Documentation Verification Report

ParallelPair

📁 Source: Mathlib/CategoryTheory/Limits/Indization/ParallelPair.lean

Statistics

MetricCount
DefinitionsIndParallelPairPresentation, F₁, F₂, I, isColimit₁, isColimit₂, parallelPairIsoParallelPairCompYoneda, ι₁, ι₂, φ, ψ, , F₁, F₂, K, isColimit₁, isColimit₂, presentation, ι₁, ι₂, ψ, ϕ, instSmallCategoryI
23
TheoremshI, hf, hg, hf, hg, instIsFilteredI, nonempty_indParallelPairPresentation
7
Total30

CategoryTheory

Definitions

NameCategoryTheorems
IndParallelPairPresentation 📖CompData
1 mathmath: nonempty_indParallelPairPresentation
instSmallCategoryI 📖CompOp
1 mathmath: instIsFilteredI

Theorems

NameKindAssumesProvesValidatesDepends On
instIsFilteredI 📖mathematicalIsFiltered
IndParallelPairPresentation.I
instSmallCategoryI
IndParallelPairPresentation.hI
nonempty_indParallelPairPresentation 📖mathematicalLimits.IsIndObjectIndParallelPairPresentation

CategoryTheory.IndParallelPairPresentation

Definitions

NameCategoryTheorems
F₁ 📖CompOp
2 mathmath: hf, hg
F₂ 📖CompOp
2 mathmath: hf, hg
I 📖CompOp
4 mathmath: hf, CategoryTheory.instIsFilteredI, hg, hI
isColimit₁ 📖CompOp
2 mathmath: hf, hg
isColimit₂ 📖CompOp
parallelPairIsoParallelPairCompYoneda 📖CompOp
ι₁ 📖CompOp
2 mathmath: hf, hg
ι₂ 📖CompOp
2 mathmath: hf, hg
φ 📖CompOp
1 mathmath: hf
ψ 📖CompOp
1 mathmath: hg
📖CompOp
3 mathmath: hf, hg, hI

Theorems

NameKindAssumesProvesValidatesDepends On
hI 📖mathematicalCategoryTheory.IsFiltered
I
hf 📖mathematicalCategoryTheory.Limits.IsColimit.map
I

CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
F₁
CategoryTheory.yoneda
F₂
ι₁
isColimit₁
ι₂
CategoryTheory.Functor.whiskerRight
φ
hg 📖mathematicalCategoryTheory.Limits.IsColimit.map
I

CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
F₁
CategoryTheory.yoneda
F₂
ι₁
isColimit₁
ι₂
CategoryTheory.Functor.whiskerRight
ψ

CategoryTheory.NonemptyParallelPairPresentationAux

Definitions

NameCategoryTheorems
F₁ 📖CompOp
2 mathmath: hf, hg
F₂ 📖CompOp
2 mathmath: hf, hg
K 📖CompOp
2 mathmath: hf, hg
isColimit₁ 📖CompOp
2 mathmath: hf, hg
isColimit₂ 📖CompOp
presentation 📖CompOp
ι₁ 📖CompOp
2 mathmath: hf, hg
ι₂ 📖CompOp
2 mathmath: hf, hg
ψ 📖CompOp
1 mathmath: hg
ϕ 📖CompOp
1 mathmath: hf

Theorems

NameKindAssumesProvesValidatesDepends On
hf 📖mathematicalCategoryTheory.Limits.IsColimit.map
K
CategoryTheory.commaCategory
CategoryTheory.Limits.IndObjectPresentation.I
CategoryTheory.Limits.IndObjectPresentation.instSmallCategoryI
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.prod'
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.prod'
CategoryTheory.Functor.comp
CategoryTheory.Limits.IndObjectPresentation.toCostructuredArrow
CategoryTheory.CostructuredArrow.map
F₁
F₂
ι₁
isColimit₁
ι₂
CategoryTheory.Functor.whiskerRight
ϕ
CategoryTheory.Limits.IsColimit.hom_ext
CategoryTheory.Limits.IsColimit.ι_map
CategoryTheory.Discrete.functor_map_id
CategoryTheory.Category.comp_id
CategoryTheory.CommaMorphism.w
hg 📖mathematicalCategoryTheory.Limits.IsColimit.map
K
CategoryTheory.commaCategory
CategoryTheory.Limits.IndObjectPresentation.I
CategoryTheory.Limits.IndObjectPresentation.instSmallCategoryI
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.prod'
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.prod'
CategoryTheory.Functor.comp
CategoryTheory.Limits.IndObjectPresentation.toCostructuredArrow
CategoryTheory.CostructuredArrow.map
F₁
F₂
ι₁
isColimit₁
ι₂
CategoryTheory.Functor.whiskerRight
ψ
CategoryTheory.Limits.IsColimit.hom_ext
CategoryTheory.Limits.IsColimit.ι_map
CategoryTheory.Discrete.functor_map_id
CategoryTheory.Category.comp_id
CategoryTheory.CommaMorphism.w

---

← Back to Index