Documentation Verification Report

Kernels

📁 Source: Mathlib/CategoryTheory/Limits/Preserves/Shapes/Kernels.lean

Statistics

MetricCount
DefinitionsisColimitMapCoconeEquiv, map, mapIsColimit, isLimitMapConeEquiv, map, mapIsLimit, iso, iso, isColimitCoforkMapOfIsColimit', isColimitMapCoconeCoforkEquiv', isColimitOfHasCokernelOfPreservesColimit, isLimitForkMapOfIsLimit', isLimitMapConeForkEquiv', isLimitOfHasKernelOfPreservesLimit
14
Theoremsmap_condition, map_condition_assoc, map_π, map_condition, map_condition_assoc, map_ι, iso_inv, of_iso_comparison, π_iso_hom, π_iso_hom_assoc, iso_hom, iso_inv_ι, iso_inv_ι_assoc, of_iso_comparison, instHasCokernelMapOfPreservesColimitWalkingParallelPairParallelPairOfNatHom, instHasKernelMapOfPreservesLimitWalkingParallelPairParallelPairOfNatHom, instIsIsoCokernelComparison, instIsIsoKernelComparison, kernel_map_comp_preserves_kernel_iso_inv, kernel_map_comp_preserves_kernel_iso_inv_assoc, preservesCokernel_zero, preservesCokernel_zero', preservesKernel_zero, preservesKernel_zero', preserves_cokernel_iso_comp_cokernel_map, preserves_cokernel_iso_comp_cokernel_map_assoc
26
Total40

CategoryTheory.Limits

Definitions

NameCategoryTheorems
isColimitCoforkMapOfIsColimit' 📖CompOp
isColimitMapCoconeCoforkEquiv' 📖CompOp
isColimitOfHasCokernelOfPreservesColimit 📖CompOp
isLimitForkMapOfIsLimit' 📖CompOp
isLimitMapConeForkEquiv' 📖CompOp
isLimitOfHasKernelOfPreservesLimit 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
instHasCokernelMapOfPreservesColimitWalkingParallelPairParallelPairOfNatHom 📖mathematicalHasCokernel
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
instHasKernelMapOfPreservesLimitWalkingParallelPairParallelPairOfNatHom 📖mathematicalHasKernel
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
instIsIsoCokernelComparison 📖mathematicalCategoryTheory.IsIso
cokernel
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
cokernelComparison
PreservesCokernel.iso_inv
CategoryTheory.Iso.isIso_inv
instIsIsoKernelComparison 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor.obj
kernel
CategoryTheory.Functor.map
kernelComparison
PreservesKernel.iso_hom
CategoryTheory.Iso.isIso_hom
kernel_map_comp_preserves_kernel_iso_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
kernel
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
kernel.map
CategoryTheory.Iso.inv
PreservesKernel.iso
CategoryTheory.Iso.comp_inv_eq
CategoryTheory.Category.assoc
PreservesKernel.iso_hom
CategoryTheory.Iso.eq_inv_comp
kernelComparison_comp_kernel_map
kernel_map_comp_preserves_kernel_iso_inv_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
kernel
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
kernel.map
CategoryTheory.Iso.inv
PreservesKernel.iso
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
kernel_map_comp_preserves_kernel_iso_inv
preservesCokernel_zero 📖mathematicalPreservesColimit
WalkingParallelPair
walkingParallelPairHomCategory
parallelPair
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HasZeroMorphisms.zero
CokernelCofork.IsColimit.isIso_π
CategoryTheory.Functor.map_zero
CategoryTheory.Category.id_comp
preservesCokernel_zero' 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HasZeroMorphisms.zero
PreservesColimit
WalkingParallelPair
walkingParallelPairHomCategory
parallelPair
preservesCokernel_zero
preservesKernel_zero 📖mathematicalPreservesLimit
WalkingParallelPair
walkingParallelPairHomCategory
parallelPair
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HasZeroMorphisms.zero
KernelFork.IsLimit.isIso_ι
CategoryTheory.Functor.map_zero
CategoryTheory.Functor.map_isIso
CategoryTheory.Functor.map_inv
CategoryTheory.IsIso.inv_hom_id
preservesKernel_zero' 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HasZeroMorphisms.zero
PreservesLimit
WalkingParallelPair
walkingParallelPairHomCategory
parallelPair
preservesKernel_zero
preserves_cokernel_iso_comp_cokernel_map 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
cokernel
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
PreservesCokernel.iso
cokernel.map
CategoryTheory.Iso.comp_inv_eq
CategoryTheory.Category.assoc
CategoryTheory.Iso.eq_inv_comp
PreservesCokernel.iso_inv
cokernel_map_comp_cokernelComparison
preserves_cokernel_iso_comp_cokernel_map_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
cokernel
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
PreservesCokernel.iso
cokernel.map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
preserves_cokernel_iso_comp_cokernel_map

CategoryTheory.Limits.CokernelCofork

Definitions

NameCategoryTheorems
isColimitMapCoconeEquiv 📖CompOp
map 📖CompOp
1 mathmath: map_π
mapIsColimit 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
map_condition 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.parallelPair
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.WalkingParallelPair.one
CategoryTheory.Functor.map
CategoryTheory.Limits.Cofork.π
CategoryTheory.Functor.map_comp
condition
CategoryTheory.Functor.map_zero
map_condition_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.parallelPair
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.WalkingParallelPair.one
CategoryTheory.Limits.Cofork.π
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_condition
map_π 📖mathematicalCategoryTheory.Limits.Cofork.π
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
map
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
CategoryTheory.Limits.WalkingParallelPair.one
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt

CategoryTheory.Limits.KernelFork

Definitions

NameCategoryTheorems
isLimitMapConeEquiv 📖CompOp
map 📖CompOp
1 mathmath: map_ι
mapIsLimit 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
map_condition 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.parallelPair
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.WalkingParallelPair.zero
CategoryTheory.Functor.map
CategoryTheory.Limits.Fork.ι
CategoryTheory.Functor.map_comp
condition
CategoryTheory.Functor.map_zero
map_condition_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.parallelPair
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.WalkingParallelPair.zero
CategoryTheory.Functor.map
CategoryTheory.Limits.Fork.ι
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_condition
map_ι 📖mathematicalCategoryTheory.Limits.Fork.ι
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
map
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.parallelPair
CategoryTheory.Limits.WalkingParallelPair.zero

CategoryTheory.Limits.PreservesCokernel

Definitions

NameCategoryTheorems
iso 📖CompOp
8 mathmath: π_iso_hom_assoc, iso_inv, CategoryTheory.Limits.preserves_cokernel_iso_comp_cokernel_map, CategoryTheory.Abelian.FunctorCategory.imageObjIso_hom, π_iso_hom, CategoryTheory.Limits.preserves_cokernel_iso_comp_cokernel_map_assoc, CategoryTheory.Abelian.FunctorCategory.coimageObjIso_hom, CategoryTheory.Abelian.FunctorCategory.imageObjIso_inv

Theorems

NameKindAssumesProvesValidatesDepends On
iso_inv 📖mathematicalCategoryTheory.Iso.inv
CategoryTheory.Functor.obj
CategoryTheory.Limits.cokernel
CategoryTheory.Functor.map
iso
CategoryTheory.Limits.cokernelComparison
CategoryTheory.cancel_epi
CategoryTheory.Limits.coequalizer.π_epi
CategoryTheory.Limits.colimit.comp_coconePointUniqueUpToIso_inv
CategoryTheory.Limits.π_comp_cokernelComparison
of_iso_comparison 📖mathematicalCategoryTheory.Limits.PreservesColimit
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.preservesColimit_of_preserves_colimit_cocone
CategoryTheory.Limits.cokernel.condition
CategoryTheory.Limits.zero_comp
π_iso_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.cokernel
CategoryTheory.Functor.map
CategoryTheory.Limits.cokernel.π
CategoryTheory.Iso.hom
iso
CategoryTheory.Limits.IsColimit.comp_coconePointUniqueUpToIso_hom
π_iso_hom_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.cokernel
CategoryTheory.Functor.map
CategoryTheory.Limits.cokernel.π
CategoryTheory.Iso.hom
iso
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
π_iso_hom

CategoryTheory.Limits.PreservesKernel

Definitions

NameCategoryTheorems
iso 📖CompOp
8 mathmath: iso_inv_ι, CategoryTheory.Limits.kernel_map_comp_preserves_kernel_iso_inv_assoc, iso_inv_ι_assoc, iso_hom, CategoryTheory.Limits.kernel_map_comp_preserves_kernel_iso_inv, CategoryTheory.Abelian.FunctorCategory.coimageObjIso_inv, CategoryTheory.Abelian.FunctorCategory.coimageObjIso_hom, CategoryTheory.Abelian.FunctorCategory.imageObjIso_inv

Theorems

NameKindAssumesProvesValidatesDepends On
iso_hom 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.Functor.obj
CategoryTheory.Limits.kernel
CategoryTheory.Functor.map
iso
CategoryTheory.Limits.kernelComparison
CategoryTheory.cancel_mono
CategoryTheory.Limits.equalizer.ι_mono
CategoryTheory.Limits.limit.conePointUniqueUpToIso_hom_comp
CategoryTheory.Limits.kernelComparison_comp_ι
iso_inv_ι 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.kernel
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
iso
CategoryTheory.Limits.kernel.ι
CategoryTheory.Limits.IsLimit.conePointUniqueUpToIso_inv_comp
iso_inv_ι_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.kernel
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
iso
CategoryTheory.Limits.kernel.ι
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
iso_inv_ι
of_iso_comparison 📖mathematicalCategoryTheory.Limits.PreservesLimit
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.preservesLimit_of_preserves_limit_cone
CategoryTheory.Limits.kernel.condition
CategoryTheory.Limits.comp_zero

---

← Back to Index