Documentation Verification Report

Multiequalizer

📁 Source: Mathlib/CategoryTheory/Limits/Preserves/Shapes/Multiequalizer.lean

Statistics

MetricCount
DefinitionsisColimitMapEquiv, isColimitMapOfPreserves, map, map, multispanMapIso
5
Theoremsmap_pt, map_ι_app, map_fst, map_left, map_right, map_snd, multispanMapIso_hom_app, multispanMapIso_inv_app
8
Total13

CategoryTheory.Limits.Multicofork

Definitions

NameCategoryTheorems
isColimitMapEquiv 📖CompOp
isColimitMapOfPreserves 📖CompOp
map 📖CompOp
2 mathmath: map_pt, map_ι_app

Theorems

NameKindAssumesProvesValidatesDepends On
map_pt 📖mathematicalCategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingMultispan
CategoryTheory.Limits.WalkingMultispan.instSmallCategory
CategoryTheory.Limits.MultispanIndex.multispan
CategoryTheory.Limits.MultispanIndex.map
map
CategoryTheory.Functor.obj
map_ι_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Limits.WalkingMultispan
CategoryTheory.Limits.WalkingMultispan.instSmallCategory
CategoryTheory.Limits.MultispanIndex.multispan
CategoryTheory.Limits.MultispanIndex.map
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.Cocone.ι
map
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.comp
CategoryTheory.Limits.MultispanIndex.left
CategoryTheory.Limits.MultispanIndex.right
CategoryTheory.Limits.MultispanShape.fst
CategoryTheory.Functor.map
CategoryTheory.Limits.MultispanIndex.fst
π

CategoryTheory.Limits.MultispanIndex

Definitions

NameCategoryTheorems
map 📖CompOp
22 mathmath: SSet.horn₃₁.desc.multicofork_π_two, SSet.horn₃₂.desc.multicofork_π_one, map_fst, SSet.horn₃₁.desc.multicofork_pt, multispanMapIso_inv_app, SSet.horn₃₁.desc.multicofork_π_two_assoc, SSet.horn₃₁.desc.multicofork_π_zero_assoc, CategoryTheory.Limits.Multicofork.map_pt, map_snd, CategoryTheory.Limits.Multicofork.map_ι_app, map_left, SSet.horn₃₂.desc.multicofork_π_zero_assoc, multispanMapIso_hom_app, map_right, SSet.horn₃₁.desc.multicofork_π_three_assoc, SSet.horn₃₁.desc.multicofork_π_zero, SSet.horn₃₂.desc.multicofork_π_three, SSet.horn₃₂.desc.multicofork_pt, SSet.horn₃₂.desc.multicofork_π_zero, SSet.horn₃₂.desc.multicofork_π_three_assoc, SSet.horn₃₂.desc.multicofork_π_one_assoc, SSet.horn₃₁.desc.multicofork_π_three
multispanMapIso 📖CompOp
2 mathmath: multispanMapIso_inv_app, multispanMapIso_hom_app

Theorems

NameKindAssumesProvesValidatesDepends On
map_fst 📖mathematicalfst
map
CategoryTheory.Functor.map
left
right
CategoryTheory.Limits.MultispanShape.fst
map_left 📖mathematicalleft
map
CategoryTheory.Functor.obj
map_right 📖mathematicalright
map
CategoryTheory.Functor.obj
map_snd 📖mathematicalsnd
map
CategoryTheory.Functor.map
left
right
CategoryTheory.Limits.MultispanShape.snd
multispanMapIso_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Limits.WalkingMultispan
CategoryTheory.Limits.WalkingMultispan.instSmallCategory
multispan
map
CategoryTheory.Functor.comp
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
multispanMapIso
CategoryTheory.Functor.obj
CategoryTheory.Iso
CategoryTheory.Iso.refl
left
right
multispanMapIso_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Limits.WalkingMultispan
CategoryTheory.Limits.WalkingMultispan.instSmallCategory
CategoryTheory.Functor.comp
multispan
map
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
multispanMapIso
CategoryTheory.Functor.obj
CategoryTheory.Iso
CategoryTheory.Iso.refl
left
right

---

← Back to Index