Documentation Verification Report

IndObject

📁 Source: Mathlib/CategoryTheory/Limits/Indization/IndObject.lean

Statistics

MetricCount
DefinitionsIndObjectPresentation, F, I, cocone, coconeIsColimit, extend, instSmallCategoryI, isColimit, ofCocone, toCostructuredArrow, yoneda, ι, , IsIndObject, presentation
15
Theoremscocone_pt, extend_F, extend_I, extend_isColimit_desc_app, extend_ι_app_app, extend_ℐ, hI, instFinalICostructuredArrowFunctorOppositeTypeYonedaToCostructuredArrow, instIsFilteredI, ofCocone_F, ofCocone_I, ofCocone_isColimit, ofCocone_ι, ofCocone_ℐ, toCostructuredArrow_map_left, toCostructuredArrow_obj_hom, toCostructuredArrow_obj_left, toCostructuredArrow_obj_right_as, yoneda_F, yoneda_I, yoneda_isColimit_desc, yoneda_ι_app, yoneda_ℐ, finallySmall, iff_of_iso, instIsClosedUnderIsomorphismsFunctorOppositeType, isFiltered, map, mk, nonempty_presentation, isIndObject_iff, isIndObject_iff_preservesFiniteLimits, isIndObject_limit_comp_yoneda, isIndObject_of_isFiltered_of_finallySmall, isIndObject_yoneda
35
Total50

CategoryTheory.Limits

Definitions

NameCategoryTheorems
IndObjectPresentation 📖CompData
1 mathmath: IsIndObject.nonempty_presentation
IsIndObject 📖CompData
14 mathmath: isClosedUnderLimitsOfShape_isIndObject_walkingParallelPair, CategoryTheory.instIsClosedUnderLimitsOfShapeFunctorOppositeTypeIsIndObjectDiscreteOfHasLimitsOfShape, closedUnderLimitsOfShape_walkingParallelPair_isIndObject, CategoryTheory.Ind.isIndObject_inclusion_obj, CategoryTheory.instLocallySmallFullSubcategoryFunctorOppositeTypeIsIndObject, isIndObject_iff, isIndObject_limit_comp_yoneda, IsIndObject.instIsClosedUnderIsomorphismsFunctorOppositeType, isIndObject_of_isFiltered_of_finallySmall, isIndObject_yoneda, IsIndObject.iff_of_iso, isIndObject_iff_preservesFiniteLimits, IsIndObject.mk, CategoryTheory.instIsClosedUnderColimitsOfShapeFunctorOppositeTypeIsIndObjectOfIsFiltered

Theorems

NameKindAssumesProvesValidatesDepends On
isIndObject_iff 📖mathematicalIsIndObject
CategoryTheory.IsFiltered
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.FinallySmall
IsIndObject.isFiltered
IsIndObject.finallySmall
isIndObject_of_isFiltered_of_finallySmall
isIndObject_iff_preservesFiniteLimits 📖mathematicalIsIndObject
PreservesFiniteLimits
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
isIndObject_iff
preservesFiniteLimits_of_isFiltered_costructuredArrow_yoneda
isFiltered_costructuredArrow_yoneda_of_preservesFiniteLimits
CategoryTheory.essentiallySmallSelf
CategoryTheory.finallySmall_of_essentiallySmall
isIndObject_limit_comp_yoneda 📖mathematicalIsIndObject
limit
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.yoneda
instHasLimitCompOfPreservesLimit
PreservesLimitsOfShape.preservesLimit
PreservesLimitsOfSize.preservesLimitsOfShape
CategoryTheory.yonedaFunctor_preservesLimits
IsIndObject.map
instHasLimitCompOfPreservesLimit
PreservesLimitsOfShape.preservesLimit
PreservesLimitsOfSize.preservesLimitsOfShape
CategoryTheory.yonedaFunctor_preservesLimits
CategoryTheory.Iso.isIso_hom
isIndObject_yoneda
isIndObject_of_isFiltered_of_finallySmall 📖mathematicalIsIndObjectCategoryTheory.IsFiltered.toIsFilteredOrEmpty
CategoryTheory.Functor.final_of_natIso
CategoryTheory.final_fromFinalModel
CategoryTheory.Functor.final_of_comp_full_faithful'
CategoryTheory.IsFiltered.SmallFilteredIntermediate.instFullInclusion
CategoryTheory.IsFiltered.SmallFilteredIntermediate.instFaithfulInclusion
Nonempty.map
CategoryTheory.IsFiltered.nonempty
CategoryTheory.IsFiltered.SmallFilteredIntermediate.instOfNonempty
isIndObject_yoneda 📖mathematicalIsIndObject
CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda

CategoryTheory.Limits.IndObjectPresentation

Definitions

NameCategoryTheorems
F 📖CompOp
9 mathmath: extend_ι_app_app, extend_F, toCostructuredArrow_obj_left, toCostructuredArrow_map_left, toCostructuredArrow_obj_hom, extend_isColimit_desc_app, ofCocone_F, cocone_pt, yoneda_F
I 📖CompOp
15 mathmath: hI, CategoryTheory.NonemptyParallelPairPresentationAux.hf, extend_ι_app_app, instFinalICostructuredArrowFunctorOppositeTypeYonedaToCostructuredArrow, instIsFilteredI, toCostructuredArrow_obj_right_as, toCostructuredArrow_obj_left, toCostructuredArrow_map_left, toCostructuredArrow_obj_hom, ofCocone_I, extend_isColimit_desc_app, cocone_pt, yoneda_I, CategoryTheory.NonemptyParallelPairPresentationAux.hg, extend_I
cocone 📖CompOp
5 mathmath: extend_ι_app_app, toCostructuredArrow_map_left, toCostructuredArrow_obj_hom, extend_isColimit_desc_app, cocone_pt
coconeIsColimit 📖CompOp
1 mathmath: extend_isColimit_desc_app
extend 📖CompOp
5 mathmath: extend_ι_app_app, extend_F, extend_ℐ, extend_isColimit_desc_app, extend_I
instSmallCategoryI 📖CompOp
8 mathmath: CategoryTheory.NonemptyParallelPairPresentationAux.hf, instFinalICostructuredArrowFunctorOppositeTypeYonedaToCostructuredArrow, instIsFilteredI, toCostructuredArrow_obj_right_as, toCostructuredArrow_obj_left, toCostructuredArrow_map_left, toCostructuredArrow_obj_hom, CategoryTheory.NonemptyParallelPairPresentationAux.hg
isColimit 📖CompOp
3 mathmath: yoneda_isColimit_desc, ofCocone_isColimit, extend_isColimit_desc_app
ofCocone 📖CompOp
5 mathmath: ofCocone_I, ofCocone_isColimit, ofCocone_ι, ofCocone_F, ofCocone_ℐ
toCostructuredArrow 📖CompOp
7 mathmath: CategoryTheory.NonemptyParallelPairPresentationAux.hf, instFinalICostructuredArrowFunctorOppositeTypeYonedaToCostructuredArrow, toCostructuredArrow_obj_right_as, toCostructuredArrow_obj_left, toCostructuredArrow_map_left, toCostructuredArrow_obj_hom, CategoryTheory.NonemptyParallelPairPresentationAux.hg
yoneda 📖CompOp
5 mathmath: yoneda_isColimit_desc, yoneda_ι_app, yoneda_I, yoneda_F, yoneda_ℐ
ι 📖CompOp
3 mathmath: extend_ι_app_app, yoneda_ι_app, ofCocone_ι
📖CompOp
10 mathmath: hI, extend_ι_app_app, extend_ℐ, toCostructuredArrow_obj_left, toCostructuredArrow_map_left, toCostructuredArrow_obj_hom, extend_isColimit_desc_app, ofCocone_ℐ, cocone_pt, yoneda_ℐ

Theorems

NameKindAssumesProvesValidatesDepends On
cocone_pt 📖mathematicalCategoryTheory.Limits.Cocone.pt
I

CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
F
CategoryTheory.yoneda
cocone
extend_F 📖mathematicalF
extend
extend_I 📖mathematicalI
extend
extend_isColimit_desc_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Limits.Cocone.pt
I

CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
F
CategoryTheory.yoneda
CategoryTheory.Limits.Cocone.extend
cocone
CategoryTheory.Limits.IsColimit.desc
isColimit
extend
coconeIsColimit
CategoryTheory.inv
CategoryTheory.Functor.obj
CategoryTheory.NatIso.isIso_app_of_isIso
CategoryTheory.NatIso.isIso_app_of_isIso
CategoryTheory.NatIso.isIso_inv_app
extend_ι_app_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.obj
I

CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.unop
Opposite.op
CategoryTheory.Functor.comp
F
CategoryTheory.yoneda
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.Cocone.extend
cocone
ι
extend
CategoryTheory.Limits.Cocone.ι
extend_ℐ 📖mathematical
extend
hI 📖mathematicalCategoryTheory.IsFiltered
I
instFinalICostructuredArrowFunctorOppositeTypeYonedaToCostructuredArrow 📖mathematicalCategoryTheory.Functor.Final
I
instSmallCategoryI
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.instCategoryCostructuredArrow
toCostructuredArrow
CategoryTheory.Presheaf.final_toCostructuredArrow_comp_pre
instIsFilteredI 📖mathematicalCategoryTheory.IsFiltered
I
instSmallCategoryI
hI
ofCocone_F 📖mathematicalF
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.yoneda
ofCocone
ofCocone_I 📖mathematicalI
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.yoneda
ofCocone
ofCocone_isColimit 📖mathematicalisColimit
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.yoneda
ofCocone
ofCocone_ι 📖mathematicalι
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.yoneda
ofCocone
CategoryTheory.Limits.Cocone.ι
ofCocone_ℐ 📖mathematical
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.yoneda
ofCocone
toCostructuredArrow_map_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
I

CategoryTheory.Functor.comp
F
CategoryTheory.Limits.Cocone.pt
cocone
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.CostructuredArrow.pre
instSmallCategoryI
CategoryTheory.Limits.Cocone.toCostructuredArrow
CategoryTheory.Functor.map
toCostructuredArrow
toCostructuredArrow_obj_hom 📖mathematicalCategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
I
instSmallCategoryI
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
toCostructuredArrow
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp

F
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.ι
cocone
toCostructuredArrow_obj_left 📖mathematicalCategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
I
instSmallCategoryI
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
toCostructuredArrow

F
toCostructuredArrow_obj_right_as 📖mathematicalCategoryTheory.Discrete.as
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
I
instSmallCategoryI
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
toCostructuredArrow
yoneda_F 📖mathematicalF
CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
yoneda
CategoryTheory.Functor.fromPUnit
yoneda_I 📖mathematicalI
CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
yoneda
CategoryTheory.Discrete
yoneda_isColimit_desc 📖mathematicalCategoryTheory.Limits.IsColimit.desc
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.fromPUnit
CategoryTheory.yoneda
CategoryTheory.Functor.obj
CategoryTheory.Functor.const
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
isColimit
yoneda
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.Cocone.ι
yoneda_ι_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.fromPUnit
CategoryTheory.yoneda
CategoryTheory.Functor.obj
CategoryTheory.Functor.const
ι
yoneda
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
yoneda_ℐ 📖mathematical
CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
yoneda
CategoryTheory.discreteCategory

CategoryTheory.Limits.IsIndObject

Definitions

NameCategoryTheorems
presentation 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
finallySmall 📖mathematicalCategoryTheory.Limits.IsIndObjectCategoryTheory.FinallySmall
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.FinallySmall.mk'
CategoryTheory.Limits.IndObjectPresentation.instFinalICostructuredArrowFunctorOppositeTypeYonedaToCostructuredArrow
iff_of_iso 📖mathematicalCategoryTheory.Limits.IsIndObjectmap
CategoryTheory.IsIso.inv_isIso
instIsClosedUnderIsomorphismsFunctorOppositeType 📖mathematicalCategoryTheory.ObjectProperty.IsClosedUnderIsomorphisms
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.Limits.IsIndObject
map
CategoryTheory.Iso.isIso_hom
isFiltered 📖mathematicalCategoryTheory.Limits.IsIndObjectCategoryTheory.IsFiltered
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.IsFiltered.of_final
CategoryTheory.Limits.IndObjectPresentation.instFinalICostructuredArrowFunctorOppositeTypeYonedaToCostructuredArrow
CategoryTheory.Limits.IndObjectPresentation.instIsFilteredI
map 📖CategoryTheory.Limits.IsIndObject
mk 📖mathematicalCategoryTheory.Limits.IsIndObject
nonempty_presentation 📖mathematicalCategoryTheory.Limits.IsIndObjectCategoryTheory.Limits.IndObjectPresentation

---

← Back to Index