Documentation Verification Report

ConcreteCategory

📁 Source: Mathlib/CategoryTheory/Limits/Shapes/ConcreteCategory.lean

Statistics

MetricCount
DefinitionsConcreteCategory, instUniqueToTypeTerminal, multiequalizerEquiv, multiequalizerEquivAux, prodEquiv, productEquiv, pullbackEquiv, pullbackMk, terminalEquiv, terminalIffUnique, terminalOfUniqueOfReflects, uniqueOfTerminalOfPreserves
12
Theoremsmap_ext, cokernel_funext, empty_of_initial_of_preserves, initial_iff_empty_of_preserves_of_reflects, initial_of_empty_of_reflects, multiequalizerEquiv_apply, multiequalizer_ext, prodEquiv_apply_fst, prodEquiv_apply_snd, prodEquiv_symm_apply_fst, prodEquiv_symm_apply_snd, productEquiv_apply_apply, productEquiv_symm_apply_π, pullbackMk_fst, pullbackMk_snd, pullbackMk_surjective, widePullback_ext, widePullback_ext', widePushout_exists_rep, widePushout_exists_rep'
20
Total32

CategoryTheory

Definitions

NameCategoryTheorems
ConcreteCategory 📖CompData

CategoryTheory.Limits.Concrete

Definitions

NameCategoryTheorems
instUniqueToTypeTerminal 📖CompOp
multiequalizerEquiv 📖CompOp
1 mathmath: multiequalizerEquiv_apply
multiequalizerEquivAux 📖CompOp
prodEquiv 📖CompOp
4 mathmath: prodEquiv_apply_fst, prodEquiv_symm_apply_snd, prodEquiv_symm_apply_fst, prodEquiv_apply_snd
productEquiv 📖CompOp
2 mathmath: productEquiv_symm_apply_π, productEquiv_apply_apply
pullbackEquiv 📖CompOp
pullbackMk 📖CompOp
3 mathmath: pullbackMk_snd, pullbackMk_fst, pullbackMk_surjective
terminalEquiv 📖CompOp
terminalIffUnique 📖CompOp
terminalOfUniqueOfReflects 📖CompOp
uniqueOfTerminalOfPreserves 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
cokernel_funext 📖DFunLike.coe
CategoryTheory.Limits.cokernel
CategoryTheory.ConcreteCategory.hom
CategoryTheory.Limits.cokernel.π
CategoryTheory.Limits.coequalizer.hom_ext
CategoryTheory.ConcreteCategory.hom_ext
CategoryTheory.comp_apply
empty_of_initial_of_preserves 📖mathematicalIsEmpty
CategoryTheory.ToType
CategoryTheory.Limits.Types.initial_iff_empty
Nonempty.map
initial_iff_empty_of_preserves_of_reflects 📖mathematicalCategoryTheory.Limits.IsInitial
IsEmpty
CategoryTheory.ToType
CategoryTheory.Limits.Types.initial_iff_empty
Equiv.nonempty_congr
initial_of_empty_of_reflects 📖mathematicalCategoryTheory.Limits.IsInitialNonempty.map
CategoryTheory.Limits.Types.initial_iff_empty
multiequalizerEquiv_apply 📖mathematicalDFunLike.coe
Equiv
CategoryTheory.ToType
CategoryTheory.Limits.multiequalizer
EquivLike.toFunLike
Equiv.instEquivLike
multiequalizerEquiv
CategoryTheory.Limits.MulticospanIndex.left
CategoryTheory.ConcreteCategory.hom
CategoryTheory.Limits.Multiequalizer.ι
multiequalizer_ext 📖DFunLike.coe
CategoryTheory.Limits.multiequalizer
CategoryTheory.Limits.MulticospanIndex.left
CategoryTheory.ConcreteCategory.hom
CategoryTheory.Limits.Multiequalizer.ι
limit_ext
CategoryTheory.Limits.limit.w
CategoryTheory.ConcreteCategory.comp_apply
prodEquiv_apply_fst 📖mathematicalCategoryTheory.ToType
DFunLike.coe
Equiv
CategoryTheory.Limits.prod
EquivLike.toFunLike
Equiv.instEquivLike
prodEquiv
CategoryTheory.ConcreteCategory.hom
CategoryTheory.Limits.prod.fst
CategoryTheory.Limits.instHasBinaryProductObjOfPreservesLimitDiscreteWalkingPairPair
CategoryTheory.Limits.prodComparison_fst
prodEquiv_apply_snd 📖mathematicalCategoryTheory.ToType
DFunLike.coe
Equiv
CategoryTheory.Limits.prod
EquivLike.toFunLike
Equiv.instEquivLike
prodEquiv
CategoryTheory.ConcreteCategory.hom
CategoryTheory.Limits.prod.snd
CategoryTheory.Limits.instHasBinaryProductObjOfPreservesLimitDiscreteWalkingPairPair
CategoryTheory.Limits.prodComparison_snd
prodEquiv_symm_apply_fst 📖mathematicalDFunLike.coe
CategoryTheory.Limits.prod
CategoryTheory.ConcreteCategory.hom
CategoryTheory.Limits.prod.fst
Equiv
CategoryTheory.ToType
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
prodEquiv
Equiv.surjective
Equiv.symm_apply_apply
prodEquiv_apply_fst
prodEquiv_symm_apply_snd 📖mathematicalDFunLike.coe
CategoryTheory.Limits.prod
CategoryTheory.ConcreteCategory.hom
CategoryTheory.Limits.prod.snd
Equiv
CategoryTheory.ToType
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
prodEquiv
Equiv.surjective
Equiv.symm_apply_apply
prodEquiv_apply_snd
productEquiv_apply_apply 📖mathematicalDFunLike.coe
Equiv
CategoryTheory.ToType
CategoryTheory.Limits.piObj
EquivLike.toFunLike
Equiv.instEquivLike
productEquiv
CategoryTheory.ConcreteCategory.hom
CategoryTheory.Limits.Pi.π
CategoryTheory.Limits.Types.hasLimit
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.Limits.piComparison_comp_π
productEquiv_symm_apply_π 📖mathematicalDFunLike.coe
CategoryTheory.Limits.piObj
CategoryTheory.ConcreteCategory.hom
CategoryTheory.Limits.Pi.π
Equiv
CategoryTheory.ToType
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
productEquiv
productEquiv_apply_apply
Equiv.apply_symm_apply
pullbackMk_fst 📖mathematicalDFunLike.coe
CategoryTheory.ConcreteCategory.hom
CategoryTheory.Limits.pullback
CategoryTheory.Limits.pullback.fst
pullbackMk
CategoryTheory.Limits.Types.hasLimit
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.Limits.PreservesPullback.iso_inv_fst
CategoryTheory.Limits.Types.pullbackIsoPullback_inv_fst
pullbackMk_snd 📖mathematicalDFunLike.coe
CategoryTheory.ConcreteCategory.hom
CategoryTheory.Limits.pullback
CategoryTheory.Limits.pullback.snd
pullbackMk
CategoryTheory.Limits.Types.hasLimit
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.Limits.PreservesPullback.iso_inv_snd
CategoryTheory.Limits.Types.pullbackIsoPullback_inv_snd
pullbackMk_surjective 📖mathematicalpullbackMkEquiv.surjective
widePullback_ext 📖DFunLike.coe
CategoryTheory.Limits.widePullback
CategoryTheory.ConcreteCategory.hom
CategoryTheory.Limits.WidePullback.base
CategoryTheory.Limits.WidePullback.π
limit_ext
widePullback_ext' 📖DFunLike.coe
CategoryTheory.Limits.widePullback
CategoryTheory.ConcreteCategory.hom
CategoryTheory.Limits.WidePullback.π
widePullback_ext
CategoryTheory.Limits.WidePullback.π_arrow
CategoryTheory.ConcreteCategory.comp_apply
widePushout_exists_rep 📖mathematicalDFunLike.coe
CategoryTheory.Limits.widePushout
CategoryTheory.ConcreteCategory.hom
CategoryTheory.Limits.WidePushout.head
CategoryTheory.Limits.WidePushout.ι
colimit_exists_rep
widePushout_exists_rep' 📖mathematicalDFunLike.coe
CategoryTheory.Limits.widePushout
CategoryTheory.ConcreteCategory.hom
CategoryTheory.Limits.WidePushout.ι
widePushout_exists_rep
CategoryTheory.Limits.WidePushout.arrow_ι
CategoryTheory.ConcreteCategory.comp_apply

CategoryTheory.Limits.Concrete.Pi

Theorems

NameKindAssumesProvesValidatesDepends On
map_ext 📖DFunLike.coe
CategoryTheory.Functor.obj
CategoryTheory.Limits.piObj
CategoryTheory.ConcreteCategory.hom
CategoryTheory.Functor.map
CategoryTheory.Limits.Pi.π
CategoryTheory.ConcreteCategory.injective_of_mono_of_preservesPullback
CategoryTheory.mono_of_strongMono
CategoryTheory.strongMono_of_isIso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Limits.Concrete.limit_ext
CategoryTheory.ConcreteCategory.comp_apply
CategoryTheory.Limits.piComparison_comp_π

---

← Back to Index