Documentation Verification Report

MonoCoprod

📁 Source: Mathlib/CategoryTheory/Limits/MonoCoprod.lean

Statistics

MetricCount
DefinitionsMonoCoprod, binaryCofanSum, isColimitBinaryCofanSum
3
TheoremsbinaryCofan_inl, binaryCofan_inr, instMonoInl, instMonoInr, instOfPreservesColimitsOfShapeDiscreteWalkingPairOfReflectsMonomorphismsForget, mk', monoCoprodType, monoCoprod_of_preservesCoprod_of_reflectsMono, mono_binaryCofanSum_inl, mono_binaryCofanSum_inl', mono_binaryCofanSum_inr, mono_binaryCofanSum_inr', mono_inj, mono_inl_iff, mono_map'_of_injective, mono_of_injective, mono_of_injective', mono_of_injective_aux, mono_ι, instPreservesMonomorphismsObjFunctorTypeSigmaConst, monoCoprodOfHasZeroMorphisms
21
Total24

CategoryTheory.Limits

Definitions

NameCategoryTheorems
MonoCoprod 📖CompData
9 mathmath: CategoryTheory.instMonoCoprodOfFinitaryExtensive, MonoCoprod.instOfPreservesColimitsOfShapeDiscreteWalkingPairOfReflectsMonomorphismsForget, CategoryTheory.IsCartesianDistributive.monoCoprod, MonoCoprod.mk', MonoCoprod.monoCoprodType, AlgebraicGeometry.instMonoCoprodScheme, monoCoprodOfHasZeroMorphisms, CategoryTheory.PreGaloisCategory.instMonoCoprod, MonoCoprod.monoCoprod_of_preservesCoprod_of_reflectsMono

Theorems

NameKindAssumesProvesValidatesDepends On
instPreservesMonomorphismsObjFunctorTypeSigmaConst 📖mathematicalHasCoproductsCategoryTheory.Functor.PreservesMonomorphisms
CategoryTheory.types
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
sigmaConst
MonoCoprod.mono_map'_of_injective
CategoryTheory.mono_iff_injective
hasColimitOfHasColimitsOfShape
monoCoprodOfHasZeroMorphisms 📖mathematicalMonoCoprodCategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.mk'
IsColimit.fac

CategoryTheory.Limits.MonoCoprod

Definitions

NameCategoryTheorems
binaryCofanSum 📖CompOp
2 mathmath: mono_binaryCofanSum_inr, mono_binaryCofanSum_inl
isColimitBinaryCofanSum 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
binaryCofan_inl 📖mathematicalCategoryTheory.Mono
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
CategoryTheory.Limits.WalkingPair.left
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.BinaryCofan.inl
binaryCofan_inr 📖mathematicalCategoryTheory.Mono
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
CategoryTheory.Limits.WalkingPair.right
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.BinaryCofan.inr
binaryCofan_inl
CategoryTheory.Limits.IsColimit.fac
CategoryTheory.Limits.BinaryCofan.IsColimit.hom_ext
instMonoInl 📖mathematicalCategoryTheory.Mono
CategoryTheory.Limits.coprod
CategoryTheory.Limits.coprod.inl
binaryCofan_inl
instMonoInr 📖mathematicalCategoryTheory.Mono
CategoryTheory.Limits.coprod
CategoryTheory.Limits.coprod.inr
binaryCofan_inr
instOfPreservesColimitsOfShapeDiscreteWalkingPairOfReflectsMonomorphismsForget 📖mathematicalCategoryTheory.Limits.MonoCoprodmonoCoprod_of_preservesCoprod_of_reflectsMono
monoCoprodType
mk' 📖mathematicalCategoryTheory.Mono
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
CategoryTheory.Limits.WalkingPair.left
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.BinaryCofan.inl
CategoryTheory.Limits.MonoCoprodmono_inl_iff
monoCoprodType 📖mathematicalCategoryTheory.Limits.MonoCoprod
CategoryTheory.types
mk'
CategoryTheory.mono_iff_injective
monoCoprod_of_preservesCoprod_of_reflectsMono 📖mathematicalCategoryTheory.Limits.MonoCoprodCategoryTheory.Functor.mono_of_mono_map
binaryCofan_inl
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Category.comp_id
mono_binaryCofanSum_inl 📖mathematicalCategoryTheory.Mono
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete.functor
CategoryTheory.Limits.WalkingPair.left
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
binaryCofanSum
CategoryTheory.Limits.BinaryCofan.inl
binaryCofan_inl
mono_binaryCofanSum_inl' 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
CategoryTheory.MonoCategoryTheory.Limits.Cofan.IsColimit.hom_ext
CategoryTheory.Limits.Cofan.IsColimit.fac
binaryCofan_inl
mono_binaryCofanSum_inr 📖mathematicalCategoryTheory.Mono
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete.functor
CategoryTheory.Limits.WalkingPair.right
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
binaryCofanSum
CategoryTheory.Limits.BinaryCofan.inr
binaryCofan_inr
mono_binaryCofanSum_inr' 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
CategoryTheory.MonoCategoryTheory.Limits.Cofan.IsColimit.hom_ext
CategoryTheory.Limits.Cofan.IsColimit.fac
binaryCofan_inr
mono_inj 📖mathematicalCategoryTheory.Mono
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
mono_of_injective
CategoryTheory.Category.id_comp
mono_inl_iff 📖mathematicalCategoryTheory.Mono
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
CategoryTheory.Limits.WalkingPair.left
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.BinaryCofan.inl
CategoryTheory.Limits.IsColimit.comp_coconePointUniqueUpToIso_hom
CategoryTheory.mono_comp
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_hom
mono_map'_of_injective 📖mathematicalCategoryTheory.Mono
CategoryTheory.Limits.sigmaObj
CategoryTheory.Limits.Sigma.map'
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Sigma.hom_ext
CategoryTheory.Limits.Sigma.ι_comp_map'
CategoryTheory.Category.id_comp
CategoryTheory.Limits.colimit.ι_desc
mono_of_injective'
mono_of_injective 📖mathematicalCategoryTheory.Mono
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
CategoryTheory.Limits.Cofan.IsColimit.desc
mono_of_injective_aux
mono_of_injective' 📖mathematicalCategoryTheory.Mono
CategoryTheory.Limits.sigmaObj
CategoryTheory.Limits.Sigma.desc
CategoryTheory.Limits.Sigma.ι
mono_of_injective
mono_of_injective_aux 📖mathematicalCategoryTheory.Mono
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
CategoryTheory.Limits.Cofan.IsColimit.desc
mono_binaryCofanSum_inl'
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
CategoryTheory.Limits.Cofan.IsColimit.fac
mono_ι 📖mathematicalCategoryTheory.Mono
CategoryTheory.Limits.sigmaObj
CategoryTheory.Limits.Sigma.ι

---

← Back to Index