Documentation Verification Report

Bifunctor

📁 Source: Mathlib/CategoryTheory/Limits/Preserves/Bifunctor.lean

Statistics

MetricCount
DefinitionsmapCocone₂, mapCone₂, PreservesColimit₂, isoColimitUncurryWhiskeringLeft₂, isoObjCoconePointsOfIsColimit, PreservesLimit₂, isoLimitUncurryWhiskeringLeft₂, isoObjConePointsOfIsLimit, isColimitOfPreserves₂, isLimitOfPreserves₂
10
TheoremsmapCocone₂_pt, mapCocone₂_ι_app, mapCone₂_pt, mapCone₂_π_app, map_ι_comp_isoColimitUncurryWhiskeringLeft₂_inv, map_ι_comp_isoColimitUncurryWhiskeringLeft₂_inv_assoc, map_ι_comp_isoObjConePointsOfIsColimit_hom, map_ι_comp_isoObjConePointsOfIsColimit_hom_assoc, nonempty_isColimit_mapCocone₂, of_preservesColimits_in_each_variable, of_preservesColimit₂_flip, ι_comp_isoColimitUncurryWhiskeringLeft₂_hom, ι_comp_isoColimitUncurryWhiskeringLeft₂_hom_assoc, ι_comp_isoObjConePointsOfIsColimit_inv, ι_comp_isoObjConePointsOfIsColimit_inv_assoc, isoLimitUncurryWhiskeringLeft₂_hom_comp_map_π, isoLimitUncurryWhiskeringLeft₂_hom_comp_map_π_assoc, isoLimitUncurryWhiskeringLeft₂_inv_comp_π, isoLimitUncurryWhiskeringLeft₂_inv_comp_π_assoc, isoObjConePointsOfIsColimit_inv_comp_map_π, isoObjConePointsOfIsColimit_inv_comp_map_π_assoc, isoObjConePointsOfIsLimit_hom_comp_π, isoObjConePointsOfIsLimit_hom_comp_π_assoc, nonempty_isLimit_mapCone₂, of_preservesLimits_in_each_variable, of_preservesLimit₂_flip, instHasColimitProdObjFunctorUncurryWhiskeringLeft₂OfPreservesColimit₂, instHasLimitProdObjFunctorUncurryWhiskeringLeft₂OfPreservesLimit₂
28
Total38

CategoryTheory.Functor

Definitions

NameCategoryTheorems
mapCocone₂ 📖CompOp
3 mathmath: mapCocone₂_pt, mapCocone₂_ι_app, CategoryTheory.Limits.PreservesColimit₂.nonempty_isColimit_mapCocone₂
mapCone₂ 📖CompOp
3 mathmath: mapCone₂_pt, CategoryTheory.Limits.PreservesLimit₂.nonempty_isLimit_mapCone₂, mapCone₂_π_app

Theorems

NameKindAssumesProvesValidatesDepends On
mapCocone₂_pt 📖mathematical—CategoryTheory.Limits.Cocone.pt
CategoryTheory.prod'
obj
CategoryTheory.Functor
category
uncurry
whiskeringLeft₂
mapCocone₂
——
mapCocone₂_ι_app 📖mathematical—CategoryTheory.NatTrans.app
CategoryTheory.prod'
obj
CategoryTheory.Functor
category
uncurry
whiskeringLeft₂
const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.Cocone.Κ
mapCocone₂
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
map
——
mapCone₂_pt 📖mathematical—CategoryTheory.Limits.Cone.pt
CategoryTheory.prod'
obj
CategoryTheory.Functor
category
uncurry
whiskeringLeft₂
mapCone₂
——
mapCone₂_π_app 📖mathematical—CategoryTheory.NatTrans.app
CategoryTheory.prod'
obj
CategoryTheory.Functor
category
const
CategoryTheory.Limits.Cone.pt
uncurry
whiskeringLeft₂
CategoryTheory.Limits.Cone.π
mapCone₂
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
map
——

CategoryTheory.Limits

Definitions

NameCategoryTheorems
PreservesColimit₂ 📖CompData
2 mathmath: PreservesColimit₂.of_preservesColimits_in_each_variable, PreservesColimit₂.of_preservesColimit₂_flip
PreservesLimit₂ 📖CompData
2 mathmath: PreservesLimit₂.of_preservesLimit₂_flip, PreservesLimit₂.of_preservesLimits_in_each_variable
isColimitOfPreserves₂ 📖CompOp—
isLimitOfPreserves₂ 📖CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
instHasColimitProdObjFunctorUncurryWhiskeringLeft₂OfPreservesColimit₂ 📖mathematical—HasColimit
CategoryTheory.prod'
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.uncurry
CategoryTheory.Functor.whiskeringLeft₂
—PreservesColimit₂.nonempty_isColimit_mapCocone₂
instHasLimitProdObjFunctorUncurryWhiskeringLeft₂OfPreservesLimit₂ 📖mathematical—HasLimit
CategoryTheory.prod'
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.uncurry
CategoryTheory.Functor.whiskeringLeft₂
—PreservesLimit₂.nonempty_isLimit_mapCone₂

CategoryTheory.Limits.PreservesColimit₂

Definitions

NameCategoryTheorems
isoColimitUncurryWhiskeringLeft₂ 📖CompOp
5 mathmath: CategoryTheory.IsSifted.factorization_prodComparison_colim, map_ι_comp_isoColimitUncurryWhiskeringLeft₂_inv_assoc, map_ι_comp_isoColimitUncurryWhiskeringLeft₂_inv, ι_comp_isoColimitUncurryWhiskeringLeft₂_hom_assoc, ι_comp_isoColimitUncurryWhiskeringLeft₂_hom
isoObjCoconePointsOfIsColimit 📖CompOp
4 mathmath: map_Κ_comp_isoObjConePointsOfIsColimit_hom, map_Κ_comp_isoObjConePointsOfIsColimit_hom_assoc, Κ_comp_isoObjConePointsOfIsColimit_inv, Κ_comp_isoObjConePointsOfIsColimit_inv_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
map_ι_comp_isoColimitUncurryWhiskeringLeft₂_inv 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.colimit
CategoryTheory.prod'
CategoryTheory.Functor.uncurry
CategoryTheory.Functor.whiskeringLeft₂
CategoryTheory.Limits.instHasColimitProdObjFunctorUncurryWhiskeringLeft₂OfPreservesColimit₂
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
CategoryTheory.Limits.colimit.Κ
CategoryTheory.Iso.inv
isoColimitUncurryWhiskeringLeft₂
—map_ι_comp_isoObjConePointsOfIsColimit_hom
CategoryTheory.Limits.instHasColimitProdObjFunctorUncurryWhiskeringLeft₂OfPreservesColimit₂
map_ι_comp_isoColimitUncurryWhiskeringLeft₂_inv_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.colimit
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
CategoryTheory.Limits.colimit.Κ
CategoryTheory.prod'
CategoryTheory.Functor.uncurry
CategoryTheory.Functor.whiskeringLeft₂
CategoryTheory.Limits.instHasColimitProdObjFunctorUncurryWhiskeringLeft₂OfPreservesColimit₂
CategoryTheory.Iso.inv
isoColimitUncurryWhiskeringLeft₂
—CategoryTheory.Limits.instHasColimitProdObjFunctorUncurryWhiskeringLeft₂OfPreservesColimit₂
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_ι_comp_isoColimitUncurryWhiskeringLeft₂_inv
map_ι_comp_isoObjConePointsOfIsColimit_hom 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.prod'
CategoryTheory.Functor.uncurry
CategoryTheory.Functor.whiskeringLeft₂
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
CategoryTheory.Limits.Cocone.Κ
CategoryTheory.Iso.hom
isoObjCoconePointsOfIsColimit
—CategoryTheory.Category.assoc
CategoryTheory.Iso.eq_comp_inv
Κ_comp_isoObjConePointsOfIsColimit_inv
map_ι_comp_isoObjConePointsOfIsColimit_hom_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
CategoryTheory.Limits.Cocone.Κ
CategoryTheory.prod'
CategoryTheory.Functor.uncurry
CategoryTheory.Functor.whiskeringLeft₂
CategoryTheory.Iso.hom
isoObjCoconePointsOfIsColimit
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_Κ_comp_isoObjConePointsOfIsColimit_hom
nonempty_isColimit_mapCocone₂ 📖mathematical—CategoryTheory.Limits.IsColimit
CategoryTheory.prod'
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.uncurry
CategoryTheory.Functor.whiskeringLeft₂
CategoryTheory.Functor.mapCocone₂
——
of_preservesColimits_in_each_variable 📖mathematicalCategoryTheory.Limits.PreservesColimit
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.flip
CategoryTheory.Limits.PreservesColimit₂—CategoryTheory.NatTrans.naturality
CategoryTheory.Functor.map_id
CategoryTheory.Functor.map_comp
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.Limits.IsColimit.hom_ext
CategoryTheory.Limits.IsColimit.fac
of_preservesColimit₂_flip 📖mathematical—CategoryTheory.Limits.PreservesColimit₂
CategoryTheory.Functor.flip
—CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
CategoryTheory.Category.assoc
CategoryTheory.NatTrans.naturality
ι_comp_isoColimitUncurryWhiskeringLeft₂_hom 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.prod'
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.uncurry
CategoryTheory.Functor.whiskeringLeft₂
CategoryTheory.Limits.colimit
CategoryTheory.Limits.instHasColimitProdObjFunctorUncurryWhiskeringLeft₂OfPreservesColimit₂
CategoryTheory.Limits.colimit.Κ
CategoryTheory.Iso.hom
isoColimitUncurryWhiskeringLeft₂
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
—ι_comp_isoObjConePointsOfIsColimit_inv
CategoryTheory.Limits.instHasColimitProdObjFunctorUncurryWhiskeringLeft₂OfPreservesColimit₂
ι_comp_isoColimitUncurryWhiskeringLeft₂_hom_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.prod'
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.uncurry
CategoryTheory.Functor.whiskeringLeft₂
CategoryTheory.Limits.colimit
CategoryTheory.Limits.instHasColimitProdObjFunctorUncurryWhiskeringLeft₂OfPreservesColimit₂
CategoryTheory.Limits.colimit.Κ
CategoryTheory.Iso.hom
isoColimitUncurryWhiskeringLeft₂
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
—CategoryTheory.Limits.instHasColimitProdObjFunctorUncurryWhiskeringLeft₂OfPreservesColimit₂
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι_comp_isoColimitUncurryWhiskeringLeft₂_hom
ι_comp_isoObjConePointsOfIsColimit_inv 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.prod'
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.uncurry
CategoryTheory.Functor.whiskeringLeft₂
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.Κ
CategoryTheory.Iso.inv
isoObjCoconePointsOfIsColimit
CategoryTheory.Functor.map
—CategoryTheory.Limits.IsColimit.comp_coconePointUniqueUpToIso_inv
ι_comp_isoObjConePointsOfIsColimit_inv_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.prod'
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.uncurry
CategoryTheory.Functor.whiskeringLeft₂
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.Κ
CategoryTheory.Iso.inv
isoObjCoconePointsOfIsColimit
CategoryTheory.Functor.map
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
Κ_comp_isoObjConePointsOfIsColimit_inv

CategoryTheory.Limits.PreservesLimit₂

Definitions

NameCategoryTheorems
isoLimitUncurryWhiskeringLeft₂ 📖CompOp
4 mathmath: isoLimitUncurryWhiskeringLeft₂_inv_comp_π, isoLimitUncurryWhiskeringLeft₂_inv_comp_π_assoc, isoLimitUncurryWhiskeringLeft₂_hom_comp_map_π, isoLimitUncurryWhiskeringLeft₂_hom_comp_map_π_assoc
isoObjConePointsOfIsLimit 📖CompOp
4 mathmath: isoObjConePointsOfIsColimit_inv_comp_map_π, isoObjConePointsOfIsLimit_hom_comp_π, isoObjConePointsOfIsColimit_inv_comp_map_π_assoc, isoObjConePointsOfIsLimit_hom_comp_π_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
isoLimitUncurryWhiskeringLeft₂_hom_comp_map_π 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.limit
CategoryTheory.prod'
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.uncurry
CategoryTheory.Functor.whiskeringLeft₂
CategoryTheory.Limits.instHasLimitProdObjFunctorUncurryWhiskeringLeft₂OfPreservesLimit₂
CategoryTheory.Iso.hom
isoLimitUncurryWhiskeringLeft₂
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
CategoryTheory.Limits.limit.π
—isoObjConePointsOfIsColimit_inv_comp_map_π
CategoryTheory.Limits.instHasLimitProdObjFunctorUncurryWhiskeringLeft₂OfPreservesLimit₂
isoLimitUncurryWhiskeringLeft₂_hom_comp_map_π_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.limit
CategoryTheory.prod'
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.uncurry
CategoryTheory.Functor.whiskeringLeft₂
CategoryTheory.Limits.instHasLimitProdObjFunctorUncurryWhiskeringLeft₂OfPreservesLimit₂
CategoryTheory.Iso.hom
isoLimitUncurryWhiskeringLeft₂
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
CategoryTheory.Limits.limit.π
—CategoryTheory.Limits.instHasLimitProdObjFunctorUncurryWhiskeringLeft₂OfPreservesLimit₂
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
isoLimitUncurryWhiskeringLeft₂_hom_comp_map_π
isoLimitUncurryWhiskeringLeft₂_inv_comp_π 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.limit
CategoryTheory.prod'
CategoryTheory.Functor.uncurry
CategoryTheory.Functor.whiskeringLeft₂
CategoryTheory.Limits.instHasLimitProdObjFunctorUncurryWhiskeringLeft₂OfPreservesLimit₂
CategoryTheory.Iso.inv
isoLimitUncurryWhiskeringLeft₂
CategoryTheory.Limits.limit.π
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
—isoObjConePointsOfIsLimit_hom_comp_π
CategoryTheory.Limits.instHasLimitProdObjFunctorUncurryWhiskeringLeft₂OfPreservesLimit₂
isoLimitUncurryWhiskeringLeft₂_inv_comp_π_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.limit
CategoryTheory.prod'
CategoryTheory.Functor.uncurry
CategoryTheory.Functor.whiskeringLeft₂
CategoryTheory.Limits.instHasLimitProdObjFunctorUncurryWhiskeringLeft₂OfPreservesLimit₂
CategoryTheory.Iso.inv
isoLimitUncurryWhiskeringLeft₂
CategoryTheory.Limits.limit.π
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
—CategoryTheory.Limits.instHasLimitProdObjFunctorUncurryWhiskeringLeft₂OfPreservesLimit₂
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
isoLimitUncurryWhiskeringLeft₂_inv_comp_π
isoObjConePointsOfIsColimit_inv_comp_map_π 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.prod'
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.uncurry
CategoryTheory.Functor.whiskeringLeft₂
CategoryTheory.Iso.inv
isoObjConePointsOfIsLimit
CategoryTheory.NatTrans.app
CategoryTheory.Functor.const
CategoryTheory.Functor.map
CategoryTheory.Limits.Cone.π
—CategoryTheory.Iso.inv_comp_eq
isoObjConePointsOfIsLimit_hom_comp_π
isoObjConePointsOfIsColimit_inv_comp_map_π_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.prod'
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.uncurry
CategoryTheory.Functor.whiskeringLeft₂
CategoryTheory.Iso.inv
isoObjConePointsOfIsLimit
CategoryTheory.NatTrans.app
CategoryTheory.Functor.const
CategoryTheory.Functor.map
CategoryTheory.Limits.Cone.π
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
isoObjConePointsOfIsColimit_inv_comp_map_π
isoObjConePointsOfIsLimit_hom_comp_π 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.Cone.pt
CategoryTheory.prod'
CategoryTheory.Functor.uncurry
CategoryTheory.Functor.whiskeringLeft₂
CategoryTheory.Iso.hom
isoObjConePointsOfIsLimit
CategoryTheory.NatTrans.app
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.π
CategoryTheory.Functor.map
—CategoryTheory.Limits.IsLimit.conePointUniqueUpToIso_hom_comp
isoObjConePointsOfIsLimit_hom_comp_π_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.Cone.pt
CategoryTheory.prod'
CategoryTheory.Functor.uncurry
CategoryTheory.Functor.whiskeringLeft₂
CategoryTheory.Iso.hom
isoObjConePointsOfIsLimit
CategoryTheory.NatTrans.app
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.π
CategoryTheory.Functor.map
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
isoObjConePointsOfIsLimit_hom_comp_π
nonempty_isLimit_mapCone₂ 📖mathematical—CategoryTheory.Limits.IsLimit
CategoryTheory.prod'
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.uncurry
CategoryTheory.Functor.whiskeringLeft₂
CategoryTheory.Functor.mapCone₂
——
of_preservesLimits_in_each_variable 📖mathematicalCategoryTheory.Limits.PreservesLimit
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.flip
CategoryTheory.Limits.PreservesLimit₂—CategoryTheory.NatTrans.naturality
CategoryTheory.Functor.map_id
CategoryTheory.Functor.map_comp
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.Limits.IsLimit.hom_ext
CategoryTheory.Limits.IsLimit.fac
of_preservesLimit₂_flip 📖mathematical—CategoryTheory.Limits.PreservesLimit₂
CategoryTheory.Functor.flip
—CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.NatTrans.naturality

---

← Back to Index