Documentation Verification Report

Equalizers

📁 Source: Mathlib/CategoryTheory/Limits/Preserves/Shapes/Equalizers.lean

Statistics

MetricCount
Definitionsiso, iso, isColimitCoforkMapOfIsColimit, isColimitMapCoconeCoforkEquiv, isColimitOfHasCoequalizerOfPreservesColimit, isColimitOfIsColimitCoforkMap, isLimitForkMapOfIsLimit, isLimitMapConeForkEquiv, isLimitOfHasEqualizerOfPreservesLimit, isLimitOfIsLimitForkMap
10
Theoremsiso_hom, iso_hom, iso_inv_ι, of_iso_comparison, instIsIsoCoequalizerComparison, instIsIsoEqualizerComparison, map_π_epi, map_π_preserves_coequalizer_inv, map_π_preserves_coequalizer_inv_assoc, map_π_preserves_coequalizer_inv_colimMap, map_π_preserves_coequalizer_inv_colimMap_assoc, map_π_preserves_coequalizer_inv_colimMap_desc, map_π_preserves_coequalizer_inv_colimMap_desc_assoc, map_π_preserves_coequalizer_inv_desc, map_π_preserves_coequalizer_inv_desc_assoc, of_iso_comparison, preservesSplitCoequalizers, preservesSplitEqualizers
18
Total28

CategoryTheory.Limits

Definitions

NameCategoryTheorems
isColimitCoforkMapOfIsColimit 📖CompOp
isColimitMapCoconeCoforkEquiv 📖CompOp
isColimitOfHasCoequalizerOfPreservesColimit 📖CompOp
isColimitOfIsColimitCoforkMap 📖CompOp
isLimitForkMapOfIsLimit 📖CompOp
isLimitMapConeForkEquiv 📖CompOp
isLimitOfHasEqualizerOfPreservesLimit 📖CompOp
isLimitOfIsLimitForkMap 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
instIsIsoCoequalizerComparison 📖mathematicalCategoryTheory.IsIso
coequalizer
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
coequalizerComparison
PreservesCoequalizer.iso_hom
CategoryTheory.Iso.isIso_hom
instIsIsoEqualizerComparison 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor.obj
equalizer
CategoryTheory.Functor.map
equalizerComparison
PreservesEqualizer.iso_hom
CategoryTheory.Iso.isIso_hom
map_π_epi 📖mathematicalCategoryTheory.Epi
CategoryTheory.Functor.obj
coequalizer
CategoryTheory.Functor.map
coequalizer.π
ι_comp_coequalizerComparison
CategoryTheory.cancel_epi
CategoryTheory.epi_comp
coequalizer.π_epi
CategoryTheory.epi_of_strongEpi
CategoryTheory.strongEpi_of_isIso
instIsIsoCoequalizerComparison
map_π_preserves_coequalizer_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
coequalizer
CategoryTheory.Functor.map
coequalizer.π
CategoryTheory.Iso.inv
PreservesCoequalizer.iso
ι_comp_coequalizerComparison_assoc
PreservesCoequalizer.iso_hom
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
map_π_preserves_coequalizer_inv_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
coequalizer
CategoryTheory.Functor.map
coequalizer.π
CategoryTheory.Iso.inv
PreservesCoequalizer.iso
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_π_preserves_coequalizer_inv
map_π_preserves_coequalizer_inv_colimMap 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
coequalizer
colimit
WalkingParallelPair
walkingParallelPairHomCategory
parallelPair
coequalizer.π
CategoryTheory.Iso.inv
PreservesCoequalizer.iso
colimMap
parallelPairHom
CategoryTheory.Category.assoc
map_π_preserves_coequalizer_inv
ι_colimMap
parallelPairHom_app_one
map_π_preserves_coequalizer_inv_colimMap_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
coequalizer
coequalizer.π
CategoryTheory.Iso.inv
PreservesCoequalizer.iso
colimit
WalkingParallelPair
walkingParallelPairHomCategory
parallelPair
colimMap
parallelPairHom
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_π_preserves_coequalizer_inv_colimMap
map_π_preserves_coequalizer_inv_colimMap_desc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
coequalizer
coequalizer.π
CategoryTheory.Iso.inv
PreservesCoequalizer.iso
colimit
WalkingParallelPair
walkingParallelPairHomCategory
parallelPair
colimMap
parallelPairHom
coequalizer.desc
CategoryTheory.Category.assoc
map_π_preserves_coequalizer_inv_colimMap
coequalizer.π_desc
map_π_preserves_coequalizer_inv_colimMap_desc_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
coequalizer
coequalizer.π
CategoryTheory.Iso.inv
PreservesCoequalizer.iso
colimit
WalkingParallelPair
walkingParallelPairHomCategory
parallelPair
colimMap
parallelPairHom
coequalizer.desc
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_π_preserves_coequalizer_inv_colimMap_desc
map_π_preserves_coequalizer_inv_desc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
coequalizer
coequalizer.π
CategoryTheory.Iso.inv
PreservesCoequalizer.iso
coequalizer.desc
CategoryTheory.Category.assoc
map_π_preserves_coequalizer_inv
coequalizer.π_desc
map_π_preserves_coequalizer_inv_desc_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
coequalizer
coequalizer.π
CategoryTheory.Iso.inv
PreservesCoequalizer.iso
coequalizer.desc
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_π_preserves_coequalizer_inv_desc
of_iso_comparison 📖mathematicalPreservesColimit
WalkingParallelPair
walkingParallelPairHomCategory
parallelPair
preservesColimit_of_preserves_colimit_cocone
coequalizer.condition
preservesSplitCoequalizers 📖mathematicalPreservesColimit
WalkingParallelPair
walkingParallelPairHomCategory
parallelPair
preservesColimit_of_preserves_colimit_cocone
CategoryTheory.IsSplitCoequalizer.condition
preservesSplitEqualizers 📖mathematicalPreservesLimit
WalkingParallelPair
walkingParallelPairHomCategory
parallelPair
preservesLimit_of_preserves_limit_cone
CategoryTheory.IsSplitEqualizer.condition

CategoryTheory.Limits.PreservesCoequalizer

Definitions

NameCategoryTheorems
iso 📖CompOp
13 mathmath: CategoryTheory.Limits.map_π_preserves_coequalizer_inv_colimMap, CategoryTheory.Limits.map_π_preserves_coequalizer_inv_colimMap_desc, id_tensor_π_preserves_coequalizer_inv_colimMap_desc, π_tensor_id_preserves_coequalizer_inv_desc, CategoryTheory.Limits.map_π_preserves_coequalizer_inv_colimMap_assoc, id_tensor_π_preserves_coequalizer_inv_desc, CategoryTheory.Limits.map_π_preserves_coequalizer_inv_assoc, iso_hom, CategoryTheory.Limits.map_π_preserves_coequalizer_inv_desc, CategoryTheory.Limits.map_π_preserves_coequalizer_inv, CategoryTheory.Limits.map_π_preserves_coequalizer_inv_colimMap_desc_assoc, CategoryTheory.Limits.map_π_preserves_coequalizer_inv_desc_assoc, π_tensor_id_preserves_coequalizer_inv_colimMap_desc

Theorems

NameKindAssumesProvesValidatesDepends On
iso_hom 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.Limits.coequalizer
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
iso
CategoryTheory.Limits.coequalizerComparison

CategoryTheory.Limits.PreservesEqualizer

Definitions

NameCategoryTheorems
iso 📖CompOp
2 mathmath: iso_hom, iso_inv_ι

Theorems

NameKindAssumesProvesValidatesDepends On
iso_hom 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.Functor.obj
CategoryTheory.Limits.equalizer
CategoryTheory.Functor.map
iso
CategoryTheory.Limits.equalizerComparison
iso_inv_ι 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.equalizer
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
iso
CategoryTheory.Limits.equalizer.ι
CategoryTheory.Iso.cancel_iso_hom_left
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.id_comp
CategoryTheory.Limits.equalizerComparison_comp_π
of_iso_comparison 📖mathematicalCategoryTheory.Limits.PreservesLimit
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
CategoryTheory.Limits.preservesLimit_of_preserves_limit_cone
CategoryTheory.Limits.equalizer.condition

---

← Back to Index