Documentation Verification Report

Equalizers

📁 Source: Mathlib/CategoryTheory/Limits/Indization/Equalizers.lean

Statistics

MetricCount
Definitions0
TheoremsclosedUnderLimitsOfShape_walkingParallelPair_isIndObject, isClosedUnderLimitsOfShape_isIndObject_walkingParallelPair, isIndObject_limit_comp_yoneda_comp_colim
3
Total3

CategoryTheory.Limits

Theorems

NameKindAssumesProvesValidatesDepends On
closedUnderLimitsOfShape_walkingParallelPair_isIndObject 📖mathematicalCategoryTheory.ObjectProperty.IsClosedUnderLimitsOfShape
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
IsIndObject
WalkingParallelPair
walkingParallelPairHomCategory
isClosedUnderLimitsOfShape_isIndObject_walkingParallelPair
isClosedUnderLimitsOfShape_isIndObject_walkingParallelPair 📖mathematicalCategoryTheory.ObjectProperty.IsClosedUnderLimitsOfShape
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
IsIndObject
WalkingParallelPair
walkingParallelPairHomCategory
CategoryTheory.ObjectProperty.IsClosedUnderLimitsOfShape.mk'
IsIndObject.instIsClosedUnderIsomorphismsFunctorOppositeType
CategoryTheory.nonempty_indParallelPairPresentation
IsIndObject.map
functorCategoryHasColimitsOfShape
Types.hasColimitsOfShape
UnivLE.small
UnivLE.self
functorCategoryHasLimit
Types.hasLimit
univLE_of_max
CategoryTheory.Iso.isIso_hom
isIndObject_limit_comp_yoneda_comp_colim
CategoryTheory.instIsFilteredI
isIndObject_limit_comp_yoneda
hasLimitOfHasLimitsOfShape
isIndObject_limit_comp_yoneda_comp_colim 📖mathematicalIsIndObject
limit
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Functor.flip
CategoryTheory.yoneda
functorCategoryHasLimit
Types.hasLimit
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.Functor.whiskeringRight
colim
functorCategoryHasColimitsOfShape
Types.hasColimitsOfShape
functorCategoryHasLimit
Types.hasLimit
UnivLE.small
univLE_of_max
UnivLE.self
IsIndObject.map
functorCategoryHasColimit
hasColimitOfHasColimitsOfShape
functorCategoryHasColimitsOfShape
Types.hasColimitsOfShape
CategoryTheory.Iso.isIso_hom
hasLimitOfHasLimitsOfShape
functorCategoryHasLimitsOfShape
Types.hasLimitsOfShape
CategoryTheory.instPreservesLimitsOfShapeFunctorColim
filtered_colim_preservesFiniteLimits
ReflectsFiniteLimits.reflects
reflectsFiniteLimits_of_reflectsIsomorphisms
CategoryTheory.reflectsIsomorphisms_of_full_and_faithful
CategoryTheory.Types.instFullForgetTypeHom
CategoryTheory.instFaithfulForget
hasFiniteLimits_of_hasLimits
Types.hasLimitsOfSize
PreservesLimits.preservesFiniteLimits
CategoryTheory.Types.instPreservesLimitsOfSizeForgetTypeHom
CategoryTheory.Functor.instPreservesColimitsOfShapeOfIsLeftAdjoint
CategoryTheory.Functor.isLeftAdjoint_of_isEquivalence
CategoryTheory.Types.instIsEquivalenceForgetTypeHom
CategoryTheory.Functor.corepresentable_preservesLimitsOfShape
CategoryTheory.Types.instIsCorepresentableForgetTypeHom
isIndObject_colimit
hasLimitCompEvaluation
CategoryTheory.Iso.isIso_inv

---

← Back to Index