosenFiniteProducts.associator_naturality, CategoryTheory.Limits.limit.isoLimitCone_hom_π_assoc, AddCommGrpCat.binaryProductLimitCone_cone_π_app_left, AddCommGrpCat.HasLimit.productLimitCone_cone_pt_coe, CategoryTheory.Limits.productUniqueIso_inv, CategoryTheory.Limits.Types.pullbackLimitCone_cone, CategoryTheory.Limits.limit.isoLimitCone_hom_π, Preorder.limitConeOfIsGLB_cone, CategoryTheory.Functor.Initial.limitConeComp_cone, CategoryTheory.CartesianMonoidalCategory.ofChosenFiniteProducts.leftUnitor_naturality, CategoryTheory.Limits.limitConeOfUnique_cone_pt, CategoryTheory.CartesianMonoidalCategory.ofChosenFiniteProducts.triangle, AddCommGrpCat.HasLimit.productLimitCone_cone_π, CategoryTheory.Limits.limit.isoLimitCone_inv_π_assoc, ModuleCat.binaryProductLimitCone_cone_π_app_left, CategoryTheory.Limits.ProductsFromFiniteCofiltered.liftToFinsetLimitCone_cone_pt, CategoryTheory.Limits.CompleteLattice.finiteLimitCone_cone_pt, CommGrpCat.binaryProductLimitCone_cone_pt, ModuleCat.HasLimit.productLimitCone_cone_pt_isModule, CategoryTheory.CartesianMonoidalCategory.ofChosenFiniteProducts.pentagon, ModuleCat.HasLimit.productLimitCone_cone_pt_carrier, CategoryTheory.Limits.limit.pre_eq, CategoryTheory.Limits.ProductsFromFiniteCofiltered.liftToFinsetLimitCone_cone_π_app, CategoryTheory.Limits.limit.isoLimitCone_inv_π, CategoryTheory.Limits.combineCones_pt_map, ModuleCat.HasLimit.productLimitCone_cone_pt_isAddCommGroup, ModuleCat.binaryProductLimitCone_cone_pt, CategoryTheory.Functor.Initial.limitConeOfComp_cone, CategoryTheory.Limits.combineCones_pt_obj, CategoryTheory.Limits.CompleteLattice.limitCone_cone_π_app, CategoryTheory.CartesianMonoidalCategory.ofChosenFiniteProducts.rightUnitor_naturality, AddGrpCat.binaryProductLimitCone_cone_pt, CategoryTheory.Limits.CompleteLattice.finiteLimitCone_cone_π_app, AddCommGrpCat.binaryProductLimitCone_cone_π_app_right, CategoryTheory.Functor.Initial.limitConeOfComp_isLimit, CategoryTheory.Limits.combineCones_π_app_app, CategoryTheory.Limits.CompleteLattice.limitCone_cone_pt
isLimit 📖CompOp
24 mathmath: CategoryTheory.Limits.ProductsFromFiniteCofiltered.liftToFinsetLimitCone_isLimit_lift, CategoryTheory.Limits.Types.binaryProductLimitCone_isLimit, CategoryTheory.Functor.Initial.limitConeComp_isLimit, Preorder.limitConeOfIsGLB_isLimit, AddCommGrpCat.HasLimit.productLimitCone_isLimit_lift, AddCommGrpCat.binaryProductLimitCone_isLimit_lift, GrpCat.binaryProductLimitCone_isLimit_lift, AddGrpCat.binaryProductLimitCone_isLimit_lift, CategoryTheory.Limits.CompleteLattice.limitCone_isLimit_lift, CategoryTheory.Limits.CompleteLattice.finiteLimitCone_isLimit_lift, CategoryTheory.CartesianMonoidalCategory.ofChosenFiniteProducts.leftUnitor_naturality, CategoryTheory.CartesianMonoidalCategory.ofChosenFiniteProducts.triangle, CategoryTheory.Limits.limitBiconeOfUnique_isBilimit_isLimit, CategoryTheory.Limits.limitConeOfUnique_isLimit_lift, CategoryTheory.Limits.limit.pre_eq, CategoryTheory.Limits.Types.pullbackLimitCone_isLimit, ModuleCat.binaryProductLimitCone_isLimit_lift, CategoryTheory.Limits.combineCones_pt_map, CommGrpCat.binaryProductLimitCone_isLimit_lift, CategoryTheory.CartesianMonoidalCategory.ofChosenFiniteProducts.rightUnitor_naturality, ModuleCat.HasLimit.productLimitCone_isLimit_lift, CategoryTheory.Limits.kernelForkBiproductToSubtype_isLimit, CategoryTheory.Functor.Initial.limitConeOfComp_isLimit, CategoryTheory.Limits.combineCones_π_app_app

CategoryTheory.Limits.colimit

Definitions

NameCategoryTheorems
cocone 📖CompOp
34 mathmath: cocone_ι, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_functor_obj_ι_app, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_counitIso_inv_app_hom, CategoryTheory.Limits.PushoutCocone.inl_colimit_cocone, homIso_hom, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_counitIso_hom_app_hom, CategoryTheory.LiftLeftAdjoint.constructLeftAdjointEquiv_symm_apply, CategoryTheory.LiftLeftAdjoint.constructLeftAdjointEquiv_apply, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_functor_map_hom, CategoryTheory.Monad.MonadicityInternal.comparisonLeftAdjointHomEquiv_apply_f, comp_coconePointUniqueUpToIso_inv_assoc, CategoryTheory.Limits.cokernelBiprodInlIso_inv, comp_coconePointUniqueUpToIso_hom_assoc, CategoryTheory.Limits.cokernelBiprodInrIso_inv, CategoryTheory.Limits.DiagramOfCocones.mkOfHasColimits_obj, CategoryTheory.Limits.DiagramOfCocones.mkOfHasColimits_map_hom, CategoryTheory.Limits.cokernelBiproductιIso_inv, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_functor_obj_pt, CategoryTheory.Limits.PushoutCocone.inr_colimit_cocone, CategoryTheory.Monad.MonadicityInternal.comparisonLeftAdjointHomEquiv_symm_apply, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_inverse_obj_pt, desc_cocone, CategoryTheory.Monad.MonadicityInternal.comparisonAdjunction_counit, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_inverse_obj_ι_app, ι_coconeMorphism, comp_coconePointUniqueUpToIso_hom, coconeMorphism_hom, cocone_x, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_inverse_map_hom, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_unitIso_hom_app_hom, CategoryTheory.Limits.cokernelBiproductFromSubtypeIso_inv, comp_coconePointUniqueUpToIso_inv, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_unitIso_inv_app_hom, isColimit_desc
coconeMorphism 📖CompOp
2 mathmath: ι_coconeMorphism, coconeMorphism_hom
desc 📖CompOp
37 mathmath: CategoryTheory.Limits.cokernelBiproductιIso_hom, LightCondensed.lanPresheafIso_hom, desc_extend, map_desc, CategoryTheory.Limits.CoproductsFromFiniteFiltered.liftToFinsetColimitCocone_isColimit_desc, CategoryTheory.preservesColimitIso_inv_comp_desc, CategoryTheory.Functor.pointwiseLeftKanExtension_map, CategoryTheory.Limits.HasColimit.isoOfNatIso_inv_desc_assoc, CategoryTheory.Limits.HasColimit.isoOfNatIso_hom_desc, CategoryTheory.Limits.Types.Colimit.ι_desc_apply', CategoryTheory.Limits.coproductUniqueIso_hom, AlgebraicGeometry.PresheafedSpace.ColimitCoconeIsColimit.desc_c_naturality, CategoryTheory.Limits.cokernelBiprodInrIso_hom, Condensed.lanPresheafNatIso_hom_app, CategoryTheory.Limits.cokernelBiproductFromSubtypeIso_hom, CategoryTheory.preservesColimitIso_inv_comp_desc_assoc, CategoryTheory.Limits.coconeFiberwiseColimitOfCocone_ι_app, pre_desc_assoc, pre_desc, ι_desc_apply, CategoryTheory.Limits.Types.Colimit.ι_desc_apply, desc_cocone, ι_desc, CategoryTheory.Limits.HasColimit.isoOfNatIso_hom_desc_assoc, LightCondensed.lanPresheafNatIso_hom_app, ι_desc_assoc, ι_desc_app_assoc, map_desc_assoc, CategoryTheory.Limits.cokernelBiprodInlIso_hom, coconeMorphism_hom, post_desc, CategoryTheory.Functor.pointwiseLeftKanExtension_desc_app, CategoryTheory.Monad.MonadicityInternal.comparisonAdjunction_counit_app, CategoryTheory.Limits.HasColimit.isoOfNatIso_inv_desc, Condensed.lanPresheafIso_hom, ι_desc_app, isColimit_desc
homIso 📖CompOp
1 mathmath: homIso_hom
homIso' 📖CompOp
isColimit 📖CompOp
20 mathmath: CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_functor_obj_ι_app, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_counitIso_inv_app_hom, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_counitIso_hom_app_hom, CategoryTheory.LiftLeftAdjoint.constructLeftAdjointEquiv_symm_apply, CategoryTheory.LiftLeftAdjoint.constructLeftAdjointEquiv_apply, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_functor_map_hom, CategoryTheory.Monad.MonadicityInternal.comparisonLeftAdjointHomEquiv_apply_f, comp_coconePointUniqueUpToIso_inv_assoc, comp_coconePointUniqueUpToIso_hom_assoc, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_functor_obj_pt, CategoryTheory.Monad.MonadicityInternal.comparisonLeftAdjointHomEquiv_symm_apply, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_inverse_obj_pt, CategoryTheory.Monad.MonadicityInternal.comparisonAdjunction_counit, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_inverse_obj_ι_app, comp_coconePointUniqueUpToIso_hom, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_inverse_map_hom, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_unitIso_hom_app_hom, comp_coconePointUniqueUpToIso_inv, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_unitIso_inv_app_hom, isColimit_desc
isoColimitCocone 📖CompOp
7 mathmath: isoColimitCocone_ι_inv, CategoryTheory.Limits.CoproductsFromFiniteFiltered.liftToFinsetColimIso_aux_assoc, isoColimitCocone_ι_inv_assoc, isoColimitCocone_ι_hom_assoc, CategoryTheory.Limits.CoproductsFromFiniteFiltered.liftToFinsetColimIso_aux, isoColimitCocone_ι_hom, pre_eq
post 📖CompOp
8 mathmath: pre_post, ι_post, map_post, ι_post_assoc, post_post, CategoryTheory.instIsIsoPost_1, post_desc, CategoryTheory.yonedaYonedaColimit_app_inv
pre 📖CompOp
18 mathmath: CategoryTheory.Limits.fiberwiseColimit_map, ι_pre_assoc, pre_post, CategoryTheory.IsSifted.factorization_prodComparison_colim, CategoryTheory.Functor.Final.colimitIso_hom, ι_inv_pre, ι_pre, pre_pre, CategoryTheory.Functor.final_iff_isIso_colimit_pre, pre_desc_assoc, pre_desc, pre_map', pre_id, pre_map, CategoryTheory.Functor.Final.colimit_pre_isIso, ι_inv_pre_assoc, pre_eq, CategoryTheory.Functor.Final.colimitIso_inv
ι 📖CompOp
269 mathmath: CategoryTheory.Limits.colimitHomIsoLimitYoneda'_hom_comp_π, smoothSheafCommRing.ι_forgetStalk_inv, CategoryTheory.Limits.colimitHomIsoLimitYoneda_hom_comp_π, CategoryTheory.Limits.limitUnopIsoUnopColimit_hom_comp_ι, CategoryTheory.Limits.isIso_ι_terminal, CategoryTheory.Functor.ι_colimitIsoOfIsLeftKanExtension_inv_assoc, isoColimitCocone_ι_inv, CategoryTheory.Limits.colimitObjIsoColimitCompEvaluation_ι_app_hom_assoc, eqToHom_comp_ι_assoc, ι_pre_assoc, CategoryTheory.Limits.Types.colimit_sound', CategoryTheory.Limits.ι_comp_colimitOpIsoOpLimit_hom_assoc, CategoryTheory.Limits.HasColimit.isoOfEquivalence_inv_π, CategoryTheory.Limits.ι_colimitCompWhiskeringLeftIsoCompColimit_hom_assoc, cocone_ι, CategoryTheory.IsGrothendieckAbelian.IsPresentable.surjectivity.hf, CategoryTheory.Limits.colimit_ι_zero_cokernel_desc_assoc, AlgebraicGeometry.SheafedSpace.colimit_exists_rep, CategoryTheory.Limits.colimitUncurryIsoColimitCompColim_ι_ι_inv, CategoryTheory.GrothendieckTopology.ι_plusCompIso_hom_assoc, smoothSheafCommRing.ι_evalHom_apply, CategoryTheory.Functor.leftKanExtensionUnit_leftKanExtension_map_leftKanExtensionObjIsoColimit_hom, CategoryTheory.Limits.Types.Colimit.w_apply, CategoryTheory.Limits.colimitCoyonedaHomIsoLimit'_π_apply, CategoryTheory.Limits.limitOpIsoOpColimit_hom_comp_ι_assoc, CategoryTheory.Limits.colimitObjIsoColimitCompEvaluation_ι_inv_assoc, CategoryTheory.Limits.Sigma.ι_isoColimit_inv, CategoryTheory.Limits.ι_colimitPointwiseProductToProductColimit_π, CategoryTheory.Functor.ι_leftKanExtensionObjIsoColimit_inv, smoothSheaf.ι_evalHom_apply, AlgebraicGeometry.Scheme.Cover.RelativeGluingData.toBase_preimage_eq_opensRange_ι, CategoryTheory.Limits.Concrete.colimit_rep_eq_iff_exists, CategoryTheory.Limits.colimitCurrySwapCompColimIsoColimitCurryCompColim_ι_ι_hom, ι_map, CategoryTheory.Limits.colimitIsoColimitCurryCompColim_ι_hom_assoc, CategoryTheory.Limits.PreservesColimit₂.map_ι_comp_isoColimitUncurryWhiskeringLeft₂_inv_assoc, CategoryTheory.Limits.colimitCurrySwapCompColimIsoColimitCurryCompColim_ι_ι_inv, CategoryTheory.Limits.CoproductsFromFiniteFiltered.liftToFinsetColimIso_aux_assoc, CategoryTheory.Limits.colimitYonedaHomIsoLimit'_π_apply, CategoryTheory.Limits.π_comp_colimitLeftOpIsoUnopLimit_inv, ι_post, CategoryTheory.Limits.colimitHomIsoLimitYoneda'_hom_comp_π_assoc, AlgebraicGeometry.PresheafedSpace.colimitPresheafObjIsoComponentwiseLimit_hom_π, AlgebraicGeometry.PresheafedSpace.componentwiseDiagram_map, ModuleCat.HasColimit.colimitCocone_ι_app, CategoryTheory.Limits.HasColimit.isoOfEquivalence_hom_π, CategoryTheory.Functor.ι_colimitIsoColimitGrothendieck_inv_assoc, TopCat.colimit_topology, CategoryTheory.Limits.isIso_ι_of_isInitial, CategoryTheory.Limits.HasColimit.isoOfNatIso_ι_inv, CategoryTheory.Limits.PreservesColimit₂.map_ι_comp_isoColimitUncurryWhiskeringLeft₂_inv, CategoryTheory.Functor.ι_leftKanExtensionObjIsoColimit_inv_assoc, CategoryTheory.Limits.ι_colimitLimitIso_limit_π, CategoryTheory.Functor.Final.ι_colimitIso_hom_assoc, CategoryTheory.Limits.ι_colimitLimitToLimitColimit_π, CategoryTheory.Limits.π_comp_colimitUnopIsoOpLimit_inv, smoothSheaf.ι_evalHom_assoc, toOver_ι_app, CategoryTheory.Functor.ι_colimitIsoColimitGrothendieck_hom, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.pullbackGluedIso_inv_fst_assoc, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.sigma_ι_isOpenImmersion, CategoryTheory.ι_preservesColimitIso_inv_assoc, CategoryTheory.Limits.coyonedaOpColimitIsoLimitCoyoneda_hom_comp_π_assoc, CategoryTheory.Functor.Final.ι_colimitIso_inv, CategoryTheory.Limits.ι_comp_colimitRightOpIsoUnopLimit_hom_assoc, CategoryTheory.ι_preservesColimitIso_hom_assoc, CategoryTheory.Limits.CoproductsFromFiniteFiltered.liftToFinsetColimitCocone_isColimit_desc, CategoryTheory.Limits.colimitUncurryIsoColimitCompColim_ι_hom_assoc, ι_inv_pre, CategoryTheory.Limits.colimitUncurryIsoColimitCompColim_ι_hom, CategoryTheory.Limits.coyonedaOpColimitIsoLimitCoyoneda'_inv_comp_π, CategoryTheory.Functor.pointwiseLeftKanExtension_map, CategoryTheory.Limits.ι_colimMap, CategoryTheory.Functor.ι_colimitIsoOfIsLeftKanExtension_inv, CategoryTheory.Limits.π_reflexiveCoequalizerIsoCoequalizer_inv_assoc, AlgebraicGeometry.Scheme.Cover.RelativeGluingData.ι_toBase, CategoryTheory.Limits.coyonedaOpColimitIsoLimitCoyoneda_inv_comp_π_assoc, CategoryTheory.Limits.pointwiseCocone_ι_app_app, CategoryTheory.Limits.Types.Colimit.ι_desc_apply', AlgebraicGeometry.Scheme.IsLocallyDirected.openCover_f, CategoryTheory.Limits.ι_colimMap_assoc, ι_pre, AlgebraicGeometry.PresheafedSpace.colimitCocone_ι_app_base, comp_coconePointUniqueUpToIso_inv_assoc, CategoryTheory.Limits.colimitYonedaHomIsoLimit_π_apply, CategoryTheory.Limits.Types.colimit_sound, CategoryTheory.Limits.colimitIsoColimitCurryCompColim_ι_hom, comp_coconePointUniqueUpToIso_hom_assoc, smoothSheafCommRing.ι_evalHom, CategoryTheory.Limits.ι_colimitCompWhiskeringLeftIsoCompColimit_hom, CategoryTheory.Limits.CoproductsFromFiniteFiltered.liftToFinsetColimitCocone_cocone_ι_app, AlgebraicGeometry.Scheme.Cover.RelativeGluingData.ι_toBase_assoc, CategoryTheory.Limits.ι_colimitFiberwiseColimitIso_hom_assoc, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.ι_isoColimit_hom, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.image_preimage_is_empty, CategoryTheory.Limits.coconePointwiseProduct_ι_app, CategoryTheory.Limits.π_comp_colimitLeftOpIsoUnopLimit_inv_assoc, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.fst_gluedCocone_ι, CategoryTheory.Limits.ι_colimitFiberwiseColimitIso_inv_assoc, CategoryTheory.Limits.limitUnopIsoUnopColimit_inv_comp_π_assoc, CategoryTheory.Limits.colimitCoyonedaHomIsoLimitUnop_π_apply, CategoryTheory.Limits.limitRightOpIsoOpColimit_hom_comp_ι, CategoryTheory.Functor.ι_colimitIsoColimitGrothendieck_hom_assoc, CategoryTheory.Limits.Types.Colimit.ι_map_apply', CategoryTheory.Limits.colimitIsoColimitCurryCompColim_ι_ι_inv_assoc, CategoryTheory.Limits.colimit_obj_ext_iff, CategoryTheory.Limits.Sigma.ι_isoColimit_hom_assoc, CategoryTheory.Limits.π_comp_colimitOpIsoOpLimit_inv_assoc, CategoryTheory.Functor.pointwiseLeftKanExtensionUnit_app, CategoryTheory.Limits.Types.Colimit.ι_map_apply, hom_ext_iff, CategoryTheory.Limits.coyonedaOpColimitIsoLimitCoyoneda'_hom_comp_π, CategoryTheory.Functor.ι_colimitIsoOfIsLeftKanExtension_hom, CategoryTheory.Limits.Types.Colimit.w_apply', CategoryTheory.Limits.colimitHomIsoLimitYoneda_hom_comp_π_assoc, w_apply, smoothSheafCommRing.ι_forgetStalk_inv_apply, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.fst_gluedCocone_ι_assoc, CategoryTheory.ι_colimitCompWhiskeringRightIsoColimitComp_hom, CategoryTheory.Limits.isIso_ι_initial, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.ι_isoColimit_hom_assoc, isoColimitCocone_ι_inv_assoc, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.ι_isoColimit_inv_assoc, CategoryTheory.Limits.π_comp_colimitOpIsoOpLimit_inv, CategoryTheory.Limits.colimitHomIsoLimitYoneda'_inv_comp_π_assoc, CategoryTheory.Limits.limitRightOpIsoOpColimit_hom_comp_ι_assoc, CategoryTheory.whiskerRight_ι_colimitCompWhiskeringRightIsoColimitComp_inv_assoc, CategoryTheory.SmallObject.SuccStruct.arrowι_def, CategoryTheory.Limits.natTransIntoForgetCompFiberwiseColimit_app, CategoryTheory.Limits.ι_colimitLimitIso_limit_π_assoc, smoothSheafCommRing.ι_forgetStalk_inv_assoc, CategoryTheory.Limits.Multicoequalizer.multicofork_ι_app_right', AlgebraicGeometry.Scheme.IsLocallyDirected.ι_eq_ι_iff, ι_post_assoc, CategoryTheory.Limits.colimitObjIsoColimitCompEvaluation_ι_app_hom, AlgebraicGeometry.instIsOpenImmersionLeftSchemeDiscretePUnitιOverTopMorphismProperty, CategoryTheory.Limits.limitOpIsoOpColimit_inv_comp_π_assoc, ι_desc_apply, CategoryTheory.Limits.ι_comp_colimitRightOpIsoUnopLimit_hom, CategoryTheory.Limits.Types.Colimit.ι_desc_apply, CategoryTheory.Limits.Sigma.ι_isoColimit_hom, CategoryTheory.Limits.coyonedaOpColimitIsoLimitCoyoneda_inv_comp_π, AlgebraicGeometry.Scheme.Cover.RelativeGluingData.cover_f, AlgebraicGeometry.PresheafedSpace.componentwiseDiagram_obj, ι_desc, CategoryTheory.Limits.ι_colimitOfIsReflexivePairIsoCoequalizer_hom, CategoryTheory.ι_preservesColimitIso_hom, CategoryTheory.Limits.colimitFlipCompColimIsoColimitCompColim_ι_ι_inv_assoc, CategoryTheory.Limits.HasColimit.isoOfNatIso_ι_hom_assoc, CategoryTheory.FunctorToTypes.colimit.map_ι_apply, AlgebraicGeometry.Scheme.IsLocallyDirected.instIsOpenImmersionι, CategoryTheory.Functor.leftKanExtensionUnit_leftKanExtensionObjIsoColimit_hom, CategoryTheory.Functor.Final.ι_colimitIso_inv_assoc, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.sigma_ι_isOpenImmersion_aux, HomologicalComplex.coconeOfHasColimitEval_ι_app_f, CategoryTheory.Limits.ι_comp_colimitOpIsoOpLimit_hom, CategoryTheory.Limits.limitLeftOpIsoUnopColimit_inv_comp_π, CategoryTheory.Limits.coproductUniqueIso_inv, CategoryTheory.Limits.Concrete.colimit_rep_eq_of_exists, CategoryTheory.Limits.coyonedaOpColimitIsoLimitCoyoneda'_inv_comp_π_assoc, CategoryTheory.FunctorToTypes.jointly_surjective', CategoryTheory.Limits.ι_colimitFiberwiseColimitIso_hom, AlgebraicGeometry.Scheme.IsLocallyDirected.ι_jointly_surjective, ι_coconeMorphism, smoothSheafCommRing.ι_forgetStalk_hom_apply, ι_map_assoc, CategoryTheory.Limits.limitUnopIsoUnopColimit_hom_comp_ι_assoc, CategoryTheory.Limits.colimit_ι_zero_cokernel_desc, smoothSheafCommRing.ι_forgetStalk_hom_assoc, comp_coconePointUniqueUpToIso_hom, CategoryTheory.Limits.π_comp_colimitRightOpIsoUnopLimit_inv, CategoryTheory.Limits.ι_comp_colimitUnopIsoOpLimit_hom_assoc, AlgebraicGeometry.PresheafedSpace.pushforwardDiagramToColimit_map, ι_desc_assoc, CategoryTheory.ι_colimitCompWhiskeringRightIsoColimitComp_hom_assoc, ι_desc_app_assoc, CategoryTheory.Limits.π_colimitOfIsReflexivePairIsoCoequalizer_inv, eqToHom_comp_ι, CategoryTheory.Limits.ι_colimitFiberwiseColimitIso_inv, CategoryTheory.Limits.coyonedaOpColimitIsoLimitCoyoneda_hom_comp_π, CategoryTheory.Limits.π_reflexiveCoequalizerIsoCoequalizer_inv, CategoryTheory.Limits.ι_reflexiveCoequalizerIsoCoequalizer_hom, CategoryTheory.Limits.coyonedaOpColimitIsoLimitCoyoneda'_hom_comp_π_assoc, isoColimitCocone_ι_hom_assoc, CategoryTheory.Limits.PreservesColimit₂.ι_comp_isoColimitUncurryWhiskeringLeft₂_hom_assoc, CategoryTheory.Limits.HasColimit.isoOfNatIso_ι_hom, CategoryTheory.Limits.ι_colimitLimitToLimitColimit_π_apply, AlgebraicGeometry.PresheafedSpace.pushforwardDiagramToColimit_obj, CategoryTheory.Limits.limitOpIsoOpColimit_inv_comp_π, smoothSheaf.ι_evalHom, smoothSheafCommRing.ι_evalHom_assoc, CategoryTheory.Limits.colimitCoyonedaHomIsoLimit_π_apply, smoothSheafCommRing.ι_forgetStalk_hom, CategoryTheory.Limits.ι_colimitPointwiseProductToProductColimit_π_assoc, CategoryTheory.Limits.colimitYonedaHomIsoLimitOp_π_apply, CategoryTheory.Limits.coconeOfCoconeFiberwiseColimit_ι_app, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.sigma_ι_isOpenEmbedding, CategoryTheory.Limits.Types.FilteredColimit.colimit_eq_iff, AlgebraicGeometry.PresheafedSpace.colimitPresheafObjIsoComponentwiseLimit_inv_ι_app, w_assoc, CategoryTheory.GrothendieckTopology.ι_plusCompIso_hom, CategoryTheory.Limits.colimitIsoColimitCurryCompColim_ι_ι_inv, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.ι_isoColimit_inv, CategoryTheory.Limits.colimitFlipCompColimIsoColimitCompColim_ι_ι_hom_assoc, CategoryTheory.Limits.ι_colimitConstInitial_hom, CategoryTheory.Limits.π_comp_colimitRightOpIsoUnopLimit_inv_assoc, AlgebraicGeometry.Scheme.Cover.RelativeGluingData.preimage_toBase_eq_range_ι, CategoryTheory.Limits.Concrete.colimit_exists_rep, w, CategoryTheory.SmallObject.SuccStruct.Iteration.mkOfLimit.arrowMap_functor_to_top, CategoryTheory.Functor.ι_leftKanExtensionObjIsoColimit_hom, CategoryTheory.Limits.limitRightOpIsoOpColimit_inv_comp_π_assoc, CategoryTheory.Functor.ι_colimitIsoOfIsLeftKanExtension_hom_assoc, CategoryTheory.Limits.limitLeftOpIsoUnopColimit_hom_comp_ι_assoc, CategoryTheory.whiskerRight_ι_colimitCompWhiskeringRightIsoColimitComp_inv, CategoryTheory.Limits.π_colimitOfIsReflexivePairIsoCoequalizer_inv_assoc, TopCat.colimit_isOpen_iff, AlgebraicGeometry.PresheafedSpace.GlueData.ιInvApp_π, CategoryTheory.Limits.colimitObjIsoColimitCompEvaluation_ι_inv, CategoryTheory.Limits.π_comp_colimitUnopIsoOpLimit_inv_assoc, PresheafOfModules.colimitCocone_ι_app_app, CategoryTheory.Limits.ι_comp_colimitLeftOpIsoUnopLimit_hom_assoc, CategoryTheory.Limits.whiskerLeft_ι_colimitCompWhiskeringLeftIsoCompColimit_inv, CategoryTheory.Functor.Final.ι_colimitIso_hom, CategoryTheory.Limits.Sigma.ι_isoColimit_inv_assoc, CategoryTheory.Limits.limitLeftOpIsoUnopColimit_inv_comp_π_assoc, CategoryTheory.Limits.ι_colimitLimitToLimitColimit_π_assoc, CategoryTheory.IsGrothendieckAbelian.IsPresentable.injectivity₀.hf, CategoryTheory.ι_preservesColimitIso_inv, CategoryTheory.Limits.Types.jointly_surjective', CategoryTheory.Limits.ι_reflexiveCoequalizerIsoCoequalizer_hom_assoc, CategoryTheory.Functor.leftKanExtensionUnit_leftKanExtensionObjIsoColimit_hom_assoc, CategoryTheory.Limits.ι_comp_colimitLeftOpIsoUnopLimit_hom, CategoryTheory.Limits.colimitHomIsoLimitYoneda_inv_comp_π, CategoryTheory.Limits.limitLeftOpIsoUnopColimit_hom_comp_ι, toCostructuredArrow_map, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.pullbackGluedIso_inv_fst, CategoryTheory.Limits.PreservesColimit₂.ι_comp_isoColimitUncurryWhiskeringLeft₂_hom, CategoryTheory.Limits.whiskerLeft_ι_colimitCompWhiskeringLeftIsoCompColimit_inv_assoc, toCostructuredArrow_obj, CategoryTheory.Limits.CoproductsFromFiniteFiltered.liftToFinsetColimIso_aux, CategoryTheory.Limits.colimitYonedaHomIsoLimitRightOp_π_apply, CategoryTheory.Functor.ι_leftKanExtensionObjIsoColimit_hom_assoc, isoColimitCocone_ι_hom, comp_coconePointUniqueUpToIso_inv, CategoryTheory.Functor.ι_colimitIsoColimitGrothendieck_inv, CategoryTheory.Limits.colimitCoyonedaHomIsoLimitLeftOp_π_apply, CategoryTheory.Limits.colimitHomIsoLimitYoneda_inv_comp_π_assoc, CategoryTheory.MonoidalCategory.DayFunctor.η_comp_isoPointwiseLeftKanExtension_hom, CategoryTheory.Limits.limitUnopIsoUnopColimit_inv_comp_π, CategoryTheory.Limits.Types.colimitEquivColimitType_symm_apply, ι_inv_pre_assoc, CategoryTheory.Limits.HasColimit.isoOfNatIso_ι_inv_assoc, CategoryTheory.Limits.ι_colimitOfIsReflexivePairIsoCoequalizer_hom_assoc, CategoryTheory.Limits.colimitUncurryIsoColimitCompColim_ι_ι_inv_assoc, ι_desc_app, CategoryTheory.Limits.limitOpIsoOpColimit_hom_comp_ι, CategoryTheory.MonoidalCategory.DayFunctor.ι_comp_isoPointwiseLeftKanExtension_inv, AlgebraicGeometry.Scheme.Cover.RelativeGluingData.isPullback_natTrans_ι_toBase, CategoryTheory.Limits.isIso_ι_of_isTerminal, CategoryTheory.Limits.ι_colimitConstInitial_hom_assoc, CategoryTheory.Limits.Types.colimitEquivColimitType_apply, CategoryTheory.Limits.colimitFlipCompColimIsoColimitCompColim_ι_ι_inv, CategoryTheory.Limits.limitRightOpIsoOpColimit_inv_comp_π, CategoryTheory.Limits.instEpiDescι, CategoryTheory.colimitYonedaHomEquiv_π_apply, CategoryTheory.Limits.ι_comp_colimitUnopIsoOpLimit_hom, CategoryTheory.Limits.colimitHomIsoLimitYoneda'_inv_comp_π, CategoryTheory.Limits.colimitFlipCompColimIsoColimitCompColim_ι_ι_hom

Theorems

NameKindAssumesProvesValidatesDepends On
coconeMorphism_hom 📖mathematicalCategoryTheory.Limits.CoconeMorphism.hom
cocone
coconeMorphism
desc
cocone_x 📖mathematicalCategoryTheory.Limits.Cocone.pt
cocone
CategoryTheory.Limits.colimit
cocone_ι 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
cocone
CategoryTheory.Limits.Cocone.ι
ι
comp_coconePointUniqueUpToIso_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.colimit
CategoryTheory.Limits.Cocone.pt
ι
CategoryTheory.Iso.hom
cocone
CategoryTheory.Limits.IsColimit.coconePointUniqueUpToIso
isColimit
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.ι
CategoryTheory.Limits.IsColimit.comp_coconePointUniqueUpToIso_hom
comp_coconePointUniqueUpToIso_hom_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.colimit
ι
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Iso.hom
cocone
CategoryTheory.Limits.IsColimit.coconePointUniqueUpToIso
isColimit
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.ι
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comp_coconePointUniqueUpToIso_hom
comp_coconePointUniqueUpToIso_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.colimit
CategoryTheory.Limits.Cocone.pt
ι
CategoryTheory.Iso.inv
cocone
CategoryTheory.Limits.IsColimit.coconePointUniqueUpToIso
isColimit
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.ι
CategoryTheory.Limits.IsColimit.comp_coconePointUniqueUpToIso_inv
comp_coconePointUniqueUpToIso_inv_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.colimit
ι
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Iso.inv
cocone
CategoryTheory.Limits.IsColimit.coconePointUniqueUpToIso
isColimit
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.ι
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comp_coconePointUniqueUpToIso_inv
desc_cocone 📖mathematicaldesc
cocone
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.colimit
CategoryTheory.Limits.IsColimit.desc_self
desc_extend 📖mathematicaldesc
CategoryTheory.Limits.Cocone.extend
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.colimit
CategoryTheory.Limits.Cocone.pt
hom_ext
ι_desc
ι_desc_assoc
eqToHom_comp_ι 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.colimit
CategoryTheory.eqToHom
ι
CategoryTheory.Category.id_comp
eqToHom_comp_ι_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.eqToHom
CategoryTheory.Limits.colimit
ι
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
eqToHom_comp_ι
existsUnique 📖mathematicalExistsUnique
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.colimit
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.IsColimit.existsUnique
homIso_hom 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.types
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.colimit
CategoryTheory.Functor.obj
CategoryTheory.Functor.cocones
homIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
cocone
CategoryTheory.Limits.Cocone.ι
CategoryTheory.Functor.map
CategoryTheory.Limits.IsColimit.homIso_hom
hom_ext 📖CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.colimit
ι
CategoryTheory.Limits.IsColimit.hom_ext
hom_ext_iff 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.colimit
ι
hom_ext
isColimit_desc 📖mathematicalCategoryTheory.Limits.IsColimit.desc
cocone
isColimit
desc
isoColimitCocone_ι_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.colimit
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.ColimitCocone.cocone
ι
CategoryTheory.Iso.hom
isoColimitCocone
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.ι
ι_desc
isoColimitCocone_ι_hom_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.colimit
ι
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.ColimitCocone.cocone
CategoryTheory.Iso.hom
isoColimitCocone
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.ι
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
isoColimitCocone_ι_hom
isoColimitCocone_ι_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.ColimitCocone.cocone
CategoryTheory.Limits.colimit
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ι
CategoryTheory.Iso.inv
isoColimitCocone
ι
CategoryTheory.Limits.IsColimit.fac
isoColimitCocone_ι_inv_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.ColimitCocone.cocone
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ι
CategoryTheory.Limits.colimit
CategoryTheory.Iso.inv
isoColimitCocone
ι
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
isoColimitCocone_ι_inv
map_desc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.colimit
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.colimMap
desc
CategoryTheory.Functor.obj
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
CategoryTheory.Limits.Cocones.precompose
hom_ext
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.ι_colimMap_assoc
ι_desc
map_desc_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.colimit
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.colimMap
CategoryTheory.Limits.Cocone.pt
desc
CategoryTheory.Functor.obj
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
CategoryTheory.Limits.Cocones.precompose
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_desc
map_post 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.colimit
CategoryTheory.Functor.comp
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.colim
post
CategoryTheory.Functor.map
CategoryTheory.Functor.whiskerRight
hom_ext
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Category.assoc
ι_post
CategoryTheory.Functor.map_comp
ι_map
post_desc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.colimit
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Limits.Cocone.pt
post
CategoryTheory.Functor.map
desc
CategoryTheory.Functor.mapCocone
hom_ext
CategoryTheory.Category.assoc
ι_post
CategoryTheory.Functor.map_comp
ι_desc
post_post 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.colimit
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
post
CategoryTheory.Functor.map
hom_ext
CategoryTheory.Category.assoc
ι_post
CategoryTheory.Functor.map_comp
pre_desc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.colimit
CategoryTheory.Functor.comp
CategoryTheory.Limits.Cocone.pt
pre
desc
CategoryTheory.Limits.Cocone.whisker
hom_ext
ι_pre_assoc
ι_desc
pre_desc_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.colimit
CategoryTheory.Functor.comp
pre
CategoryTheory.Limits.Cocone.pt
desc
CategoryTheory.Limits.Cocone.whisker
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pre_desc
pre_eq 📖mathematicalpre
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.colimit
CategoryTheory.Functor.comp
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.ColimitCocone.cocone
CategoryTheory.Iso.hom
isoColimitCocone
CategoryTheory.Limits.Cocone.whisker
CategoryTheory.Limits.IsColimit.desc
CategoryTheory.Limits.ColimitCocone.isColimit
CategoryTheory.Iso.inv
hom_ext
ι_pre
isoColimitCocone_ι_hom_assoc
CategoryTheory.Limits.IsColimit.fac_assoc
isoColimitCocone_ι_inv
pre_id 📖mathematicalpre
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Functor.map
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.colim
CategoryTheory.Iso.hom
CategoryTheory.Functor.leftUnitor
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
hom_ext
ι_pre
CategoryTheory.Limits.ι_colimMap
CategoryTheory.Category.id_comp
pre_map 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.colimit
CategoryTheory.Functor.comp
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.colim
pre
CategoryTheory.Functor.map
CategoryTheory.Functor.whiskerLeft
hom_ext
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Category.assoc
ι_pre
ι_map
pre_map' 📖mathematicalpre
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Functor.comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.colim
CategoryTheory.Limits.colimit
CategoryTheory.Functor.map
CategoryTheory.Functor.whiskerRight
hom_ext
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
ι_pre
CategoryTheory.Limits.ι_colimMap_assoc
w
pre_post 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.colimit
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
post
CategoryTheory.Functor.map
pre
hom_ext
CategoryTheory.Category.assoc
ι_post
CategoryTheory.Functor.map_comp
ι_pre
pre_pre 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.colimit
CategoryTheory.Functor.comp
pre
hom_ext
CategoryTheory.Category.assoc
ι_pre
w 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.colimit
CategoryTheory.Functor.map
ι
CategoryTheory.Limits.Cocone.w
w_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Limits.colimit
ι
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
w
ι_coconeMorphism 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.colimit
CategoryTheory.Limits.Cocone.pt
ι
CategoryTheory.Limits.CoconeMorphism.hom
cocone
coconeMorphism
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.ι
ι_desc
ι_desc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.colimit
CategoryTheory.Limits.Cocone.pt
ι
desc
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.ι
CategoryTheory.Limits.IsColimit.fac
ι_desc_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.colimit
ι
CategoryTheory.Limits.Cocone.pt
desc
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.ι
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι_desc
ι_inv_pre 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.colimit
CategoryTheory.Functor.comp
ι
CategoryTheory.inv
pre
ι_pre
ι_inv_pre_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.colimit
ι
CategoryTheory.Functor.comp
CategoryTheory.inv
pre
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι_inv_pre
ι_map 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.colimit
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.colim
ι
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.ι_colimMap
ι_map_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.colimit
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
ι
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.colim
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι_map
ι_post 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
CategoryTheory.Limits.colimit
ι
post
CategoryTheory.Functor.map
ι_desc
ι_post_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.colimit
CategoryTheory.Functor.comp
ι
post
CategoryTheory.Functor.map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι_post
ι_pre 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
CategoryTheory.Limits.colimit
ι
pre
ι_desc
ι_pre_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.colimit
CategoryTheory.Functor.comp
ι
pre
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι_pre

CategoryTheory.Limits.limit

Definitions

NameCategoryTheorems
cone 📖CompOp
33 mathmath: CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_counitIso_hom_app_hom, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_unitIso_inv_app_hom, CategoryTheory.Limits.kernelBiprodSndIso_hom, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_functor_map_hom, CategoryTheory.Limits.kernelBiprodFstIso_hom, CategoryTheory.Limits.kernelBiproductπIso_hom, isLimit_lift, CategoryTheory.Limits.kernelBiproductToSubtypeIso_hom, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_inverse_map_hom, CategoryTheory.Limits.colimitLimitToLimitColimitCone_hom, CategoryTheory.Limits.PullbackCone.snd_limit_cone, CategoryTheory.Limits.DiagramOfCones.mkOfHasLimits_map_hom, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_functor_obj_pt, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_counitIso_inv_app_hom, conePointUniqueUpToIso_hom_comp_assoc, cone_x, conePointUniqueUpToIso_inv_comp_assoc, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_functor_obj_π_app, CategoryTheory.Limits.DiagramOfCones.mkOfHasLimits_obj, CategoryTheory.Limits.colimitLimitToLimitColimitCone_iso, cone_π, conePointUniqueUpToIso_hom_comp, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_inverse_obj_π_app, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_inverse_obj_pt, homIso_hom, CategoryTheory.LiftRightAdjoint.constructRightAdjointEquiv_apply, coneMorphism_hom, coneMorphism_π, conePointUniqueUpToIso_inv_comp, CategoryTheory.LiftRightAdjoint.constructRightAdjointEquiv_symm_apply, lift_cone, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_unitIso_hom_app_hom, CategoryTheory.Limits.PullbackCone.fst_limit_cone
coneMorphism 📖CompOp
2 mathmath: coneMorphism_hom, coneMorphism_π
homIso 📖CompOp
1 mathmath: homIso_hom
homIso' 📖CompOp
isLimit 📖CompOp
17 mathmath: CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_counitIso_hom_app_hom, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_unitIso_inv_app_hom, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_functor_map_hom, isLimit_lift, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_inverse_map_hom, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_functor_obj_pt, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_counitIso_inv_app_hom, conePointUniqueUpToIso_hom_comp_assoc, conePointUniqueUpToIso_inv_comp_assoc, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_functor_obj_π_app, conePointUniqueUpToIso_hom_comp, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_inverse_obj_π_app, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_inverse_obj_pt, CategoryTheory.LiftRightAdjoint.constructRightAdjointEquiv_apply, conePointUniqueUpToIso_inv_comp, CategoryTheory.LiftRightAdjoint.constructRightAdjointEquiv_symm_apply, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_unitIso_hom_app_hom
isoLimitCone 📖CompOp
6 mathmath: isoLimitCone_hom_π_assoc, isoLimitCone_hom_π, isoLimitCone_inv_π_assoc, AlgebraicGeometry.Scheme.Pullback.openCoverOfBase'_f, pre_eq, isoLimitCone_inv_π
post 📖CompOp
9 mathmath: lift_post, pre_post, post_π, CategoryTheory.Limits.PreservesFiniteLimitsOfIsFilteredCostructuredArrowYonedaAux.iso_hom, post_π_assoc, post_post, map_post, CategoryTheory.Limits.PreservesFiniteLimitsOfIsFilteredCostructuredArrowYonedaAux.isIso_post, CategoryTheory.instIsIsoPost
pre 📖CompOp
12 mathmath: CategoryTheory.Functor.Initial.limitIso_hom, CategoryTheory.Functor.Initial.limitIso_inv, pre_post, pre_π_assoc, lift_pre, map_pre', pre_eq, id_pre, map_pre, CategoryTheory.Functor.Initial.limit_pre_isIso, pre_pre, pre_π
π 📖CompOp
218 mathmath: CategoryTheory.Limits.limMap_π, CategoryTheory.Limits.Types.Limit.w_apply', CategoryTheory.Limits.colimitHomIsoLimitYoneda'_hom_comp_π, CategoryTheory.GrothendieckTopology.liftToDiagramLimitObjAux_fac, CategoryTheory.Limits.colimitHomIsoLimitYoneda_hom_comp_π, CategoryTheory.Limits.limitUnopIsoUnopColimit_hom_comp_ι, toStructuredArrow_obj, CategoryTheory.Limits.ProductsFromFiniteCofiltered.liftToFinsetLimitCone_isLimit_lift, CategoryTheory.Limits.isIso_π_of_isTerminal, CategoryTheory.Limits.ι_comp_colimitOpIsoOpLimit_hom_assoc, CategoryTheory.GrothendieckTopology.liftToDiagramLimitObjAux_fac_assoc, CategoryTheory.Limits.HasLimit.isoOfNatIso_inv_π_assoc, TopCat.Presheaf.SheafConditionEqualizerProducts.piOpens.hom_ext_iff, CategoryTheory.Limits.colimitCoyonedaHomIsoLimit'_π_apply, CategoryTheory.Limits.limitConstTerminal_inv_π_assoc, CategoryTheory.Limits.limitOpIsoOpColimit_hom_comp_ι_assoc, w_assoc, CategoryTheory.Limits.limitIsoLimitCurryCompLim_hom_π_π_assoc, CategoryTheory.Limits.limitObjIsoLimitCompEvaluation_inv_π_app, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.sheafedSpace_pullback_to_base_isOpenImmersion, toStructuredArrow_map, CategoryTheory.Limits.colimitYonedaHomIsoLimit'_π_apply, CategoryTheory.Limits.π_comp_colimitLeftOpIsoUnopLimit_inv, CategoryTheory.limitCompWhiskeringRightIsoLimitComp_hom_whiskerRight_π_assoc, CategoryTheory.Limits.colimitHomIsoLimitYoneda'_hom_comp_π_assoc, AlgebraicGeometry.PresheafedSpace.colimitPresheafObjIsoComponentwiseLimit_hom_π, CategoryTheory.limitCompWhiskeringRightIsoLimitComp_inv_π_assoc, CategoryTheory.Limits.isIso_π_terminal, CategoryTheory.Limits.Types.limit_ext'_iff, CategoryTheory.Limits.ι_colimitLimitIso_limit_π, CategoryTheory.Limits.ι_colimitLimitToLimitColimit_π, CategoryTheory.Limits.productUniqueIso_hom, CategoryTheory.Limits.π_comp_colimitUnopIsoOpLimit_inv, CategoryTheory.Limits.limitFlipCompLimIsoLimitCompLim_hom_π_π, CategoryTheory.Limits.instMonoLiftπ, CategoryTheory.Limits.coyonedaOpColimitIsoLimitCoyoneda_hom_comp_π_assoc, CategoryTheory.Limits.limitCompCoyonedaIsoCone_hom_app, CategoryTheory.Limits.ι_comp_colimitRightOpIsoUnopLimit_hom_assoc, post_π, CategoryTheory.CategoryOfElements.CreatesLimitsAux.liftedCone_π_app_coe, CategoryTheory.Cat.HasLimits.limitCone_π_app, CategoryTheory.Limits.coyonedaOpColimitIsoLimitCoyoneda'_inv_comp_π, isoLimitCone_hom_π_assoc, CategoryTheory.Cat.HasLimits.homDiagram_map, AlgebraicGeometry.IsOpenImmersion.instπWalkingCospanSchemeCospanOne, pre_π_assoc, CategoryTheory.Limits.coyonedaOpColimitIsoLimitCoyoneda_inv_comp_π_assoc, CategoryTheory.Limits.opHomCompWhiskeringLimYonedaIsoCocones_hom_app_app_app, CategoryTheory.Limits.Types.limit_ext_iff', CategoryTheory.Limits.colimitYonedaHomIsoLimit_π_apply, CategoryTheory.Limits.limitCurrySwapCompLimIsoLimitCurryCompLim_inv_π_π, PresheafOfModules.limitCone_π_app_app, CategoryTheory.preservesLimitIso_inv_π_assoc, CategoryTheory.Limits.Types.Limit.w_apply, CategoryTheory.Limits.yonedaCompLimIsoCocones_hom_app_app, CategoryTheory.Limits.Pi.isoLimit_inv_π, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.pullbackToBaseIsOpenImmersion, CategoryTheory.Limits.Types.Limit.map_π_apply', isoLimitCone_hom_π, CategoryTheory.Limits.π_comp_colimitLeftOpIsoUnopLimit_inv_assoc, CategoryTheory.Limits.limMap_π_assoc, CategoryTheory.Limits.limitFlipCompLimIsoLimitCompLim_inv_π_π, CategoryTheory.Limits.lim_ε_π_assoc, CategoryTheory.Limits.limitUnopIsoUnopColimit_inv_comp_π_assoc, CategoryTheory.preservesLimitIso_inv_π, π_comp_eqToHom_assoc, CategoryTheory.Limits.colimitCoyonedaHomIsoLimitUnop_π_apply, CategoryTheory.Limits.limitRightOpIsoOpColimit_hom_comp_ι, π_comp_eqToHom, TopCat.Presheaf.SheafConditionEqualizerProducts.piInters.hom_ext_iff, CategoryTheory.Limits.HasLimit.isoOfEquivalence_hom_π, CategoryTheory.Limits.limitConstTerminal_inv_π, CategoryTheory.Cat.HasLimits.limit_π_homDiagram_eqToHom, CategoryTheory.Limits.π_comp_colimitOpIsoOpLimit_inv_assoc, TopCat.isOpenEmbedding_of_pullback, CategoryTheory.Limits.coyonedaOpColimitIsoLimitCoyoneda'_hom_comp_π, conePointUniqueUpToIso_hom_comp_assoc, CategoryTheory.Limits.HasLimit.isoOfNatIso_inv_π, CategoryTheory.Limits.comp_lim_obj_ext_iff, CategoryTheory.Limits.colimitHomIsoLimitYoneda_hom_comp_π_assoc, CategoryTheory.Limits.Types.limitEquivSections_symm_apply, conePointUniqueUpToIso_inv_comp_assoc, CategoryTheory.Limits.limitObjIsoLimitCompEvaluation_hom_π, CategoryTheory.Mon.limitCone_π_app_hom, post_π_assoc, CategoryTheory.Functor.ranObjObjIsoLimit_inv_π_assoc, CategoryTheory.Cat.HasLimits.id_def, CategoryTheory.Limits.limitCompWhiskeringLeftIsoCompLimit_inv_π_assoc, CategoryTheory.Functor.limitIsoOfIsRightKanExtension_hom_π_assoc, lift_π_app, CategoryTheory.Limits.limit_obj_ext_iff, CategoryTheory.Limits.π_comp_colimitOpIsoOpLimit_inv, CategoryTheory.Limits.lim_ε_π, CategoryTheory.Limits.colimitHomIsoLimitYoneda'_inv_comp_π_assoc, CategoryTheory.Limits.limitRightOpIsoOpColimit_hom_comp_ι_assoc, CategoryTheory.Functor.ranObjObjIsoLimit_hom_π_assoc, CategoryTheory.Limits.ι_colimitLimitIso_limit_π_assoc, CategoryTheory.Limits.Types.Limit.lift_π_apply, CategoryTheory.Limits.limitUncurryIsoLimitCompLim_inv_π, TopCat.Presheaf.SheafConditionEqualizerProducts.res_π, isoLimitCone_inv_π_assoc, CategoryTheory.Limits.HasLimit.isoOfNatIso_hom_π_assoc, CategoryTheory.Limits.limitOpIsoOpColimit_inv_comp_π_assoc, CategoryTheory.Limits.limitFlipCompLimIsoLimitCompLim_hom_π_π_assoc, Alexandrov.lowerCone_π_app, CategoryTheory.Limits.ι_comp_colimitRightOpIsoUnopLimit_hom, CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtensionAt.isoLimit_inv_π, cone_π, lift_π_apply, CategoryTheory.Limits.Types.Limit.π_mk, CategoryTheory.Limits.coyonedaOpColimitIsoLimitCoyoneda_inv_comp_π, conePointUniqueUpToIso_hom_comp, CategoryTheory.Limits.limitCurrySwapCompLimIsoLimitCurryCompLim_hom_π_π, CategoryTheory.Functor.pointwiseRightKanExtensionCounit_app, CategoryTheory.Limits.PreservesLimit₂.isoLimitUncurryWhiskeringLeft₂_inv_comp_π, CommRingCat.equalizer_ι_isLocalHom', CategoryTheory.preservesLimitIso_hom_π_assoc, CategoryTheory.Limits.lim_μ_π_assoc, CategoryTheory.Limits.limitUncurryIsoLimitCompLim_hom_π_π_assoc, CategoryTheory.Limits.SingleObj.Types.limitEquivFixedPoints_apply_coe, CategoryTheory.Limits.ι_comp_colimitOpIsoOpLimit_hom, CategoryTheory.Limits.limitLeftOpIsoUnopColimit_inv_comp_π, CategoryTheory.Limits.coyonedaOpColimitIsoLimitCoyoneda'_inv_comp_π_assoc, CategoryTheory.Limits.PreservesLimit₂.isoLimitUncurryWhiskeringLeft₂_inv_comp_π_assoc, CategoryTheory.Limits.limitUnopIsoUnopColimit_hom_comp_ι_assoc, CategoryTheory.Limits.π_comp_colimitRightOpIsoUnopLimit_inv, CategoryTheory.Limits.ι_comp_colimitUnopIsoOpLimit_hom_assoc, CategoryTheory.Limits.PreservesLimit₂.isoLimitUncurryWhiskeringLeft₂_hom_comp_map_π, CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtensionAt.isoLimit_inv_π_assoc, CategoryTheory.Limits.limitIsoLimitCurryCompLim_inv_π, CategoryTheory.Functor.limitIsoOfIsRightKanExtension_inv_π_assoc, hom_ext_iff, CategoryTheory.Limits.Types.Limit.map_π_apply, lift_π_assoc, CategoryTheory.Functor.ranObjObjIsoLimit_hom_π, CommRingCat.equalizer_ι_isLocalHom, CategoryTheory.Limits.coyonedaOpColimitIsoLimitCoyoneda_hom_comp_π, CategoryTheory.Limits.whiskeringLimYonedaIsoCones_hom_app_app_app, CategoryTheory.Functor.pointwiseRightKanExtension_map, CategoryTheory.Limits.limitObjIsoLimitCompEvaluation_inv_π_app_assoc, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.pullback_to_base_isOpenImmersion, CategoryTheory.Limits.PreservesLimit₂.isoLimitUncurryWhiskeringLeft₂_hom_comp_map_π_assoc, CategoryTheory.Limits.ProductsFromFiniteCofiltered.liftToFinsetLimitCone_cone_π_app, CategoryTheory.Limits.coyonedaOpColimitIsoLimitCoyoneda'_hom_comp_π_assoc, CategoryTheory.Cat.HasLimits.comp_def, CategoryTheory.Limits.ι_colimitLimitToLimitColimit_π_apply, isoLimitCone_inv_π, CategoryTheory.Limits.limitOpIsoOpColimit_inv_comp_π, HomologicalComplex.coneOfHasLimitEval_π_app_f, CategoryTheory.Limits.isIso_π_of_isInitial, CategoryTheory.Limits.Types.limitEquivSections_apply, CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtensionAt.isoLimit_hom_π, CategoryTheory.preservesLimitIso_hom_π, CategoryTheory.Limits.limitIsoLimitCurryCompLim_inv_π_assoc, CategoryTheory.Limits.limitCompWhiskeringLeftIsoCompLimit_hom_whiskerLeft_π_assoc, CategoryTheory.Limits.colimitCoyonedaHomIsoLimit_π_apply, CategoryTheory.Limits.limitObjIsoLimitCompEvaluation_hom_π_assoc, CategoryTheory.Limits.limitIsoLimitCurryCompLim_hom_π_π, CategoryTheory.Limits.limitCompYonedaIsoCocone_hom_app, coneMorphism_π, CategoryTheory.Limits.colimitYonedaHomIsoLimitOp_π_apply, CategoryTheory.Limits.limitCompWhiskeringLeftIsoCompLimit_inv_π, CategoryTheory.Cat.HasLimits.limitConeLift_toFunctor, conePointUniqueUpToIso_inv_comp, CategoryTheory.Functor.ranObjObjIsoLimit_inv_π, AlgebraicGeometry.PresheafedSpace.colimitPresheafObjIsoComponentwiseLimit_inv_ι_app, CategoryTheory.Limits.Pi.isoLimit_hom_π, CategoryTheory.Limits.limit_π_isIso_of_is_strict_terminal, CategoryTheory.Limits.π_comp_colimitRightOpIsoUnopLimit_inv_assoc, CategoryTheory.Limits.limitUncurryIsoLimitCompLim_hom_π_π, lift_π_app_assoc, CategoryTheory.Limits.limitRightOpIsoOpColimit_inv_comp_π_assoc, CategoryTheory.Limits.limitLeftOpIsoUnopColimit_hom_comp_ι_assoc, CategoryTheory.GrothendieckTopology.liftToPlusObjLimitObj_fac, CategoryTheory.Limits.π_comp_colimitUnopIsoOpLimit_inv_assoc, CategoryTheory.Limits.Pi.isoLimit_hom_π_assoc, CategoryTheory.Limits.isIso_π_initial, CategoryTheory.Limits.ι_comp_colimitLeftOpIsoUnopLimit_hom_assoc, CategoryTheory.Limits.HasLimit.isoOfNatIso_hom_π, CategoryTheory.Functor.limitIsoOfIsRightKanExtension_hom_π, CategoryTheory.Limits.limitLeftOpIsoUnopColimit_inv_comp_π_assoc, CategoryTheory.Limits.ι_colimitLimitToLimitColimit_π_assoc, CategoryTheory.Limits.ι_comp_colimitLeftOpIsoUnopLimit_hom, CategoryTheory.Cat.HasLimits.homDiagram_obj, CategoryTheory.Limits.Pi.isoLimit_inv_π_assoc, CategoryTheory.Limits.colimitHomIsoLimitYoneda_inv_comp_π, CategoryTheory.limitCompWhiskeringRightIsoLimitComp_inv_π, CategoryTheory.Limits.limitLeftOpIsoUnopColimit_hom_comp_ι, CategoryTheory.Limits.HasLimit.isoOfEquivalence_inv_π, TopCat.limit_topology, CategoryTheory.Limits.Types.Limit.lift_π_apply', CategoryTheory.Functor.limitIsoOfIsRightKanExtension_inv_π, CategoryTheory.CategoryOfElements.CreatesLimitsAux.map_π_liftedConeElement, CategoryTheory.Limits.coyonedaCompLimIsoCones_hom_app_app, lift_π, CategoryTheory.Limits.colimitYonedaHomIsoLimitRightOp_π_apply, CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtensionAt.isoLimit_hom_π_assoc, CategoryTheory.Limits.lim_μ_π, CategoryTheory.Limits.colimitCoyonedaHomIsoLimitLeftOp_π_apply, CategoryTheory.Limits.limitUncurryIsoLimitCompLim_inv_π_assoc, CategoryTheory.Limits.colimitHomIsoLimitYoneda_inv_comp_π_assoc, CategoryTheory.Limits.limitUnopIsoUnopColimit_inv_comp_π, w_apply, AlgebraicGeometry.PresheafedSpace.colimitCocone_ι_app_c, CategoryTheory.Limits.limitFlipCompLimIsoLimitCompLim_inv_π_π_assoc, TopCat.Presheaf.SheafConditionEqualizerProducts.res_π_apply, CategoryTheory.Limits.limitOpIsoOpColimit_hom_comp_ι, w, pre_π, CategoryTheory.Limits.Types.limit_ext_iff, CategoryTheory.Limits.limitCompWhiskeringLeftIsoCompLimit_hom_whiskerLeft_π, CategoryTheory.CategoryOfElements.CreatesLimitsAux.π_liftedConeElement', CategoryTheory.limitCompWhiskeringRightIsoLimitComp_hom_whiskerRight_π, CategoryTheory.Limits.limitRightOpIsoOpColimit_inv_comp_π, CategoryTheory.colimitYonedaHomEquiv_π_apply, TopCat.isEmbedding_of_pullback, CategoryTheory.Limits.ι_comp_colimitUnopIsoOpLimit_hom, CategoryTheory.Limits.colimitHomIsoLimitYoneda'_inv_comp_π

Theorems

NameKindAssumesProvesValidatesDepends On
coneMorphism_hom 📖mathematicalCategoryTheory.Limits.ConeMorphism.hom
cone
coneMorphism
lift
coneMorphism_π 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
cone
CategoryTheory.Functor.obj
CategoryTheory.Limits.ConeMorphism.hom
coneMorphism
π
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.π
lift_π
conePointUniqueUpToIso_hom_comp 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
cone
CategoryTheory.Functor.obj
CategoryTheory.Iso.hom
CategoryTheory.Limits.IsLimit.conePointUniqueUpToIso
isLimit
π
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.π
CategoryTheory.Limits.IsLimit.conePointUniqueUpToIso_hom_comp
conePointUniqueUpToIso_hom_comp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
cone
CategoryTheory.Iso.hom
CategoryTheory.Limits.IsLimit.conePointUniqueUpToIso
isLimit
CategoryTheory.Functor.obj
π
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.π
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
conePointUniqueUpToIso_hom_comp
conePointUniqueUpToIso_inv_comp 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
cone
CategoryTheory.Functor.obj
CategoryTheory.Iso.inv
CategoryTheory.Limits.IsLimit.conePointUniqueUpToIso
isLimit
π
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.π
CategoryTheory.Limits.IsLimit.conePointUniqueUpToIso_inv_comp
conePointUniqueUpToIso_inv_comp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
cone
CategoryTheory.Iso.inv
CategoryTheory.Limits.IsLimit.conePointUniqueUpToIso
isLimit
CategoryTheory.Functor.obj
π
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.π
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
conePointUniqueUpToIso_inv_comp
cone_x 📖mathematicalCategoryTheory.Limits.Cone.pt
cone
CategoryTheory.Limits.limit
cone_π 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
cone
CategoryTheory.Limits.Cone.π
π
existsUnique 📖mathematicalExistsUnique
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.limit
CategoryTheory.Limits.IsLimit.existsUnique
homIso_hom 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.types
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.limit
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.cones
Opposite.op
homIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Functor.map
CategoryTheory.Limits.Cone.π
cone
CategoryTheory.Limits.IsLimit.homIso_hom
hom_ext 📖CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.limit
CategoryTheory.Functor.obj
π
CategoryTheory.Limits.IsLimit.hom_ext
hom_ext_iff 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.limit
CategoryTheory.Functor.obj
π
hom_ext
id_pre 📖mathematicalpre
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Functor.map
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.lim
CategoryTheory.Iso.inv
CategoryTheory.Functor.leftUnitor
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
hom_ext
pre_π
CategoryTheory.Limits.limMap_π
CategoryTheory.Category.comp_id
isLimit_lift 📖mathematicalCategoryTheory.Limits.IsLimit.lift
cone
isLimit
lift
isoLimitCone_hom_π 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.limit
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.LimitCone.cone
CategoryTheory.Functor.obj
CategoryTheory.Iso.hom
isoLimitCone
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.π
π
CategoryTheory.Limits.IsLimit.fac
isoLimitCone_hom_π_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.limit
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.LimitCone.cone
CategoryTheory.Iso.hom
isoLimitCone
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.π
π
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
isoLimitCone_hom_π
isoLimitCone_inv_π 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.LimitCone.cone
CategoryTheory.Limits.limit
CategoryTheory.Functor.obj
CategoryTheory.Iso.inv
isoLimitCone
π
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.π
lift_π
isoLimitCone_inv_π_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.LimitCone.cone
CategoryTheory.Limits.limit
CategoryTheory.Iso.inv
isoLimitCone
CategoryTheory.Functor.obj
π
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.π
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
isoLimitCone_inv_π
lift_cone 📖mathematicallift
cone
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.limit
CategoryTheory.Limits.IsLimit.lift_self
lift_extend 📖mathematicallift
CategoryTheory.Limits.Cone.extend
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.limit
hom_ext
lift_π
CategoryTheory.Category.assoc
lift_map 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.limit
lift
CategoryTheory.Limits.limMap
CategoryTheory.Functor.obj
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
CategoryTheory.Limits.Cones.postcompose
hom_ext
CategoryTheory.Category.assoc
CategoryTheory.Limits.limMap_π
lift_π_assoc
lift_π
lift_map_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.limit
lift
CategoryTheory.Limits.limMap
CategoryTheory.Functor.obj
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
CategoryTheory.Limits.Cones.postcompose
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift_map
lift_post 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.limit
CategoryTheory.Functor.comp
CategoryTheory.Functor.map
lift
post
CategoryTheory.Functor.mapCone
hom_ext
CategoryTheory.Category.assoc
post_π
CategoryTheory.Functor.map_comp
lift_π
lift_pre 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.limit
CategoryTheory.Functor.comp
lift
pre
CategoryTheory.Limits.Cone.whisker
hom_ext
CategoryTheory.Category.assoc
pre_π
lift_π
lift_π 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.limit
CategoryTheory.Functor.obj
lift
π
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.π
CategoryTheory.Limits.IsLimit.fac
lift_π_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.limit
lift
CategoryTheory.Functor.obj
π
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.π
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift_π
map_post 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.limit
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Functor.comp
CategoryTheory.Functor.map
CategoryTheory.Limits.limMap
post
CategoryTheory.Functor.whiskerRight
hom_ext
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Category.assoc
post_π
CategoryTheory.Functor.map_comp
CategoryTheory.Limits.limMap_π
post_π_assoc
map_pre 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.lim
CategoryTheory.Limits.limit
CategoryTheory.Functor.comp
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Functor.map
pre
CategoryTheory.Functor.whiskerLeft
hom_ext
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Category.assoc
pre_π
CategoryTheory.Limits.limMap_π
pre_π_assoc
map_pre' 📖mathematicalpre
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Functor.comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.limit
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.lim
CategoryTheory.Functor.map
CategoryTheory.Functor.whiskerRight
hom_ext
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
pre_π
CategoryTheory.Category.assoc
CategoryTheory.Limits.limMap_π
pre_π_assoc
w
post_post 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.limit
CategoryTheory.Functor.comp
CategoryTheory.Functor.map
post
hom_ext
CategoryTheory.Category.assoc
post_π
CategoryTheory.Functor.map_comp
post_π 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.limit
CategoryTheory.Functor.comp
post
π
CategoryTheory.Functor.map
lift_π
post_π_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.limit
CategoryTheory.Functor.comp
post
π
CategoryTheory.Functor.map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
post_π
pre_eq 📖mathematicalpre
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.limit
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.LimitCone.cone
CategoryTheory.Functor.comp
CategoryTheory.Iso.hom
isoLimitCone
CategoryTheory.Limits.IsLimit.lift
CategoryTheory.Limits.LimitCone.isLimit
CategoryTheory.Limits.Cone.whisker
CategoryTheory.Iso.inv
hom_ext
pre_π
CategoryTheory.Category.assoc
isoLimitCone_inv_π
CategoryTheory.Limits.IsLimit.fac
isoLimitCone_hom_π
pre_post 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.limit
CategoryTheory.Functor.comp
CategoryTheory.Functor.map
pre
post
hom_ext
CategoryTheory.Category.assoc
post_π
CategoryTheory.Functor.map_comp
pre_π
pre_pre 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.limit
CategoryTheory.Functor.comp
pre
hom_ext
CategoryTheory.Category.assoc
pre_π
pre_π 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.limit
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
pre
π
lift_π
pre_π_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.limit
CategoryTheory.Functor.comp
pre
CategoryTheory.Functor.obj
π
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pre_π
w 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.limit
CategoryTheory.Functor.obj
π
CategoryTheory.Functor.map
CategoryTheory.Limits.Cone.w
w_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.limit
CategoryTheory.Functor.obj
π
CategoryTheory.Functor.map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
w
π_comp_eqToHom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.limit
CategoryTheory.Functor.obj
π
CategoryTheory.eqToHom
CategoryTheory.Category.comp_id
π_comp_eqToHom_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.limit
CategoryTheory.Functor.obj
π
CategoryTheory.eqToHom
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
π_comp_eqToHom

---

← Back to Index