Documentation Verification Report

Presheaf

📁 Source: Mathlib/CategoryTheory/Limits/Preserves/Presheaf.lean

Statistics

MetricCount
DefinitionsflipFunctorToInterchange, functorToInterchange, functorToInterchangeIso, iso, isoAux
5
TheoremsflipFunctorToInterchange_hom_app_app, flipFunctorToInterchange_inv_app_app, functorToInterchangeIso_hom_app_app, functorToInterchangeIso_inv_app_app, isIso_post, isoAux_hom_app, iso_hom, isFiltered_costructuredArrow_yoneda_iff_nonempty_preservesFiniteLimits, isFiltered_costructuredArrow_yoneda_of_preservesFiniteLimits, preservesFiniteLimits_of_isFiltered_costructuredArrow_yoneda
10
Total15

CategoryTheory.Limits

Theorems

NameKindAssumesProvesValidatesDepends On
isFiltered_costructuredArrow_yoneda_iff_nonempty_preservesFiniteLimits 📖mathematicalCategoryTheory.IsFiltered
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.instCategoryCostructuredArrow
PreservesFiniteLimits
preservesFiniteLimits_of_isFiltered_costructuredArrow_yoneda
isFiltered_costructuredArrow_yoneda_of_preservesFiniteLimits
isFiltered_costructuredArrow_yoneda_of_preservesFiniteLimits 📖mathematicalCategoryTheory.IsFiltered
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.CategoryOfElements.instHasLimitsOfShapeElements
UnivLE.small
univLE_of_max
UnivLE.self
hasLimitsOfShape_of_hasFiniteLimits
hasFiniteLimits_opposite
PreservesFiniteLimits.preservesFiniteLimits
CategoryTheory.IsCofiltered.of_hasFiniteLimits
CategoryTheory.IsFiltered.of_equivalence
CategoryTheory.isFiltered_op_of_isCofiltered
preservesFiniteLimits_of_isFiltered_costructuredArrow_yoneda 📖mathematicalPreservesFiniteLimits
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.preservesLimit_of_isIso_post
hasLimitOfHasLimitsOfShape
hasLimitsOfShape_of_hasFiniteLimits
hasFiniteLimits_opposite
Types.hasLimit
UnivLE.small
univLE_of_max
UnivLE.self
PreservesFiniteLimitsOfIsFilteredCostructuredArrowYonedaAux.isIso_post

CategoryTheory.Limits.PreservesFiniteLimitsOfIsFilteredCostructuredArrowYonedaAux

Definitions

NameCategoryTheorems
flipFunctorToInterchange 📖CompOp
2 mathmath: flipFunctorToInterchange_inv_app_app, flipFunctorToInterchange_hom_app_app
functorToInterchange 📖CompOp
4 mathmath: functorToInterchangeIso_inv_app_app, functorToInterchangeIso_hom_app_app, flipFunctorToInterchange_inv_app_app, flipFunctorToInterchange_hom_app_app
functorToInterchangeIso 📖CompOp
2 mathmath: functorToInterchangeIso_inv_app_app, functorToInterchangeIso_hom_app_app
iso 📖CompOp
1 mathmath: iso_hom
isoAux 📖CompOp
1 mathmath: isoAux_hom_app

Theorems

NameKindAssumesProvesValidatesDepends On
flipFunctorToInterchange_hom_app_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.types
CategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.flip
functorToInterchange
CategoryTheory.Iso.hom
CategoryTheory.Functor.comp
CategoryTheory.CostructuredArrow.proj
CategoryTheory.Functor.whiskeringLeft
flipFunctorToInterchange
flipFunctorToInterchange_inv_app_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.types
CategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.flip
functorToInterchange
CategoryTheory.Iso.inv
CategoryTheory.Functor.comp
CategoryTheory.CostructuredArrow.proj
CategoryTheory.Functor.whiskeringLeft
flipFunctorToInterchange
functorToInterchangeIso_hom_app_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.obj
functorToInterchange
CategoryTheory.Iso.hom
CategoryTheory.Functor.comp
CategoryTheory.coyoneda
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.CostructuredArrow.proj
functorToInterchangeIso
functorToInterchangeIso_inv_app_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.obj
functorToInterchange
CategoryTheory.Iso.inv
CategoryTheory.Functor.comp
CategoryTheory.coyoneda
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.CostructuredArrow.proj
functorToInterchangeIso
isIso_post 📖mathematicalCategoryTheory.IsIso
CategoryTheory.types
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.limit
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_of_hasFiniteLimits
CategoryTheory.Limits.hasFiniteLimits_opposite
CategoryTheory.Functor.comp
CategoryTheory.Limits.Types.hasLimit
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.Limits.limit.post
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_of_hasFiniteLimits
CategoryTheory.Limits.hasFiniteLimits_opposite
CategoryTheory.Limits.Types.hasLimit
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.Iso.isIso_hom
iso_hom
isoAux_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.CostructuredArrow.proj
CategoryTheory.Functor.obj
CategoryTheory.evaluation
CategoryTheory.Limits.limit
CategoryTheory.Iso.hom
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_of_hasFiniteLimits
CategoryTheory.Limits.hasFiniteLimits_opposite
CategoryTheory.coyoneda
CategoryTheory.Functor.whiskeringLeft
isoAux
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
Opposite.unop
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_of_hasFiniteLimits
CategoryTheory.Limits.hasFiniteLimits_opposite
iso_hom 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.types
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.limit
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_of_hasFiniteLimits
CategoryTheory.Limits.hasFiniteLimits_opposite
CategoryTheory.Functor.comp
CategoryTheory.Limits.Types.hasLimit
UnivLE.small
univLE_of_max
UnivLE.self
iso
CategoryTheory.Limits.limit.post
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_of_hasFiniteLimits
CategoryTheory.Limits.hasFiniteLimits_opposite
CategoryTheory.Limits.Types.hasLimit
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_comp_eq
CategoryTheory.Limits.limit.hom_ext
CategoryTheory.Limits.colimit.hom_ext
CategoryTheory.Limits.HasLimit.isoOfNatIso_hom_π
CategoryTheory.Limits.HasLimit.isoOfNatIso_hom_π_assoc
CategoryTheory.Limits.limit.post_π
CategoryTheory.Limits.functorCategoryHasColimit
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.Types.hasColimitsOfShape
CategoryTheory.Limits.hasColimitCompEvaluation
CategoryTheory.Limits.colimitObjIsoColimitCompEvaluation_ι_inv_assoc
CategoryTheory.Iso.app_inv
CategoryTheory.NatTrans.comp_app_assoc
CategoryTheory.Limits.colimit.comp_coconePointUniqueUpToIso_inv
CategoryTheory.Presheaf.tautologicalCocone_ι_app
CategoryTheory.Limits.HasColimit.isoOfNatIso_ι_hom_assoc
CategoryTheory.Limits.functorCategoryHasLimit
CategoryTheory.Limits.ι_colimitLimitIso_limit_π_assoc
isoAux_hom_app
CategoryTheory.Limits.instHasLimitCompOfPreservesLimit
CategoryTheory.preservesLimitIso_hom_π_assoc
CategoryTheory.Iso.symm_hom
CategoryTheory.Limits.HasColimit.isoOfNatIso_ι_hom
CategoryTheory.Limits.ι_colimitCompWhiskeringLeftIsoCompColimit_hom
CategoryTheory.NatTrans.comp_app
CategoryTheory.Functor.isoWhiskerLeft_hom
CategoryTheory.Functor.whiskerLeft_comp
CategoryTheory.Limits.colimit.comp_coconePointUniqueUpToIso_hom
CategoryTheory.NatTrans.naturality
CategoryTheory.types_ext
CategoryTheory.Category.id_comp

---

← Back to Index