Documentation Verification Report

AbelianImages

📁 Source: Mathlib/CategoryTheory/Limits/Preserves/Shapes/AbelianImages.lean

Statistics

MetricCount
Definitionsiso, iso, iso
3
TheoremsfactorThruCoimage_iso_hom, factorThruCoimage_iso_hom_assoc, factorThruCoimage_iso_inv, factorThruCoimage_iso_inv_assoc, hom_coimageImageComparison, iso_hom_π, iso_hom_π_assoc, iso_inv_π, iso_inv_π_assoc, iso_hom_left, iso_hom_right, iso_inv_left, iso_inv_right, factorThruImage_iso_hom, factorThruImage_iso_hom_assoc, factorThruImage_iso_inv, factorThruImage_iso_inv_assoc, iso_hom_ι, iso_hom_ι_assoc, iso_inv_ι, iso_inv_ι_assoc
21
Total24

CategoryTheory.Abelian.PreservesCoimage

Definitions

NameCategoryTheorems
iso 📖CompOp
11 mathmath: iso_hom_π_assoc, CategoryTheory.Abelian.PreservesCoimageImageComparison.iso_inv_left, CategoryTheory.Abelian.PreservesCoimageImageComparison.iso_hom_left, factorThruCoimage_iso_inv, factorThruCoimage_iso_hom_assoc, factorThruCoimage_iso_inv_assoc, iso_inv_π, factorThruCoimage_iso_hom, hom_coimageImageComparison, iso_inv_π_assoc, iso_hom_π

Theorems

NameKindAssumesProvesValidatesDepends On
factorThruCoimage_iso_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Abelian.coimage
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
iso
CategoryTheory.Abelian.factorThruCoimage
factorThruCoimage_iso_inv
factorThruCoimage_iso_hom_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Abelian.coimage
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
iso
CategoryTheory.Abelian.factorThruCoimage
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
factorThruCoimage_iso_hom
factorThruCoimage_iso_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Abelian.coimage
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
iso
CategoryTheory.Abelian.factorThruCoimage
CategoryTheory.Limits.coequalizer.hom_ext
CategoryTheory.Limits.kernel.condition
CategoryTheory.Limits.PreservesCokernel.iso_inv
CategoryTheory.Category.assoc
CategoryTheory.Limits.cokernelComparison_map_desc
CategoryTheory.Limits.cokernel.π_desc_assoc
CategoryTheory.Category.id_comp
CategoryTheory.Limits.cokernel.π_desc
factorThruCoimage_iso_inv_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Abelian.coimage
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
iso
CategoryTheory.Abelian.factorThruCoimage
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
factorThruCoimage_iso_inv
hom_coimageImageComparison 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Abelian.coimage
CategoryTheory.Functor.map
CategoryTheory.Limits.instHasKernelMapOfPreservesLimitWalkingParallelPairParallelPairOfNatHom
CategoryTheory.Abelian.image
CategoryTheory.Limits.instHasCokernelMapOfPreservesColimitWalkingParallelPairParallelPairOfNatHom
CategoryTheory.Iso.hom
iso
CategoryTheory.Abelian.coimageImageComparison
CategoryTheory.Abelian.PreservesImage.iso
CategoryTheory.Limits.instHasCokernelMapOfPreservesColimitWalkingParallelPairParallelPairOfNatHom
CategoryTheory.Limits.instHasKernelMapOfPreservesLimitWalkingParallelPairParallelPairOfNatHom
CategoryTheory.cancel_mono
CategoryTheory.Limits.equalizer.ι_mono
CategoryTheory.Category.assoc
CategoryTheory.Abelian.PreservesImage.iso_hom_ι
CategoryTheory.cancel_epi
CategoryTheory.Limits.coequalizer.π_epi
CategoryTheory.Abelian.coimage_image_factorisation
iso_inv_π_assoc
iso_hom_π 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Abelian.coimage
CategoryTheory.Functor.map
CategoryTheory.Abelian.coimage.π
CategoryTheory.Iso.hom
iso
CategoryTheory.Limits.PreservesKernel.iso_hom
CategoryTheory.Limits.cokernel.map.congr_simp
CategoryTheory.Limits.PreservesCokernel.π_iso_hom_assoc
CategoryTheory.Limits.cokernel.π_desc
CategoryTheory.Category.id_comp
iso_hom_π_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Abelian.coimage
CategoryTheory.Functor.map
CategoryTheory.Abelian.coimage.π
CategoryTheory.Iso.hom
iso
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
iso_hom_π
iso_inv_π 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Abelian.coimage
CategoryTheory.Functor.map
CategoryTheory.Abelian.coimage.π
CategoryTheory.Iso.inv
iso
iso_hom_π
iso_inv_π_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Abelian.coimage
CategoryTheory.Functor.map
CategoryTheory.Abelian.coimage.π
CategoryTheory.Iso.inv
iso
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
iso_inv_π

CategoryTheory.Abelian.PreservesCoimageImageComparison

Definitions

NameCategoryTheorems
iso 📖CompOp
4 mathmath: iso_inv_left, iso_hom_left, iso_hom_right, iso_inv_right

Theorems

NameKindAssumesProvesValidatesDepends On
iso_hom_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.Abelian.coimage
CategoryTheory.Abelian.image
CategoryTheory.Functor.map
CategoryTheory.Abelian.coimageImageComparison
CategoryTheory.Limits.instHasKernelMapOfPreservesLimitWalkingParallelPairParallelPairOfNatHom
CategoryTheory.Limits.instHasCokernelMapOfPreservesColimitWalkingParallelPairParallelPairOfNatHom
CategoryTheory.Iso.hom
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
iso
CategoryTheory.Abelian.PreservesCoimage.iso
CategoryTheory.Limits.instHasCokernelMapOfPreservesColimitWalkingParallelPairParallelPairOfNatHom
CategoryTheory.Limits.instHasKernelMapOfPreservesLimitWalkingParallelPairParallelPairOfNatHom
iso_hom_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.Abelian.coimage
CategoryTheory.Abelian.image
CategoryTheory.Functor.map
CategoryTheory.Abelian.coimageImageComparison
CategoryTheory.Limits.instHasKernelMapOfPreservesLimitWalkingParallelPairParallelPairOfNatHom
CategoryTheory.Limits.instHasCokernelMapOfPreservesColimitWalkingParallelPairParallelPairOfNatHom
CategoryTheory.Iso.hom
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
iso
CategoryTheory.Abelian.PreservesImage.iso
CategoryTheory.Limits.instHasCokernelMapOfPreservesColimitWalkingParallelPairParallelPairOfNatHom
CategoryTheory.Limits.instHasKernelMapOfPreservesLimitWalkingParallelPairParallelPairOfNatHom
iso_inv_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Functor.id
CategoryTheory.Abelian.coimage
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Limits.instHasKernelMapOfPreservesLimitWalkingParallelPairParallelPairOfNatHom
CategoryTheory.Abelian.image
CategoryTheory.Limits.instHasCokernelMapOfPreservesColimitWalkingParallelPairParallelPairOfNatHom
CategoryTheory.Abelian.coimageImageComparison
CategoryTheory.Iso.inv
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
iso
CategoryTheory.Abelian.PreservesCoimage.iso
CategoryTheory.Limits.instHasCokernelMapOfPreservesColimitWalkingParallelPairParallelPairOfNatHom
CategoryTheory.Limits.instHasKernelMapOfPreservesLimitWalkingParallelPairParallelPairOfNatHom
iso_inv_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Functor.id
CategoryTheory.Abelian.coimage
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Limits.instHasKernelMapOfPreservesLimitWalkingParallelPairParallelPairOfNatHom
CategoryTheory.Abelian.image
CategoryTheory.Limits.instHasCokernelMapOfPreservesColimitWalkingParallelPairParallelPairOfNatHom
CategoryTheory.Abelian.coimageImageComparison
CategoryTheory.Iso.inv
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
iso
CategoryTheory.Abelian.PreservesImage.iso
CategoryTheory.Limits.instHasCokernelMapOfPreservesColimitWalkingParallelPairParallelPairOfNatHom
CategoryTheory.Limits.instHasKernelMapOfPreservesLimitWalkingParallelPairParallelPairOfNatHom

CategoryTheory.Abelian.PreservesImage

Definitions

NameCategoryTheorems
iso 📖CompOp
11 mathmath: factorThruImage_iso_hom, CategoryTheory.Abelian.PreservesCoimageImageComparison.iso_hom_right, iso_hom_ι, factorThruImage_iso_hom_assoc, iso_inv_ι_assoc, iso_hom_ι_assoc, CategoryTheory.Abelian.PreservesCoimageImageComparison.iso_inv_right, iso_inv_ι, CategoryTheory.Abelian.PreservesCoimage.hom_coimageImageComparison, factorThruImage_iso_inv, factorThruImage_iso_inv_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
factorThruImage_iso_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Abelian.image
CategoryTheory.Functor.map
CategoryTheory.Abelian.factorThruImage
CategoryTheory.Iso.hom
iso
CategoryTheory.Limits.equalizer.hom_ext
CategoryTheory.Limits.cokernel.condition
CategoryTheory.Limits.PreservesKernel.iso_hom
CategoryTheory.Limits.map_lift_kernelComparison_assoc
CategoryTheory.Category.assoc
CategoryTheory.Limits.kernel.lift_ι
CategoryTheory.Category.comp_id
factorThruImage_iso_hom_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Abelian.image
CategoryTheory.Functor.map
CategoryTheory.Abelian.factorThruImage
CategoryTheory.Iso.hom
iso
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
factorThruImage_iso_hom
factorThruImage_iso_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Abelian.image
CategoryTheory.Functor.map
CategoryTheory.Abelian.factorThruImage
CategoryTheory.Iso.inv
iso
factorThruImage_iso_hom
factorThruImage_iso_inv_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Abelian.image
CategoryTheory.Functor.map
CategoryTheory.Abelian.factorThruImage
CategoryTheory.Iso.inv
iso
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
factorThruImage_iso_inv
iso_hom_ι 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Abelian.image
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
iso
CategoryTheory.Abelian.image.ι
CategoryTheory.Limits.PreservesKernel.iso_hom
CategoryTheory.Category.assoc
CategoryTheory.Limits.kernel.lift_ι
CategoryTheory.Category.comp_id
CategoryTheory.Limits.kernelComparison_comp_ι
iso_hom_ι_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Abelian.image
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
iso
CategoryTheory.Abelian.image.ι
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
iso_hom_ι
iso_inv_ι 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Abelian.image
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
iso
CategoryTheory.Abelian.image.ι
CategoryTheory.Limits.PreservesCokernel.iso_inv
CategoryTheory.Limits.kernel.map.congr_simp
CategoryTheory.Category.assoc
CategoryTheory.Limits.PreservesKernel.iso_inv_ι
CategoryTheory.Limits.kernel.lift_ι
CategoryTheory.Category.comp_id
iso_inv_ι_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Abelian.image
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
iso
CategoryTheory.Abelian.image.ι
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
iso_inv_ι

---

← Back to Index