Documentation Verification Report

Zero

πŸ“ Source: Mathlib/CategoryTheory/Limits/Preserves/Shapes/Zero.lean

Statistics

MetricCount
DefinitionsPreservesZeroMorphisms, mapZeroObject
2
Theoremsmap_zero, instPreservesZeroMorphismsFlipOfObj, instPreservesZeroMorphismsObjFlip, mapZeroObject_hom, mapZeroObject_inv, map_eq_zero_iff, map_isZero, map_zero, preservesColimitsOfShape_of_isZero, preservesColimitsOfSize_of_isZero, preservesInitialObject_of_preservesZeroMorphisms, preservesLimitsOfShape_of_isZero, preservesLimitsOfSize_of_isZero, preservesTerminalObject_of_preservesZeroMorphisms, preservesZeroMorphisms_comp, preservesZeroMorphisms_evaluation_obj, preservesZeroMorphisms_of_full, preservesZeroMorphisms_of_isLeftAdjoint, preservesZeroMorphisms_of_isRightAdjoint, preservesZeroMorphisms_of_iso, preservesZeroMorphisms_of_map_zero_object, preservesZeroMorphisms_of_preserves_initial_object, preservesZeroMorphisms_of_preserves_terminal_object, whiskerRight_zero, zero_of_map_zero
25
Total27

CategoryTheory.Functor

Definitions

NameCategoryTheorems
PreservesZeroMorphisms πŸ“–CompData
38 mathmath: groupCohomology.instPreservesZeroMorphismsRepCochainComplexModuleCatNatCochainsFunctor, groupHomology.instPreservesZeroMorphismsRepModuleCatFunctor, Action.forgetβ‚‚_preservesZeroMorphisms, Action.forget_preservesZeroMorphisms, preservesZeroMorphisms_of_isRightAdjoint, IsHomological.toPreservesZeroMorphisms, preservesZeroMorphisms_evaluation_obj, preservesZeroMorphisms_comp, CategoryTheory.ShortComplex.preservesZeroMorphisms_π₃, CategoryTheory.Abelian.LeftResolution.instPreservesZeroMorphismsKaroubiF, preservesZeroMorphisms_of_map_zero_object, IsTriangulated.instPreservesZeroMorphisms, HomologicalComplex.instPreservesZeroMorphismsEval, Rep.instPreservesZeroMorphismsModuleCatInvariantsFunctor, preservesZeroMorphisms_of_isLeftAdjoint, HomologicalComplex.instPreservesZeroMorphismsHomologyFunctor, preservesZeroMorphisms_of_full, CategoryTheory.ShortComplex.preservesZeroMorphisms_π₁, preservesZeroMorphisms_of_additive, ComplexShape.Embedding.instPreservesZeroMorphismsHomologicalComplexExtendFunctor, preservesZeroMorphisms_of_iso, CategoryTheory.plusPlusSheaf_preservesZeroMorphisms, groupCohomology.instPreservesZeroMorphismsRepModuleCatFunctor, preservesZeroMorphisms_of_preserves_initial_object, instPreservesZeroMorphismsObjFlip, CategoryTheory.Abelian.LeftResolution.instPreservesZeroMorphismsFReduced, groupHomology.instPreservesZeroMorphismsRepChainComplexModuleCatNatChainsFunctor, CategoryTheory.GrothendieckTopology.plusFunctor_preservesZeroMorphisms, CategoryTheory.Abelian.LeftResolution.instPreservesZeroMorphismsKaroubiFKaroubi, Action.functorCategoryEquivalence_preservesZeroMorphisms, HomologicalComplex.instPreservesZeroMorphismsCyclesFunctor, preservesZeroMorphisms_of_preserves_terminal_object, HomologicalComplex.instPreservesZeroMorphismsSingle, Rep.instPreservesZeroMorphismsModuleCatCoinvariantsFunctor, CategoryTheory.instPreservesZeroMorphismsHomologicalComplexMapHomologicalComplex, HomologicalComplex.instPreservesZeroMorphismsOpcyclesFunctor, CategoryTheory.ShortComplex.preservesZeroMorphisms_Ο€β‚‚, ComplexShape.Embedding.instPreservesZeroMorphismsHomologicalComplexRestrictionFunctor
mapZeroObject πŸ“–CompOp
2 mathmath: mapZeroObject_inv, mapZeroObject_hom

Theorems

NameKindAssumesProvesValidatesDepends On
instPreservesZeroMorphismsFlipOfObj πŸ“–mathematicalPreservesZeroMorphisms
obj
CategoryTheory.Functor
category
CategoryTheory.Limits.instHasZeroMorphismsFunctor
flip
β€”CategoryTheory.NatTrans.ext'
map_zero
instPreservesZeroMorphismsObjFlip πŸ“–mathematicalβ€”PreservesZeroMorphisms
obj
CategoryTheory.Functor
category
flip
β€”map_zero
mapZeroObject_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
obj
CategoryTheory.Limits.HasZeroObject.zero'
mapZeroObject
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
β€”β€”
mapZeroObject_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
obj
CategoryTheory.Limits.HasZeroObject.zero'
mapZeroObject
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
β€”β€”
map_eq_zero_iff πŸ“–mathematicalβ€”map
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.Limits.HasZeroMorphisms.zero
β€”zero_of_map_zero
map_zero
map_isZero πŸ“–mathematicalCategoryTheory.Limits.IsZeroobjβ€”map_id
map_zero
map_zero πŸ“–mathematicalβ€”map
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
obj
β€”PreservesZeroMorphisms.map_zero
preservesColimitsOfShape_of_isZero πŸ“–mathematicalCategoryTheory.Limits.IsZero
CategoryTheory.Functor
category
CategoryTheory.Limits.PreservesColimitsOfShapeβ€”isZero
isZero_iff
preservesColimitsOfSize_of_isZero πŸ“–mathematicalCategoryTheory.Limits.IsZero
CategoryTheory.Functor
category
CategoryTheory.Limits.PreservesColimitsOfSizeβ€”preservesColimitsOfShape_of_isZero
preservesInitialObject_of_preservesZeroMorphisms πŸ“–mathematicalβ€”CategoryTheory.Limits.PreservesColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
empty
β€”CategoryTheory.Limits.preservesInitial_of_iso
CategoryTheory.Limits.HasZeroObject.hasInitial
preservesLimitsOfShape_of_isZero πŸ“–mathematicalCategoryTheory.Limits.IsZero
CategoryTheory.Functor
category
CategoryTheory.Limits.PreservesLimitsOfShapeβ€”isZero
isZero_iff
preservesLimitsOfSize_of_isZero πŸ“–mathematicalCategoryTheory.Limits.IsZero
CategoryTheory.Functor
category
CategoryTheory.Limits.PreservesLimitsOfSizeβ€”preservesLimitsOfShape_of_isZero
preservesTerminalObject_of_preservesZeroMorphisms πŸ“–mathematicalβ€”CategoryTheory.Limits.PreservesLimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
empty
β€”CategoryTheory.Limits.preservesTerminal_of_iso
CategoryTheory.Limits.HasZeroObject.hasTerminal
preservesZeroMorphisms_comp πŸ“–mathematicalβ€”PreservesZeroMorphisms
comp
β€”map_zero
preservesZeroMorphisms_evaluation_obj πŸ“–mathematicalβ€”PreservesZeroMorphisms
CategoryTheory.Functor
category
CategoryTheory.Limits.instHasZeroMorphismsFunctor
obj
CategoryTheory.evaluation
β€”β€”
preservesZeroMorphisms_of_full πŸ“–mathematicalβ€”PreservesZeroMorphismsβ€”CategoryTheory.Limits.zero_comp
map_comp
map_preimage
CategoryTheory.Limits.comp_zero
preservesZeroMorphisms_of_isLeftAdjoint πŸ“–mathematicalβ€”PreservesZeroMorphismsβ€”CategoryTheory.Adjunction.left_triangle_components
CategoryTheory.Category.comp_id
map_comp
CategoryTheory.Limits.zero_comp
CategoryTheory.Adjunction.counit_naturality
CategoryTheory.Limits.comp_zero
preservesZeroMorphisms_of_isRightAdjoint πŸ“–mathematicalβ€”PreservesZeroMorphismsβ€”CategoryTheory.Adjunction.right_triangle_components_assoc
map_comp
CategoryTheory.Limits.comp_zero
CategoryTheory.Adjunction.unit_naturality_assoc
CategoryTheory.Limits.zero_comp
preservesZeroMorphisms_of_iso πŸ“–mathematicalβ€”PreservesZeroMorphismsβ€”CategoryTheory.cancel_epi
CategoryTheory.epi_of_strongEpi
CategoryTheory.strongEpi_of_isIso
CategoryTheory.NatIso.hom_app_isIso
CategoryTheory.NatTrans.naturality
map_zero
CategoryTheory.Limits.zero_comp
CategoryTheory.Limits.comp_zero
preservesZeroMorphisms_of_map_zero_object πŸ“–mathematicalβ€”PreservesZeroMorphismsβ€”map_comp
CategoryTheory.Limits.comp_zero
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.id_comp
CategoryTheory.Limits.zero_of_to_zero
CategoryTheory.Limits.zero_comp
preservesZeroMorphisms_of_preserves_initial_object πŸ“–mathematicalβ€”PreservesZeroMorphismsβ€”preservesZeroMorphisms_of_map_zero_object
CategoryTheory.Limits.HasZeroObject.hasInitial
preservesZeroMorphisms_of_preserves_terminal_object πŸ“–mathematicalβ€”PreservesZeroMorphismsβ€”preservesZeroMorphisms_of_map_zero_object
CategoryTheory.Limits.HasZeroObject.hasTerminal
whiskerRight_zero πŸ“–mathematicalβ€”whiskerRight
Quiver.Hom
CategoryTheory.Functor
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
category
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.instHasZeroMorphismsFunctor
comp
β€”CategoryTheory.NatTrans.ext'
map_zero
zero_of_map_zero πŸ“–β€”map
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.Limits.HasZeroMorphisms.zero
β€”β€”map_injective
map_zero

CategoryTheory.Functor.PreservesZeroMorphisms

Theorems

NameKindAssumesProvesValidatesDepends On
map_zero πŸ“–mathematicalβ€”CategoryTheory.Functor.map
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Functor.obj
β€”β€”

---

← Back to Index