Documentation Verification Report

Category

πŸ“ Source: Mathlib/CategoryTheory/Limits/Indization/Category.lean

Statistics

MetricCount
DefinitionscolimitPresentationCompYoneda, equivalence, inclusion, fullyFaithful, leftExactFunctorEquivalence, lim, limCompInclusion, presentation, yoneda, fullyFaithful, yonedaCompInclusion, parallelPairIsoParallelPairCompIndYoneda, instCategoryInd, instCreatesColimitsOfShapeIndFunctorOppositeTypeInclusionOfIsFiltered, instCreatesFiniteLimitsIndFunctorOppositeTypeInclusionOfHasFiniteLimits, instCreatesLimitsOfShapeIndFunctorOppositeTypeDiscreteInclusionOfHasLimitsOfShape, instCreatesLimitsOfShapeIndFunctorOppositeTypeWalkingParallelPairInclusionOfHasLimitsOfShape, instCreatesLimitsOfSizeIndFunctorOppositeTypeInclusionOfHasLimits
18
Theoremsexists_nonempty_arrow_mk_iso_ind_lim, isIndObject_inclusion_obj, instFaithfulIndFunctorOppositeTypeInclusion, instFaithfulIndYoneda, instFullIndFunctorOppositeTypeInclusion, instFullIndYoneda, instHasColimitsIndOfHasFiniteColimits, instHasColimitsOfShapeDiscreteIndOfFinite, instHasColimitsOfShapeWalkingParallelPairInd, instHasCoproductsIndOfHasFiniteCoproducts, instHasFilteredColimitsInd, instHasFiniteLimitsInd, instHasLimitsInd, instHasLimitsOfShapeDiscreteInd, instHasLimitsOfShapeWalkingParallelPairInd, instIsClosedUnderColimitsOfShapeFunctorOppositeTypeIsIndObjectOfIsFiltered, instIsClosedUnderLimitsOfShapeFunctorOppositeTypeIsIndObjectDiscreteOfHasLimitsOfShape, instPreservesColimitsOfShapeFunctorIndLimOfFinCategoryOfHasColimitsOfShape, instPreservesFiniteColimitsIndYoneda, instPreservesLimitsIndYoneda, instPreservesLimitsOfShapeFunctorIndLimOfFinCategoryOfHasLimitsOfShape, instRepresentablyCoflatIndYoneda
22
Total40

CategoryTheory

Definitions

NameCategoryTheorems
instCategoryInd πŸ“–CompOp
27 mathmath: instHasFilteredColimitsInd, instHasColimitsOfShapeWalkingParallelPairInd, instFullIndYoneda, instPreservesLimitsIndYoneda, Limits.instAB5IndOfHasFiniteLimits, Ind.isIndObject_inclusion_obj, Ind.exists_nonempty_arrow_mk_iso_ind_lim, instHasLimitsInd, Limits.instHasExactColimitsOfShapeIndOfHasFiniteLimits, Ind.isSeparator_range_yoneda, instPreservesLimitsOfShapeFunctorIndLimOfFinCategoryOfHasLimitsOfShape, instFaithfulIndYoneda, instIsIsoIndCoimageImageComparison, Limits.isGrothendieckAbelian_ind, instHasFiniteBiproductsInd, instHasLimitsOfShapeWalkingParallelPairInd, instPreservesColimitsOfShapeFunctorIndLimOfFinCategoryOfHasColimitsOfShape, instHasLimitsOfShapeDiscreteInd, Ind.isSeparating_range_yoneda, instHasColimitsIndOfHasFiniteColimits, instHasColimitsOfShapeDiscreteIndOfFinite, instFaithfulIndFunctorOppositeTypeInclusion, instRepresentablyCoflatIndYoneda, instHasFiniteLimitsInd, instFullIndFunctorOppositeTypeInclusion, instHasCoproductsIndOfHasFiniteCoproducts, instPreservesFiniteColimitsIndYoneda
instCreatesColimitsOfShapeIndFunctorOppositeTypeInclusionOfIsFiltered πŸ“–CompOpβ€”
instCreatesFiniteLimitsIndFunctorOppositeTypeInclusionOfHasFiniteLimits πŸ“–CompOpβ€”
instCreatesLimitsOfShapeIndFunctorOppositeTypeDiscreteInclusionOfHasLimitsOfShape πŸ“–CompOpβ€”
instCreatesLimitsOfShapeIndFunctorOppositeTypeWalkingParallelPairInclusionOfHasLimitsOfShape πŸ“–CompOpβ€”
instCreatesLimitsOfSizeIndFunctorOppositeTypeInclusionOfHasLimits πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
instFaithfulIndFunctorOppositeTypeInclusion πŸ“–mathematicalβ€”Functor.Faithful
Ind
instCategoryInd
Functor
Opposite
Category.opposite
types
Functor.category
Ind.inclusion
β€”Functor.Faithful.comp
Equivalence.faithful_functor
ObjectProperty.faithful_ΞΉ
instFaithfulIndYoneda πŸ“–mathematicalβ€”Functor.Faithful
Ind
instCategoryInd
Ind.yoneda
β€”Limits.isIndObject_yoneda
Functor.Faithful.comp
ObjectProperty.instFaithfulFullSubcategoryLift
Yoneda.yoneda_faithful
Equivalence.faithful_inverse
instFullIndFunctorOppositeTypeInclusion πŸ“–mathematicalβ€”Functor.Full
Ind
instCategoryInd
Functor
Opposite
Category.opposite
types
Functor.category
Ind.inclusion
β€”Functor.Full.comp
Equivalence.full_functor
ObjectProperty.full_ΞΉ
instFullIndYoneda πŸ“–mathematicalβ€”Functor.Full
Ind
instCategoryInd
Ind.yoneda
β€”Limits.isIndObject_yoneda
Functor.Full.comp
ObjectProperty.instFullFullSubcategoryLift
Yoneda.yoneda_full
Equivalence.full_inverse
instHasColimitsIndOfHasFiniteColimits πŸ“–mathematicalβ€”Limits.HasColimits
Ind
instCategoryInd
β€”Limits.has_colimits_of_hasCoequalizers_and_coproducts
instHasCoproductsIndOfHasFiniteCoproducts
Limits.hasFiniteCoproducts_of_hasFiniteColimits
instHasColimitsOfShapeWalkingParallelPairInd
Limits.hasColimitsOfShape_of_hasFiniteColimits
instHasColimitsOfShapeDiscreteIndOfFinite πŸ“–mathematicalβ€”Limits.HasColimitsOfShape
Discrete
discreteCategory
Ind
instCategoryInd
β€”Limits.hasColimitsOfShape_of_has_filtered_colimits
instHasFilteredColimitsInd
instIsFilteredForall
Limits.IndObjectPresentation.instIsFilteredI
Limits.hasColimitOfHasColimitsOfShape
final_eval
Limits.hasColimit_of_iso
Limits.instHasColimitCompOfPreservesColimit
Limits.functorCategoryHasColimit
Limits.comp_preservesColimit
Limits.PreservesColimitsOfShape.preservesColimit
whiskeringRight_preservesColimitsOfShape
Limits.instPreservesColimitsOfShapeDiscreteOfFiniteOfPreservesFiniteCoproducts
Limits.instPreservesFiniteCoproductsOfPreservesFiniteColimits
instPreservesFiniteColimitsIndYoneda
Functor.instPreservesColimitsOfShapeOfIsLeftAdjoint
Limits.instIsLeftAdjointFunctorColim
instHasColimitsOfShapeWalkingParallelPairInd πŸ“–mathematicalβ€”Limits.HasColimitsOfShape
Limits.WalkingParallelPair
Limits.walkingParallelPairHomCategory
Ind
instCategoryInd
β€”nonempty_indParallelPairPresentation
ObjectProperty.FullSubcategory.property
Limits.hasColimit_of_iso
instIsFilteredI
Limits.instHasColimitCompOfPreservesColimit
Limits.functorCategoryHasColimit
Limits.hasColimitOfHasColimitsOfShape
Limits.PreservesColimitsOfShape.preservesColimit
instPreservesColimitsOfShapeFunctorIndLimOfFinCategoryOfHasColimitsOfShape
instHasCoproductsIndOfHasFiniteCoproducts πŸ“–mathematicalβ€”Limits.HasCoproducts
Ind
instCategoryInd
β€”Limits.hasColimitsOfShape_of_equivalence
instHasColimitsOfShapeDiscreteIndOfFinite
instFiniteULift
Finite.of_fintype
Limits.hasColimitsOfShape_discrete
Limits.hasCoproducts_of_finite_and_filtered
instHasFilteredColimitsInd
instHasFilteredColimitsInd πŸ“–mathematicalβ€”Limits.HasFilteredColimits
Ind
instCategoryInd
β€”hasColimitsOfShape_of_hasColimitsOfShape_createsColimitsOfShape
Limits.functorCategoryHasColimitsOfShape
Limits.Types.hasColimitsOfShape
UnivLE.small
UnivLE.self
instHasFiniteLimitsInd πŸ“–mathematicalβ€”Limits.HasFiniteLimits
Ind
instCategoryInd
β€”Limits.hasFiniteLimits_of_hasLimitsLimits_of_createsFiniteLimits
Limits.hasFiniteLimits_of_hasLimitsOfSizeβ‚€
Limits.functorCategoryHasLimitsOfSize
Limits.Types.hasLimitsOfSize
univLE_of_max
UnivLE.self
instHasLimitsInd πŸ“–mathematicalβ€”Limits.HasLimits
Ind
instCategoryInd
β€”hasLimits_of_hasLimits_createsLimits
Limits.functorCategoryHasLimitsOfSize
Limits.Types.hasLimitsOfSize
UnivLE.self
instHasLimitsOfShapeDiscreteInd πŸ“–mathematicalβ€”Limits.HasLimitsOfShape
Discrete
discreteCategory
Ind
instCategoryInd
β€”hasLimitsOfShape_of_hasLimitsOfShape_createsLimitsOfShape
Limits.functorCategoryHasLimitsOfShape
Limits.Types.instHasProductsType
instHasLimitsOfShapeWalkingParallelPairInd πŸ“–mathematicalβ€”Limits.HasLimitsOfShape
Limits.WalkingParallelPair
Limits.walkingParallelPairHomCategory
Ind
instCategoryInd
β€”hasLimitsOfShape_of_hasLimitsOfShape_createsLimitsOfShape
Limits.functorCategoryHasLimitsOfShape
Limits.Types.hasLimitsOfShape
UnivLE.small
univLE_of_max
UnivLE.self
instIsClosedUnderColimitsOfShapeFunctorOppositeTypeIsIndObjectOfIsFiltered πŸ“–mathematicalβ€”ObjectProperty.IsClosedUnderColimitsOfShape
Functor
Opposite
Category.opposite
types
Functor.category
Limits.IsIndObject
β€”ObjectProperty.IsClosedUnderColimitsOfShape.mk'
Limits.IsIndObject.instIsClosedUnderIsomorphismsFunctorOppositeType
Limits.isIndObject_colimit
instIsClosedUnderLimitsOfShapeFunctorOppositeTypeIsIndObjectDiscreteOfHasLimitsOfShape πŸ“–mathematicalβ€”ObjectProperty.IsClosedUnderLimitsOfShape
Functor
Opposite
Category.opposite
types
Functor.category
Limits.IsIndObject
Discrete
discreteCategory
β€”ObjectProperty.IsClosedUnderLimitsOfShape.mk'
Limits.IsIndObject.instIsClosedUnderIsomorphismsFunctorOppositeType
Limits.isIndObject_limit_of_discrete_of_hasLimitsOfShape
instPreservesColimitsOfShapeFunctorIndLimOfFinCategoryOfHasColimitsOfShape πŸ“–mathematicalβ€”Limits.PreservesColimitsOfShape
Functor
Functor.category
Ind
instCategoryInd
Ind.lim
β€”Limits.comp_preservesColimitsOfShape
whiskeringRight_preservesColimitsOfShape
Limits.preservesColimitsOfShapeOfPreservesFiniteColimits
instPreservesFiniteColimitsIndYoneda
Functor.instPreservesColimitsOfShapeOfIsLeftAdjoint
Limits.instIsLeftAdjointFunctorColim
instPreservesFiniteColimitsIndYoneda πŸ“–mathematicalβ€”Limits.PreservesFiniteColimits
Ind
instCategoryInd
Ind.yoneda
β€”preservesFiniteColimits_of_coflat
instRepresentablyCoflatIndYoneda
instPreservesLimitsIndYoneda πŸ“–mathematicalβ€”Limits.PreservesLimits
Ind
instCategoryInd
Ind.yoneda
β€”Limits.preservesLimits_of_reflects_of_preserves
Limits.preservesLimits_of_natIso
yonedaFunctor_preservesLimits
Limits.fullyFaithful_reflectsLimits
instFullIndFunctorOppositeTypeInclusion
instFaithfulIndFunctorOppositeTypeInclusion
instPreservesLimitsOfShapeFunctorIndLimOfFinCategoryOfHasLimitsOfShape πŸ“–mathematicalβ€”Limits.PreservesLimitsOfShape
Functor
Functor.category
Ind
instCategoryInd
Ind.lim
β€”Limits.preservesLimitsOfShape_of_reflects_of_preserves
Limits.preservesLimitsOfShape_of_natIso
Limits.functorCategoryHasColimitsOfShape
Limits.Types.hasColimitsOfShape
UnivLE.small
UnivLE.self
Limits.comp_preservesLimitsOfShape
whiskeringRight_preservesLimitsOfShape
Limits.preservesLimitsOfShapeOfPreservesFiniteLimits
Limits.PreservesLimits.preservesFiniteLimits
yonedaFunctor_preservesLimits
instPreservesLimitsOfShapeFunctorColim
Limits.Types.hasLimitsOfShape
Countable.toSmall
Finite.to_countable
Finite.of_fintype
Limits.filtered_colim_preservesFiniteLimits
Limits.reflectsLimitsOfShape_of_reflectsLimits
Types.instReflectsLimitsOfSizeForgetTypeHom
Functor.instPreservesColimitsOfShapeOfIsLeftAdjoint
Functor.isLeftAdjoint_of_isEquivalence
Types.instIsEquivalenceForgetTypeHom
Functor.corepresentable_preservesLimitsOfShape
Types.instIsCorepresentableForgetTypeHom
Limits.fullyFaithful_reflectsLimits
instFullIndFunctorOppositeTypeInclusion
instFaithfulIndFunctorOppositeTypeInclusion
instRepresentablyCoflatIndYoneda πŸ“–mathematicalβ€”RepresentablyCoflat
Ind
instCategoryInd
Ind.yoneda
β€”Limits.isIndObject_iff
Ind.isIndObject_inclusion_obj
IsFiltered.of_equivalence
CostructuredArrow.isEquivalence_post
instFullIndFunctorOppositeTypeInclusion
instFaithfulIndFunctorOppositeTypeInclusion

CategoryTheory.Ind

Definitions

NameCategoryTheorems
colimitPresentationCompYoneda πŸ“–CompOpβ€”
equivalence πŸ“–CompOpβ€”
inclusion πŸ“–CompOp
3 mathmath: isIndObject_inclusion_obj, CategoryTheory.instFaithfulIndFunctorOppositeTypeInclusion, CategoryTheory.instFullIndFunctorOppositeTypeInclusion
leftExactFunctorEquivalence πŸ“–CompOpβ€”
lim πŸ“–CompOp
3 mathmath: exists_nonempty_arrow_mk_iso_ind_lim, CategoryTheory.instPreservesLimitsOfShapeFunctorIndLimOfFinCategoryOfHasLimitsOfShape, CategoryTheory.instPreservesColimitsOfShapeFunctorIndLimOfFinCategoryOfHasColimitsOfShape
limCompInclusion πŸ“–CompOpβ€”
presentation πŸ“–CompOpβ€”
yoneda πŸ“–CompOp
7 mathmath: CategoryTheory.instFullIndYoneda, CategoryTheory.instPreservesLimitsIndYoneda, isSeparator_range_yoneda, CategoryTheory.instFaithfulIndYoneda, isSeparating_range_yoneda, CategoryTheory.instRepresentablyCoflatIndYoneda, CategoryTheory.instPreservesFiniteColimitsIndYoneda
yonedaCompInclusion πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
exists_nonempty_arrow_mk_iso_ind_lim πŸ“–mathematicalβ€”CategoryTheory.Iso
CategoryTheory.Arrow
CategoryTheory.Ind
CategoryTheory.instCategoryInd
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
lim
CategoryTheory.Functor.map
β€”CategoryTheory.nonempty_indParallelPairPresentation
CategoryTheory.ObjectProperty.FullSubcategory.property
CategoryTheory.instIsFilteredI
CategoryTheory.NatTrans.naturality
isIndObject_inclusion_obj πŸ“–mathematicalβ€”CategoryTheory.Limits.IsIndObject
CategoryTheory.Functor.obj
CategoryTheory.Ind
CategoryTheory.instCategoryInd
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
inclusion
β€”CategoryTheory.ObjectProperty.FullSubcategory.property

CategoryTheory.Ind.inclusion

Definitions

NameCategoryTheorems
fullyFaithful πŸ“–CompOpβ€”

CategoryTheory.Ind.yoneda

Definitions

NameCategoryTheorems
fullyFaithful πŸ“–CompOpβ€”

CategoryTheory.IndParallelPairPresentation

Definitions

NameCategoryTheorems
parallelPairIsoParallelPairCompIndYoneda πŸ“–CompOpβ€”

---

← Back to Index