Documentation Verification Report

IsConnected

📁 Source: Mathlib/CategoryTheory/Limits/IsConnected.lean

Statistics

MetricCount
DefinitionsIsConnected, colimitConstPUnitIsoPUnit, constPUnitFunctor, isColimitPUnitCocone, pUnitCocone, IsConnected, IsConnected
7
TheoremsisConnected_iff_of_final, isConnected_iff_of_initial, instHasColimitConstPUnitFunctor, instSubsingletonColimitPUnit, isConnected_iff_colimit_constPUnitFunctor_iso_pUnit, isConnected_iff_isColimit_pUnitCocone, pUnitCocone_pt, pUnitCocone_ι_app, zigzag_of_eqvGen_colimitTypeRel, isConnected_of_hasInitial, isConnected_of_hasTerminal, isConnected_of_isInitial, isConnected_of_isTerminal
13
Total20

CategoryTheory

Definitions

NameCategoryTheorems
IsConnected 📖CompData
47 mathmath: TwoSquare.instIsConnectedStructuredArrowCostructuredArrowObjCostructuredArrowRightwardsOfGuitartExact, Functor.isConnected_iff_of_final, IsConnected.of_induct, isConnected_of_zigzag, isConnected_op_iff_isConnected, isConnected_op, IsConnected.of_constant_of_preserves_morphisms, Comma.isConnected_comma_of_initial, TwoSquare.instIsConnectedCostructuredArrowStructuredArrowObjStructuredArrowDownwardsOfGuitartExact, isConnected_iff_of_equivalence, isConnected_of_hasTerminal, Functor.Final.out, isConnected_of_hasInitial, Functor.Initial.out, instIsConnectedWidePushoutShape, IsCofiltered.isConnected, Limits.Types.isConnected_iff_isColimit_pUnitCocone, HomotopicalAlgebra.CofibrantObject.instIsConnectedLeftResolutionWeakEquivalencesLocalizerMorphism, IsFiltered.isConnected, HomotopicalAlgebra.FibrantObject.instIsConnectedRightResolutionWeakEquivalencesLocalizerMorphism, instIsConnectedULiftHomULift, widePullbackShape_connected, TwoSquare.GuitartExact.isConnected_rightwards, LocalizerMorphism.isConnected_rightResolution_of_functorial_resolutions, isConnected_of_nonempty_and_subsingleton, Limits.Types.isConnected_iff_colimit_constPUnitFunctor_iso_pUnit, isConnected_of_isInitial, isConnected_iff_initial_of_unique, TwoSquare.isConnected_rightwards_iff_downwards, Comma.isConnected_comma_of_final, IsConnected.prod, Limits.WalkingParallelPair.instIsConnectedStructuredArrowWalkingReflexivePairInclusionWalkingReflexivePair, isConnected_iff_final_of_unique, instIsConnectedComponent, TwoSquare.guitartExact_iff_isConnected_rightwards, IsSifted.instIsConnected, widePushoutShape_connected, zigzag_isConnected, instIsConnectedWidePullbackShape, IsConnected.of_any_functor_const_on_obj, TwoSquare.guitartExact_iff_isConnected_downwards, ActionCategory.instIsConnectedOfIsPretransitiveOfNonempty, parallel_pair_connected, isConnected_of_equivalent, isConnected_of_isTerminal, Functor.isConnected_iff_of_initial, isConnected_of_isConnected_op

Theorems

NameKindAssumesProvesValidatesDepends On
isConnected_of_hasInitial 📖mathematicalIsConnectedisConnected_of_isInitial
isConnected_of_hasTerminal 📖mathematicalIsConnectedisConnected_of_isTerminal
isConnected_of_isInitial 📖mathematicalIsConnectedisConnected_of_zigzag
Zag.symm
Zag.of_hom
isConnected_of_isTerminal 📖mathematicalIsConnectedisConnected_of_zigzag
Zag.of_hom
Zag.symm

CategoryTheory.Functor

Theorems

NameKindAssumesProvesValidatesDepends On
isConnected_iff_of_final 📖mathematicalCategoryTheory.IsConnectedCategoryTheory.Limits.Types.hasColimit
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.Limits.Types.isConnected_iff_colimit_constPUnitFunctor_iso_pUnit
Equiv.nonempty_congr
isConnected_iff_of_initial 📖mathematicalCategoryTheory.IsConnectedCategoryTheory.isConnected_op_iff_isConnected
isConnected_iff_of_final
final_op_of_initial

CategoryTheory.Limits.Types

Definitions

NameCategoryTheorems
colimitConstPUnitIsoPUnit 📖CompOp
constPUnitFunctor 📖CompOp
6 mathmath: pUnitCocone_pt, pUnitCocone_ι_app, instHasColimitConstPUnitFunctor, isConnected_iff_isColimit_pUnitCocone, instSubsingletonColimitPUnit, isConnected_iff_colimit_constPUnitFunctor_iso_pUnit
isColimitPUnitCocone 📖CompOp
pUnitCocone 📖CompOp
3 mathmath: pUnitCocone_pt, pUnitCocone_ι_app, isConnected_iff_isColimit_pUnitCocone

Theorems

NameKindAssumesProvesValidatesDepends On
instHasColimitConstPUnitFunctor 📖mathematicalCategoryTheory.Limits.HasColimit
CategoryTheory.types
constPUnitFunctor
instSubsingletonColimitPUnit 📖mathematicalCategoryTheory.Limits.colimit
CategoryTheory.types
constPUnitFunctor
jointly_surjective'
CategoryTheory.constant_of_preserves_morphisms
colimit_sound
isConnected_iff_colimit_constPUnitFunctor_iso_pUnit 📖mathematicalCategoryTheory.IsConnected
CategoryTheory.Iso
CategoryTheory.types
CategoryTheory.Limits.colimit
constPUnitFunctor
nonempty_of_nonempty_colimit
Nonempty.map
CategoryTheory.zigzag_isConnected
zigzag_of_eqvGen_colimitTypeRel
colimit_eq
Equiv.injective
isConnected_iff_isColimit_pUnitCocone 📖mathematicalCategoryTheory.IsConnected
CategoryTheory.Limits.IsColimit
CategoryTheory.types
constPUnitFunctor
pUnitCocone
isConnected_iff_colimit_constPUnitFunctor_iso_pUnit
pUnitCocone_pt 📖mathematicalCategoryTheory.Limits.Cocone.pt
CategoryTheory.types
constPUnitFunctor
pUnitCocone
pUnitCocone_ι_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.types
constPUnitFunctor
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.ι
pUnitCocone
zigzag_of_eqvGen_colimitTypeRel 📖mathematicalRelation.EqvGen
CategoryTheory.Functor.obj
CategoryTheory.types
CategoryTheory.Functor.ColimitTypeRel
CategoryTheory.ZigzagCategoryTheory.Zigzag.of_hom
CategoryTheory.Zigzag.refl
CategoryTheory.zigzag_symmetric
CategoryTheory.Zigzag.trans

CategoryTheory.PreGaloisCategory

Definitions

NameCategoryTheorems
IsConnected 📖CompData
9 mathmath: PreservesIsConnected.preserves, exists_set_ker_evaluation_subset_of_isOpen, exists_lift_of_mono_of_isConnected, fiber_in_connected_component, CategoryTheory.FintypeCat.Action.isConnected_iff_transitive, IsGalois.toIsConnected, has_decomp_connected_components', has_decomp_connected_components, CategoryTheory.FintypeCat.Action.isConnected_of_transitive

(root)

Definitions

NameCategoryTheorems
IsConnected 📖MathDef
47 mathmath: isConnected_compl_of_one_lt_codim, IsPathConnected.isConnected, isConnected_compl_singleton_of_one_lt_rank, isConnected_Ioc, Convex.isConnected, AffineSubspace.isConnected_setOf_wOppSide, isConnected_sphere, isConnected_connectedComponent, Complex.isConnected_of_lowerHalfPlane, isConnected_Iio, isConnected_singleton, isConnected_Ici, IsSelfAdjoint.isConnected_spectrum_compl, isConnected_Icc, isConnected_Ioo, isConnected_univ_pi, AffineSubspace.isConnected_setOf_wSameSide, isConnected_univ, isConnected_Ico, Set.Countable.isConnected_compl_of_one_lt_rank, Complex.isConnected_of_upperHalfPlane, isConnected_setOf_sameRay_and_ne_zero, Metric.isConnected_closedBall, Homeomorph.isConnected_preimage, isConnected_range, isConnected_Iic, isConnected_connectedComponentIn_iff, Homeomorph.isConnected_image, Metric.isConnected_closedEBall, AffineSubspace.isConnected_setOf_sOppSide, Metric.isConnected_ball, isConnected_Ioi, isConnected_iff_sUnion_disjoint_open, LocallyConnectedSpace.open_connected_basis, Sum.isConnected_iff, locallyConnectedSpace_iff_subsets_isOpen_isConnected, Metric.isConnected_eball, connectedSpace_iff_univ, isConnected_setOf_sameRay, Sigma.isConnected_iff, isConnected_uIoo, isConnected_uIoc, IsIrreducible.isConnected, locallyConnectedSpace_iff_hasBasis_isOpen_isConnected, IsOpen.isConnected_iff_isPathConnected, AffineSubspace.isConnected_setOf_sSameSide, isConnected_iff_connectedSpace

---

← Back to Index