Documentation Verification Report

Grothendieck

📁 Source: Mathlib/CategoryTheory/Limits/Preserves/Grothendieck.lean

Statistics

MetricCount
DefinitionsfiberwiseColimitLimitIso
1
TheoremsfiberwiseColimitLimitIso_hom_app, fiberwiseColimitLimitIso_inv_app, preservesLimitsOfShape_colim_grothendieck
3
Total4

CategoryTheory.Limits

Definitions

NameCategoryTheorems
fiberwiseColimitLimitIso 📖CompOp
2 mathmath: fiberwiseColimitLimitIso_hom_app, fiberwiseColimitLimitIso_inv_app

Theorems

NameKindAssumesProvesValidatesDepends On
fiberwiseColimitLimitIso_hom_app 📖mathematicalHasColimitsOfShape
CategoryTheory.Bundled.α
CategoryTheory.Category
CategoryTheory.Functor.obj
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.Cat.str
PreservesLimitsOfShape
CategoryTheory.Functor
CategoryTheory.Functor.category
colim
CategoryTheory.NatTrans.app
fiberwiseColimit
limit
CategoryTheory.Grothendieck
CategoryTheory.Grothendieck.instCategory
CategoryTheory.Functor.comp
fiberwiseColim
CategoryTheory.Iso.hom
functorCategoryHasLimit
hasLimitOfHasLimitsOfShape
CategoryTheory.Functor.flip
hasColimitOfHasColimitsOfShape
CategoryTheory.Cat.Hom.toFunctor
CategoryTheory.Functor.map
CategoryTheory.Grothendieck.ι
fiberwiseColimitLimitIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
colimit
hasColimit_ι_comp
CategoryTheory.Functor.whiskeringLeft
HasColimit.isoOfNatIso
CategoryTheory.Iso.symm
limitCompWhiskeringLeftIsoCompLimit
CategoryTheory.preservesLimitIso
CategoryTheory.evaluation
HasLimit.isoOfNatIso
CategoryTheory.Iso.trans
CategoryTheory.Functor.associator
CategoryTheory.Functor.isoWhiskerLeft
fiberwiseColimCompEvaluationIso
CategoryTheory.Iso.inv
limitObjIsoLimitCompEvaluation
functorCategoryHasLimit
hasLimitOfHasLimitsOfShape
hasColimitOfHasColimitsOfShape
fiberwiseColimitLimitIso_inv_app 📖mathematicalHasColimitsOfShape
CategoryTheory.Bundled.α
CategoryTheory.Category
CategoryTheory.Functor.obj
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.Cat.str
PreservesLimitsOfShape
CategoryTheory.Functor
CategoryTheory.Functor.category
colim
CategoryTheory.NatTrans.app
limit
CategoryTheory.Functor.comp
CategoryTheory.Grothendieck
CategoryTheory.Grothendieck.instCategory
fiberwiseColim
fiberwiseColimit
CategoryTheory.Iso.inv
functorCategoryHasLimit
hasLimitOfHasLimitsOfShape
CategoryTheory.Functor.flip
hasColimitOfHasColimitsOfShape
CategoryTheory.Cat.Hom.toFunctor
CategoryTheory.Functor.map
CategoryTheory.Grothendieck.ι
fiberwiseColimitLimitIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.evaluation
colimit
hasColimit_ι_comp
CategoryTheory.Iso.hom
limitObjIsoLimitCompEvaluation
CategoryTheory.Functor.whiskeringLeft
HasLimit.isoOfNatIso
CategoryTheory.Iso.trans
CategoryTheory.Functor.associator
CategoryTheory.Functor.isoWhiskerLeft
CategoryTheory.Iso.symm
fiberwiseColimCompEvaluationIso
CategoryTheory.preservesLimitIso
HasColimit.isoOfNatIso
limitCompWhiskeringLeftIsoCompLimit
hasColimit_ι_comp
CategoryTheory.Category.assoc
preservesLimitsOfShape_colim_grothendieck 📖mathematicalHasColimitsOfShape
CategoryTheory.Bundled.α
CategoryTheory.Category
CategoryTheory.Functor.obj
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.Cat.str
PreservesLimitsOfShape
CategoryTheory.Functor
CategoryTheory.Functor.category
colim
CategoryTheory.Grothendieck
CategoryTheory.Grothendieck.instCategory
hasColimitsOfShape_grothendieck
hasColimitsOfShape_grothendieck
functorCategoryHasLimit
hasLimitOfHasLimitsOfShape
hasColimitOfHasColimitsOfShape
instHasLimitCompOfPreservesLimit
PreservesLimitsOfShape.preservesLimit
hasColimit_of_hasColimit_fiberwiseColimit_of_hasColimit
CategoryTheory.preservesLimit_of_isIso_post
limit.hom_ext
limit.post_π
CategoryTheory.Iso.trans_assoc
CategoryTheory.Category.assoc
HasLimit.isoOfNatIso_hom_π
CategoryTheory.Category.id_comp
CategoryTheory.preservesLimitIso_hom_π_assoc
colimit.hom_ext
ι_colimMap
hasColimit_ι_comp
ι_colimitFiberwiseColimitIso_inv_assoc
HasColimit.isoOfNatIso_ι_hom_assoc
ι_colimMap_assoc
hasLimitCompEvaluation
limitObjIsoLimitCompEvaluation_inv_π_app_assoc
HasLimit.isoOfNatIso_hom_π_assoc
CategoryTheory.Category.comp_id
ι_colimitFiberwiseColimitIso_hom
limitCompWhiskeringLeftIsoCompLimit_inv_π
CategoryTheory.Iso.isIso_hom

---

← Back to Index