ParallelPair
📁 Source: Mathlib/CategoryTheory/Limits/Indization/ParallelPair.lean
Statistics
| Metric | Count |
|---|---|
DefinitionsIndParallelPairPresentation, F₁, F₂, I, isColimit₁, isColimit₂, parallelPairIsoParallelPairCompYoneda, ι₁, ι₂, φ, ψ, ℐ, F₁, F₂, K, isColimit₁, isColimit₂, presentation, ι₁, ι₂, ψ, ϕ, instSmallCategoryI | 23 |
| 7 | |
| Total | 30 |
CategoryTheory
Definitions
| Name | Category | Theorems |
|---|---|---|
IndParallelPairPresentation 📖 | CompData | |
instSmallCategoryI 📖 | CompOp |
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
instIsFilteredI 📖 | mathematical | — | IsFilteredIndParallelPairPresentation.IinstSmallCategoryI | — | IndParallelPairPresentation.hI |
nonempty_indParallelPairPresentation 📖 | mathematical | Limits.IsIndObject | IndParallelPairPresentation | — | — |
CategoryTheory.IndParallelPairPresentation
Definitions
| Name | Category | Theorems |
|---|---|---|
F₁ 📖 | CompOp | |
F₂ 📖 | CompOp | |
I 📖 | CompOp | |
isColimit₁ 📖 | CompOp | |
isColimit₂ 📖 | CompOp | — |
parallelPairIsoParallelPairCompYoneda 📖 | CompOp | — |
ι₁ 📖 | CompOp | |
ι₂ 📖 | CompOp | |
φ 📖 | CompOp | |
ψ 📖 | CompOp | |
ℐ 📖 | CompOp |
Theorems
CategoryTheory.NonemptyParallelPairPresentationAux
Definitions
| Name | Category | Theorems |
|---|---|---|
F₁ 📖 | CompOp | |
F₂ 📖 | CompOp | |
K 📖 | CompOp | |
isColimit₁ 📖 | CompOp | |
isColimit₂ 📖 | CompOp | — |
presentation 📖 | CompOp | — |
ι₁ 📖 | CompOp | |
ι₂ 📖 | CompOp | |
ψ 📖 | CompOp | |
ϕ 📖 | CompOp |
Theorems
---