Documentation Verification Report

Presheaf

📁 Source: Mathlib/CategoryTheory/Limits/Presheaf.lean

Statistics

MetricCount
DefinitionscoconeOfRepresentable, colimitOfRepresentable, compULiftYonedaIsoULiftYonedaCompLan, coconeApp, extensionHom, natTrans, presheafHom, functorToRepresentables, instUniqueHomLeftExtensionFunctorOppositeTypeUliftYonedaCompMkLanOpHomCompULiftYonedaIsoULiftYonedaCompLan, instUniqueHomLeftExtensionOppositeOpObjFunctorTypeUliftYonedaMkUliftYonedaMap, instUniqueHomLeftExtensionOppositeOpObjFunctorTypeYonedaMkYonedaMap, isColimitTautologicalCocone, isColimitTautologicalCocone', isExtensionAlongULiftYoneda, isExtensionAlongYoneda, restrictedULiftYoneda, restrictedULiftYonedaHomEquiv, restrictedULiftYonedaHomEquiv', restrictedYoneda, tautologicalCocone, tautologicalCocone', uliftYonedaAdjunction, uniqueExtensionAlongULiftYoneda, uniqueExtensionAlongYoneda, yonedaAdjunction
25
TheoremscoconeOfRepresentable_naturality, coconeOfRepresentable_pt, coconeOfRepresentable_ι_app, coconeApp_naturality, coconeApp_naturality_assoc, hom_ext, hom_ext_iff, natTrans_app_uliftYoneda_obj, presheafHom_naturality, presheafHom_naturality_assoc, uliftYonedaEquiv_presheafHom_uliftYoneda_obj, uliftYonedaEquiv_ι_presheafHom, compULiftYonedaIsoULiftYonedaCompLan_inv_app_app_apply_eq_id, final_toCostructuredArrow_comp_pre, functorToRepresentables_map, functorToRepresentables_obj, instIsIsoFunctorLeftKanExtensionUnitOppositeTypeUliftYoneda, instIsIsoFunctorOfIsLeftKanExtensionOppositeType, instIsLeftKanExtensionFunctorOppositeTypeIdCompUliftYonedaOfPreservesColimitsOfSizeOfHasPointwiseLeftKanExtension, instIsLeftKanExtensionFunctorOppositeTypeLanOpHomCompULiftYonedaIsoULiftYonedaCompLan, instIsLeftKanExtensionOppositeObjFunctorTypeUliftYonedaUliftYonedaMap, instIsLeftKanExtensionOppositeObjFunctorTypeYonedaYonedaMap, isIso_of_isLeftKanExtension, isLeftAdjoint_of_preservesColimits, isLeftKanExtension_along_uliftYoneda_iff, isLeftKanExtension_along_yoneda_iff, isLeftKanExtension_of_preservesColimits, map_comp_uliftYonedaEquiv_down, map_comp_uliftYonedaEquiv_down_assoc, preservesColimitsOfSize_leftKanExtension, preservesColimitsOfSize_of_isLeftKanExtension, restrictedULiftYonedaHomEquiv'_symm_app_naturality_left, restrictedULiftYonedaHomEquiv'_symm_app_naturality_left_assoc, restrictedULiftYonedaHomEquiv'_symm_naturality_right, restrictedULiftYonedaHomEquiv'_symm_naturality_right_assoc, restrictedULiftYoneda_map_app, restrictedULiftYoneda_obj_map, tautologicalCocone'_pt, tautologicalCocone'_ι_app, tautologicalCocone_pt, tautologicalCocone_ι_app, uliftYonedaAdjunction_homEquiv_app, uliftYonedaAdjunction_unit_app_app
43
Total68

CategoryTheory.Presheaf

Definitions

NameCategoryTheorems
coconeOfRepresentable 📖CompOp
3 mathmath: coconeOfRepresentable_pt, coconeOfRepresentable_naturality, coconeOfRepresentable_ι_app
colimitOfRepresentable 📖CompOp
compULiftYonedaIsoULiftYonedaCompLan 📖CompOp
3 mathmath: instIsLeftKanExtensionFunctorOppositeTypeLanOpHomCompULiftYonedaIsoULiftYonedaCompLan, compULiftYonedaIsoULiftYonedaCompLan.natTrans_app_uliftYoneda_obj, compULiftYonedaIsoULiftYonedaCompLan_inv_app_app_apply_eq_id
functorToRepresentables 📖CompOp
5 mathmath: coconeOfRepresentable_pt, functorToRepresentables_map, functorToRepresentables_obj, coconeOfRepresentable_naturality, coconeOfRepresentable_ι_app
instUniqueHomLeftExtensionFunctorOppositeTypeUliftYonedaCompMkLanOpHomCompULiftYonedaIsoULiftYonedaCompLan 📖CompOp
instUniqueHomLeftExtensionOppositeOpObjFunctorTypeUliftYonedaMkUliftYonedaMap 📖CompOp
instUniqueHomLeftExtensionOppositeOpObjFunctorTypeYonedaMkYonedaMap 📖CompOp
isColimitTautologicalCocone 📖CompOp
isColimitTautologicalCocone' 📖CompOp
isExtensionAlongULiftYoneda 📖CompOp
isExtensionAlongYoneda 📖CompOp
restrictedULiftYoneda 📖CompOp
13 mathmath: CategoryTheory.Functor.instFullOppositeTypeRestrictedULiftYonedaOfIsDense, restrictedULiftYoneda_obj_map, CategoryTheory.Functor.isDense_iff_fullyFaithful_restrictedULiftYoneda, restrictedULiftYoneda_map_app, uliftYonedaAdjunction_homEquiv_app, CategoryTheory.Functor.instFaithfulOppositeTypeRestrictedULiftYonedaOfIsDense, uliftYonedaAdjunction_unit_app_app, map_comp_uliftYonedaEquiv_down_assoc, map_comp_uliftYonedaEquiv_down, restrictedULiftYonedaHomEquiv'_symm_app_naturality_left, restrictedULiftYonedaHomEquiv'_symm_naturality_right_assoc, restrictedULiftYonedaHomEquiv'_symm_app_naturality_left_assoc, restrictedULiftYonedaHomEquiv'_symm_naturality_right
restrictedULiftYonedaHomEquiv 📖CompOp
restrictedULiftYonedaHomEquiv' 📖CompOp
4 mathmath: restrictedULiftYonedaHomEquiv'_symm_app_naturality_left, restrictedULiftYonedaHomEquiv'_symm_naturality_right_assoc, restrictedULiftYonedaHomEquiv'_symm_app_naturality_left_assoc, restrictedULiftYonedaHomEquiv'_symm_naturality_right
restrictedYoneda 📖CompOp
tautologicalCocone 📖CompOp
2 mathmath: tautologicalCocone_ι_app, tautologicalCocone_pt
tautologicalCocone' 📖CompOp
2 mathmath: tautologicalCocone'_pt, tautologicalCocone'_ι_app
uliftYonedaAdjunction 📖CompOp
2 mathmath: uliftYonedaAdjunction_homEquiv_app, uliftYonedaAdjunction_unit_app_app
uniqueExtensionAlongULiftYoneda 📖CompOp
uniqueExtensionAlongYoneda 📖CompOp
yonedaAdjunction 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
coconeOfRepresentable_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.Functor.Elements
CategoryTheory.categoryOfElements
functorToRepresentables
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
coconeOfRepresentable
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ι
CategoryTheory.Functor.op
CategoryTheory.CategoryOfElements.map
CategoryTheory.NatTrans.ext'
CategoryTheory.types_ext
CategoryTheory.FunctorToTypes.naturality
coconeOfRepresentable_pt 📖mathematicalCategoryTheory.Limits.Cocone.pt
Opposite
CategoryTheory.Functor.Elements
CategoryTheory.Category.opposite
CategoryTheory.categoryOfElements
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.Functor.category
functorToRepresentables
coconeOfRepresentable
coconeOfRepresentable_ι_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
CategoryTheory.Functor.Elements
CategoryTheory.Category.opposite
CategoryTheory.categoryOfElements
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.Functor.category
functorToRepresentables
CategoryTheory.Functor.obj
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.ι
coconeOfRepresentable
DFunLike.coe
Equiv
Opposite.op
CategoryTheory.Functor.leftOp
CategoryTheory.CategoryOfElements.π
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.uliftYoneda
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.uliftYonedaEquiv
Opposite.unop
compULiftYonedaIsoULiftYonedaCompLan_inv_app_app_apply_eq_id 📖mathematicalCategoryTheory.Functor.HasLeftKanExtension
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.op
CategoryTheory.NatTrans.app
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.uliftYoneda
CategoryTheory.Functor.lan
CategoryTheory.Iso.inv
compULiftYonedaIsoULiftYonedaCompLan
Opposite.op
CategoryTheory.Functor.id
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.lanUnit
CategoryTheory.yoneda
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Functor.instIsLeftKanExtensionObjLanAppLanUnit
CategoryTheory.Functor.descOfIsLeftKanExtension_fac_app
CategoryTheory.Functor.map_id
final_toCostructuredArrow_comp_pre 📖mathematicalCategoryTheory.Functor.Final
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Functor.comp
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Limits.Cocone.toCostructuredArrow
CategoryTheory.CostructuredArrow.pre
CategoryTheory.Functor.final_of_isTerminal_colimit_comp_yoneda
CategoryTheory.Over.hasColimit_of_hasColimit_comp_forget
CategoryTheory.Limits.functorCategoryHasColimit
CategoryTheory.Limits.Types.hasColimit
UnivLE.small
UnivLE.self
CategoryTheory.preservesColimit_of_createsColimit_and_hasColimit
CategoryTheory.Limits.IsColimit.hom_ext
CategoryTheory.Limits.IsColimit.comp_coconePointUniqueUpToIso_hom_assoc
CategoryTheory.Over.w
CategoryTheory.Category.comp_id
CategoryTheory.CreatesLimit.toReflectsLimit
CategoryTheory.Equivalence.isEquivalence_inverse
CategoryTheory.Limits.instHasColimitCompOfPreservesColimit
functorToRepresentables_map 📖mathematicalCategoryTheory.Functor.map
Opposite
CategoryTheory.Functor.Elements
CategoryTheory.Category.opposite
CategoryTheory.categoryOfElements
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.Functor.category
functorToRepresentables
CategoryTheory.uliftYoneda
Opposite.unop
CategoryTheory.Functor.obj
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
functorToRepresentables_obj 📖mathematicalCategoryTheory.Functor.obj
Opposite
CategoryTheory.Functor.Elements
CategoryTheory.Category.opposite
CategoryTheory.categoryOfElements
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.Functor.category
functorToRepresentables
CategoryTheory.uliftYoneda
Opposite.unop
instIsIsoFunctorLeftKanExtensionUnitOppositeTypeUliftYoneda 📖mathematicalCategoryTheory.Functor.HasPointwiseLeftKanExtension
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.uliftYoneda
CategoryTheory.IsIso
CategoryTheory.Functor.comp
CategoryTheory.Functor.leftKanExtension
CategoryTheory.Functor.instHasLeftKanExtension
CategoryTheory.Functor.leftKanExtensionUnit
isIso_of_isLeftKanExtension
CategoryTheory.Functor.instHasLeftKanExtension
CategoryTheory.Functor.instIsLeftKanExtensionLeftKanExtensionLeftKanExtensionUnit
instIsIsoFunctorOfIsLeftKanExtensionOppositeType 📖mathematicalCategoryTheory.Functor.HasPointwiseLeftKanExtension
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.uliftYoneda
CategoryTheory.IsIso
CategoryTheory.Functor.comp
CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtension.isIso_hom
CategoryTheory.ULiftYoneda.instFullFunctorOppositeTypeUliftYoneda
CategoryTheory.ULiftYoneda.instFaithfulFunctorOppositeTypeUliftYoneda
instIsLeftKanExtensionFunctorOppositeTypeIdCompUliftYonedaOfPreservesColimitsOfSizeOfHasPointwiseLeftKanExtension 📖mathematicalCategoryTheory.Functor.HasPointwiseLeftKanExtension
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.uliftYoneda
CategoryTheory.Functor.comp
CategoryTheory.Functor.IsLeftKanExtension
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
isLeftKanExtension_of_preservesColimits
instIsLeftKanExtensionFunctorOppositeTypeLanOpHomCompULiftYonedaIsoULiftYonedaCompLan 📖mathematicalCategoryTheory.Functor.HasLeftKanExtension
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.op
CategoryTheory.Functor.IsLeftKanExtension
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.lan
CategoryTheory.uliftYoneda
CategoryTheory.Functor.comp
CategoryTheory.Iso.hom
compULiftYonedaIsoULiftYonedaCompLan
instIsLeftKanExtensionOppositeObjFunctorTypeUliftYonedaUliftYonedaMap 📖mathematicalCategoryTheory.Functor.IsLeftKanExtension
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.uliftYoneda
CategoryTheory.Functor.op
CategoryTheory.uliftYonedaMap
instIsLeftKanExtensionOppositeObjFunctorTypeYonedaYonedaMap 📖mathematicalCategoryTheory.Functor.IsLeftKanExtension
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.Functor.op
CategoryTheory.yonedaMap
isIso_of_isLeftKanExtension 📖mathematicalCategoryTheory.Functor.HasPointwiseLeftKanExtension
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.uliftYoneda
CategoryTheory.IsIso
CategoryTheory.Functor.comp
CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtension.isIso_hom
CategoryTheory.ULiftYoneda.instFullFunctorOppositeTypeUliftYoneda
CategoryTheory.ULiftYoneda.instFaithfulFunctorOppositeTypeUliftYoneda
isLeftAdjoint_of_preservesColimits 📖mathematicalCategoryTheory.Functor.HasPointwiseLeftKanExtension
Opposite
CategoryTheory.Functor
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.uliftYoneda
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.functor
CategoryTheory.Equivalence.congrLeft
CategoryTheory.opOpEquivalence
CategoryTheory.Functor.IsLeftAdjointinstIsLeftKanExtensionFunctorOppositeTypeIdCompUliftYonedaOfPreservesColimitsOfSizeOfHasPointwiseLeftKanExtension
CategoryTheory.Limits.comp_preservesColimits
CategoryTheory.Functor.instPreservesColimitsOfSizeOfIsLeftAdjoint
CategoryTheory.Functor.isLeftAdjoint_of_isEquivalence
CategoryTheory.Equivalence.isEquivalence_functor
isLeftKanExtension_along_uliftYoneda_iff 📖mathematicalCategoryTheory.Functor.HasPointwiseLeftKanExtension
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.uliftYoneda
CategoryTheory.Functor.IsLeftKanExtension
CategoryTheory.IsIso
CategoryTheory.Functor.comp
CategoryTheory.Limits.PreservesColimitsOfSize
instIsIsoFunctorOfIsLeftKanExtensionOppositeType
CategoryTheory.Limits.preservesColimits_of_natIso
CategoryTheory.Functor.instHasLeftKanExtension
CategoryTheory.Functor.instIsLeftKanExtensionLeftKanExtensionLeftKanExtensionUnit
preservesColimitsOfSize_leftKanExtension
CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtension.isLeftKanExtension
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Limits.PreservesColimitsOfSize.preservesColimitsOfShape
CategoryTheory.Category.comp_id
CategoryTheory.Functor.whiskerRight_id'
CategoryTheory.Category.assoc
CategoryTheory.Functor.whiskerLeft_twice
CategoryTheory.NatIso.isIso_app_of_isIso
CategoryTheory.NatIso.isIso_inv_app
CategoryTheory.Category.id_comp
CategoryTheory.IsIso.inv_hom_id_assoc
isLeftKanExtension_along_yoneda_iff 📖mathematicalCategoryTheory.Functor.HasPointwiseLeftKanExtension
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.uliftYoneda
CategoryTheory.Functor.IsLeftKanExtension
CategoryTheory.IsIso
CategoryTheory.Functor.comp
CategoryTheory.Limits.PreservesColimitsOfSize
isLeftKanExtension_along_uliftYoneda_iff
isLeftKanExtension_of_preservesColimits 📖mathematicalCategoryTheory.Functor.HasPointwiseLeftKanExtension
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.uliftYoneda
CategoryTheory.Functor.IsLeftKanExtension
CategoryTheory.Iso.hom
CategoryTheory.Functor.comp
isLeftKanExtension_along_uliftYoneda_iff
CategoryTheory.Iso.isIso_hom
CategoryTheory.Limits.PreservesColimitsOfSize.preservesColimitsOfShape
map_comp_uliftYonedaEquiv_down 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.Functor.op
Opposite.op
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.uliftYoneda
restrictedULiftYoneda
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.uliftYonedaEquiv
CategoryTheory.NatTrans.naturality
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
map_comp_uliftYonedaEquiv_down_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.Functor.op
Opposite.op
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.uliftYoneda
restrictedULiftYoneda
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.uliftYonedaEquiv
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_comp_uliftYonedaEquiv_down
preservesColimitsOfSize_leftKanExtension 📖mathematicalCategoryTheory.Functor.HasPointwiseLeftKanExtension
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.uliftYoneda
CategoryTheory.Limits.PreservesColimitsOfSize
CategoryTheory.Functor.leftKanExtension
CategoryTheory.Functor.instHasLeftKanExtension
CategoryTheory.Adjunction.leftAdjoint_preservesColimits
CategoryTheory.Functor.instHasLeftKanExtension
CategoryTheory.Functor.instIsLeftKanExtensionLeftKanExtensionLeftKanExtensionUnit
preservesColimitsOfSize_of_isLeftKanExtension 📖mathematicalCategoryTheory.Functor.HasPointwiseLeftKanExtension
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.uliftYoneda
CategoryTheory.Limits.PreservesColimitsOfSizeCategoryTheory.Adjunction.leftAdjoint_preservesColimits
restrictedULiftYonedaHomEquiv'_symm_app_naturality_left 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.uliftYoneda
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.CostructuredArrow.proj
CategoryTheory.Functor.obj
CategoryTheory.Functor.const
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
restrictedULiftYoneda
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
restrictedULiftYonedaHomEquiv'
CategoryTheory.CategoryStruct.comp
CategoryTheory.CostructuredArrow.map
restrictedULiftYonedaHomEquiv'_symm_app_naturality_left_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.uliftYoneda
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.CostructuredArrow.proj
CategoryTheory.Functor.const
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
restrictedULiftYoneda
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
restrictedULiftYonedaHomEquiv'
CategoryTheory.CostructuredArrow.map
Mathlib.Tactic.Reassoc.eq_whisker'
restrictedULiftYonedaHomEquiv'_symm_app_naturality_left
restrictedULiftYonedaHomEquiv'_symm_naturality_right 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
restrictedULiftYoneda
CategoryTheory.CostructuredArrow
CategoryTheory.uliftYoneda
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.CostructuredArrow.proj
CategoryTheory.Functor.const
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
restrictedULiftYonedaHomEquiv'
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
restrictedULiftYonedaHomEquiv'_symm_naturality_right_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.CostructuredArrow
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.uliftYoneda
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.comp
CategoryTheory.CostructuredArrow.proj
CategoryTheory.Functor.obj
CategoryTheory.Functor.const
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
restrictedULiftYoneda
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
restrictedULiftYonedaHomEquiv'
CategoryTheory.Functor.map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
restrictedULiftYonedaHomEquiv'_symm_naturality_right
restrictedULiftYoneda_map_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.op
CategoryTheory.uliftYoneda
CategoryTheory.Functor.map
restrictedULiftYoneda
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.unop
CategoryTheory.CategoryStruct.comp
restrictedULiftYoneda_obj_map 📖mathematicalCategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
restrictedULiftYoneda
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.unop
CategoryTheory.CategoryStruct.comp
Quiver.Hom.unop
tautologicalCocone'_pt 📖mathematicalCategoryTheory.Limits.Cocone.pt
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.uliftYoneda
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.CostructuredArrow.proj
tautologicalCocone'
tautologicalCocone'_ι_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.uliftYoneda
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.CostructuredArrow.proj
CategoryTheory.Functor.obj
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.ι
tautologicalCocone'
CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
tautologicalCocone_pt 📖mathematicalCategoryTheory.Limits.Cocone.pt
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.CostructuredArrow.proj
tautologicalCocone
tautologicalCocone_ι_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.CostructuredArrow.proj
CategoryTheory.Functor.obj
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.ι
tautologicalCocone
CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
uliftYonedaAdjunction_homEquiv_app 📖mathematicalCategoryTheory.Functor.HasPointwiseLeftKanExtension
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.uliftYoneda
CategoryTheory.NatTrans.app
CategoryTheory.Functor.obj
restrictedULiftYoneda
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.Adjunction.homEquiv
uliftYonedaAdjunction
Opposite.unop
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.comp
CategoryTheory.Functor.map
Opposite.op
Equiv.symm
CategoryTheory.uliftYonedaEquiv
CategoryTheory.Category.assoc
CategoryTheory.Adjunction.mkOfHomEquiv_homEquiv
uliftYonedaAdjunction_unit_app_app 📖mathematicalCategoryTheory.Functor.HasPointwiseLeftKanExtension
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.uliftYoneda
CategoryTheory.NatTrans.app
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
restrictedULiftYoneda
CategoryTheory.Adjunction.unit
uliftYonedaAdjunction
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.unop
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
DFunLike.coe
Equiv
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.uliftYonedaEquiv
CategoryTheory.Adjunction.homEquiv_unit
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
uliftYonedaAdjunction_homEquiv_app

CategoryTheory.Presheaf.compULiftYonedaIsoULiftYonedaCompLan

Definitions

NameCategoryTheorems
coconeApp 📖CompOp
2 mathmath: coconeApp_naturality, coconeApp_naturality_assoc
extensionHom 📖CompOp
natTrans 📖CompOp
1 mathmath: natTrans_app_uliftYoneda_obj
presheafHom 📖CompOp
4 mathmath: uliftYonedaEquiv_ι_presheafHom, presheafHom_naturality, uliftYonedaEquiv_presheafHom_uliftYoneda_obj, presheafHom_naturality_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
coconeApp_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.uliftYoneda
Opposite.unop
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
CategoryTheory.Functor.map
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
Quiver.Hom
coconeApp
Equiv.injective
Equiv.apply_symm_apply
CategoryTheory.NatTrans.naturality
CategoryTheory.congr_app
CategoryTheory.uliftYonedaEquiv_naturality
CategoryTheory.Functor.map_comp
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
coconeApp_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.uliftYoneda
Opposite.unop
CategoryTheory.Functor.map
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
Quiver.Hom
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
coconeApp
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
coconeApp_naturality
hom_ext 📖CategoryTheory.Functor.HasLeftKanExtension
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.op
CategoryTheory.StructuredArrow.hom_ext
CategoryTheory.NatTrans.ext'
CategoryTheory.Functor.hom_ext_of_isLeftKanExtension
CategoryTheory.Functor.instIsLeftKanExtensionObjLanAppLanUnit
CategoryTheory.Limits.IsColimit.hom_ext
CategoryTheory.NatTrans.naturality
CategoryTheory.congr_app
CategoryTheory.StructuredArrow.w
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.cancel_epi
CategoryTheory.epi_of_strongEpi
CategoryTheory.strongEpi_of_isIso
CategoryTheory.NatIso.hom_app_isIso
Equiv.injective
hom_ext_iff 📖CategoryTheory.Functor.HasLeftKanExtension
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.op
hom_ext
natTrans_app_uliftYoneda_obj 📖mathematicalCategoryTheory.Functor.HasLeftKanExtension
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.op
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.lan
natTrans
CategoryTheory.Functor.obj
CategoryTheory.uliftYoneda
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.comp
CategoryTheory.Iso.inv
CategoryTheory.Presheaf.compULiftYonedaIsoULiftYonedaCompLan
CategoryTheory.Functor.hom_ext_of_isLeftKanExtension
CategoryTheory.Functor.instIsLeftKanExtensionObjLanAppLanUnit
CategoryTheory.Functor.descOfIsLeftKanExtension_fac
Equiv.injective
uliftYonedaEquiv_presheafHom_uliftYoneda_obj
CategoryTheory.Presheaf.compULiftYonedaIsoULiftYonedaCompLan_inv_app_app_apply_eq_id
presheafHom_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
CategoryTheory.Functor.obj
presheafHom
CategoryTheory.Functor.whiskerLeft
CategoryTheory.Functor.map
CategoryTheory.hom_ext_uliftYoneda
Equiv.injective
CategoryTheory.Category.assoc
uliftYonedaEquiv_ι_presheafHom
CategoryTheory.uliftYonedaEquiv_comp
CategoryTheory.Functor.map_comp
CategoryTheory.FunctorToTypes.comp
presheafHom_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
CategoryTheory.Functor.obj
presheafHom
CategoryTheory.Functor.whiskerLeft
CategoryTheory.Functor.map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
presheafHom_naturality
uliftYonedaEquiv_presheafHom_uliftYoneda_obj 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.uliftYoneda
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.uliftYonedaEquiv
presheafHom
CategoryTheory.NatTrans.app
CategoryTheory.yoneda
CategoryTheory.CategoryStruct.id
Opposite.unop
CategoryTheory.Category.id_comp
CategoryTheory.Functor.map_id
uliftYonedaEquiv_ι_presheafHom
uliftYonedaEquiv_ι_presheafHom 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.uliftYoneda
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.uliftYonedaEquiv
CategoryTheory.CategoryStruct.comp
presheafHom
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
CategoryTheory.yoneda
CategoryTheory.CategoryStruct.id
Opposite.unop
Equiv.surjective
CategoryTheory.Limits.IsColimit.fac
Equiv.apply_symm_apply

---

← Back to Index