| Metric | Count |
DefinitionsofCofork, Cofork, desc, desc', homIso, mk, mk', ofExistsUnique, ext, isColimitEquivOfIsos, isColimitOfIsos, isoCoforkOfπ, mkHom, ofCocone, ofπ, π, ext, ofFork, Fork, homIso, lift', mk, mk', ofExistsUnique, equivOfIsos, ext, isLimitEquivOfIsos, isLimitOfIsos, isoForkOfι, mkHom, ofCone, ofι, ι, ext, HasCoequalizer, HasCoequalizers, HasEqualizer, HasEqualizers, WalkingParallelPair, WalkingParallelPairHom, comp, coconeOfIsSplitEpi, coequalizer, cofork, desc, desc', isoTargetOfSelf, π, coequalizerComparison, coequalizerIsCoequalizer, coneOfIsSplitMono, diagramIsoParallelPair, equalizer, fork, isoSourceOfSelf, lift', ι, equalizerComparison, equalizerIsEqualizer, idCofork, idFork, instDecidableEqWalkingParallelPair, instDecidableEqWalkingParallelPairHom, decEq, instInhabitedWalkingParallelPair, default, instInhabitedWalkingParallelPairHomZeroOne, isCoequalizerEpiComp, isColimitIdCofork, isEqualizerCompMono, isLimitIdFork, isLimitPrecompFork, isSplitEpiCoequalizes, isSplitMonoEqualizes, liftPrecomp, parallelPair, eqOfHomEq, ext, parallelPairHom, parallelPairHomMk, parallelPairIso, parallelPairIsoMk, precompFork, splitEpiOfCoequalizer, splitEpiOfIdempotentCoequalizer, splitEpiOfIdempotentOfIsColimitCofork, splitMonoOfEqualizer, splitMonoOfIdempotentEqualizer, splitMonoOfIdempotentOfIsLimitFork, walkingParallelPairHomCategory, walkingParallelPairOp, walkingParallelPairOpEquiv | 92 |
TheoremsofCofork_ι, epi, existsUnique, homIso_apply_coe, homIso_natural, homIso_symm_apply, hom_ext, π_desc, π_desc', π_desc'_assoc, π_desc_assoc, app_one_eq_π, app_zero_eq_comp_π_left, app_zero_eq_comp_π_right, app_zero_eq_comp_π_right_assoc, coequalizer_ext, condition, condition_assoc, ext_hom, ext_inv, mkHom_hom, ofCocone_ι, ofπ_pt, ofπ_ι_app, π_ofπ, π_precompose, ofFork_π, existsUnique, homIso_apply_coe, homIso_natural, homIso_symm_apply, hom_ext, lift_ι, lift_ι', lift_ι'_assoc, lift_ι_assoc, mk_lift, mono, app_one_eq_ι_comp_left, app_one_eq_ι_comp_right, app_one_eq_ι_comp_right_assoc, app_zero_eq_ι, condition, condition_assoc, equalizer_ext, equivOfIsos_functor_obj_ι, equivOfIsos_inverse_obj_ι, ext_hom, ext_inv, hom_comp_ι, hom_comp_ι_assoc, isoForkOfι_hom_hom, isoForkOfι_inv_hom, mkHom_hom, ofCone_π, ofι_pt, ofι_π_app, ι_ofι, ι_postcompose, π_comp_hom, π_comp_hom_assoc, assoc, comp_id, id_comp, coconeOfIsSplitEpi_pt, coconeOfIsSplitEpi_ι_app, coconeOfIsSplitEpi_π, cofork_ι_app_one, cofork_π, condition, condition_assoc, existsUnique, hom_ext, hom_ext_iff, isoTargetOfSelf_hom, isoTargetOfSelf_inv, π_colimMap_desc, π_desc, π_desc_assoc, π_epi, π_of_eq, π_of_self, coequalizerComparison_map_desc, coequalizerComparison_map_desc_assoc, coneOfIsSplitMono_pt, coneOfIsSplitMono_ι, coneOfIsSplitMono_π_app, diagramIsoParallelPair_hom_app, diagramIsoParallelPair_inv_app, epi_of_isColimit_cofork, eq_of_epi_equalizer, eq_of_epi_fork_ι, eq_of_mono_coequalizer, eq_of_mono_cofork_π, condition, condition_assoc, existsUnique, fork_ι, fork_π_app_zero, hom_ext, hom_ext_iff, isoSourceOfSelf_hom, isoSourceOfSelf_inv, lift_ι, lift_ι_assoc, ι_mono, ι_of_eq, ι_of_self, equalizerComparison_comp_π, equalizerComparison_comp_π_assoc, hasCoequalizer_epi_comp, hasCoequalizer_of_self, hasCoequalizers_of_hasColimit_parallelPair, hasEqualizer_comp_mono, hasEqualizer_of_self, hasEqualizer_precomp_of_equalizer, hasEqualizer_precomp_of_hasEqualizer, hasEqualizers_of_hasLimit_parallelPair, isIso_colimit_cocone_parallelPair_of_eq, isIso_colimit_cocone_parallelPair_of_self, isIso_limit_cocone_parallelPair_of_epi, isIso_limit_cone_parallelPair_of_epi, isIso_limit_cone_parallelPair_of_eq, isIso_limit_cone_parallelPair_of_self, map_lift_equalizerComparison, map_lift_equalizerComparison_assoc, mono_of_isLimit_fork, eqOfHomEq_hom_app, eqOfHomEq_inv_app, ext_hom_app, ext_inv_app, parallelPairHomMk_app, parallelPairHom_app_one, parallelPairHom_app_zero, parallelPairIsoMk_hom_app, parallelPairIsoMk_inv_app, parallelPair_functor_obj, parallelPair_map_left, parallelPair_map_right, parallelPair_obj_one, parallelPair_obj_zero, splitEpiOfIdempotentOfIsColimitCofork_section_, splitMonoOfIdempotentOfIsLimitFork_retraction, walkingParallelPairHom_id, walkingParallelPairOpEquiv_counitIso_hom_app_op_one, walkingParallelPairOpEquiv_counitIso_hom_app_op_zero, walkingParallelPairOpEquiv_counitIso_inv_app_op_one, walkingParallelPairOpEquiv_counitIso_inv_app_op_zero, walkingParallelPairOpEquiv_counitIso_one, walkingParallelPairOpEquiv_counitIso_zero, walkingParallelPairOpEquiv_functor, walkingParallelPairOpEquiv_inverse, walkingParallelPairOpEquiv_unitIso_hom_app_one, walkingParallelPairOpEquiv_unitIso_hom_app_zero, walkingParallelPairOpEquiv_unitIso_inv_app_one, walkingParallelPairOpEquiv_unitIso_inv_app_zero, walkingParallelPairOpEquiv_unitIso_one, walkingParallelPairOpEquiv_unitIso_zero, walkingParallelPairOp_left, walkingParallelPairOp_one, walkingParallelPairOp_right, walkingParallelPairOp_zero, ι_comp_coequalizerComparison, ι_comp_coequalizerComparison_assoc | 164 |
| Total | 256 |
| Name | Category | Theorems |
Cofork 📖 | CompOp | 24 mathmath: MultispanIndex.multicoforkEquivSigmaCoforkOfIsColimit_counitIso, MultispanIndex.multicoforkEquivSigmaCofork_functor_obj_ι_app, MultispanIndex.multicoforkEquivSigmaCofork_counitIso_inv_app_hom, MultispanIndex.multicoforkEquivSigmaCofork_counitIso_hom_app_hom, MultispanIndex.multicoforkEquivSigmaCofork_functor_map_hom, MultispanIndex.ofSigmaCoforkFunctor_obj, MultispanIndex.multicoforkEquivSigmaCofork_functor_obj_pt, reflexiveCoforkEquivCofork_functor_obj_pt, reflexiveCoforkEquivCofork_functor_obj_π, reflexiveCoforkEquivCofork_inverse_obj_pt, MultispanIndex.multicoforkEquivSigmaCofork_inverse_obj_pt, Cofork.ext_inv, MultispanIndex.multicoforkEquivSigmaCofork_inverse_obj_ι_app, MultispanIndex.toSigmaCoforkFunctor_obj, Cofork.ext_hom, reflexiveCoforkEquivCofork_inverse_obj_π, MultispanIndex.multicoforkEquivSigmaCoforkOfIsColimit_inverse, MultispanIndex.toSigmaCoforkFunctor_map_hom, MultispanIndex.multicoforkEquivSigmaCofork_inverse_map_hom, MultispanIndex.multicoforkEquivSigmaCofork_unitIso_hom_app_hom, MultispanIndex.multicoforkEquivSigmaCoforkOfIsColimit_unitIso, MultispanIndex.ofSigmaCoforkFunctor_map_hom, MultispanIndex.multicoforkEquivSigmaCofork_unitIso_inv_app_hom, MultispanIndex.multicoforkEquivSigmaCoforkOfIsColimit_functor
|
Fork 📖 | CompOp | 26 mathmath: MulticospanIndex.multiforkEquivPiFork_counitIso_hom_app_hom, MulticospanIndex.multiforkEquivPiFork_unitIso_inv_app_hom, MulticospanIndex.multiforkEquivPiFork_functor_map_hom, Fork.isoForkOfι_hom_hom, MulticospanIndex.toPiForkFunctor_map_hom, Fork.equivOfIsos_functor_obj_ι, MulticospanIndex.multiforkEquivPiForkOfIsLimit_functor, MulticospanIndex.multiforkOfParallelHomsEquivFork_inverse_obj_ι, MulticospanIndex.multiforkEquivPiFork_inverse_map_hom, MulticospanIndex.multiforkEquivPiForkOfIsLimit_counitIso, MulticospanIndex.multiforkEquivPiFork_functor_obj_pt, MulticospanIndex.multiforkEquivPiFork_counitIso_inv_app_hom, Fork.ext_hom, Fork.ext_inv, MulticospanIndex.multiforkEquivPiFork_functor_obj_π_app, MulticospanIndex.toPiForkFunctor_obj, Fork.equivOfIsos_inverse_obj_ι, MulticospanIndex.multiforkEquivPiForkOfIsLimit_inverse, MulticospanIndex.multiforkEquivPiFork_inverse_obj_π_app, MulticospanIndex.multiforkEquivPiFork_inverse_obj_pt, MulticospanIndex.ofPiForkFunctor_obj, MulticospanIndex.multiforkEquivPiForkOfIsLimit_unitIso, MulticospanIndex.ofPiForkFunctor_map_hom, Fork.isoForkOfι_inv_hom, MulticospanIndex.multiforkOfParallelHomsEquivFork_functor_obj_ι, MulticospanIndex.multiforkEquivPiFork_unitIso_hom_app_hom
|
HasCoequalizer 📖 | MathDef | 13 mathmath: CategoryTheory.Monad.HasCoequalizerOfIsSplitPair.out, hasCoequalizer_of_hasSplitCoequalizer, hasCoequalizer_of_self, hasReflexiveCoequalizer_iff_hasCoequalizer, CategoryTheory.Preadditive.hasCoequalizer_of_hasCokernel, hasCoequalizer_of_common_section, CategoryTheory.Monad.instHasCoequalizerMapAAppCounitObjAOfHasCoequalizerOfIsSplitPair, CategoryTheory.Regular.instHasCoequalizerFstSnd, Multicoequalizer.instHasCoequalizerFstSigmaMapSndSigmaMap, AlgebraicGeometry.LocallyRingedSpace.instHasCoequalizer, hasCoequalizer_epi_comp, HasReflexiveCoequalizers.has_coeq, CategoryTheory.Regular.hasCoequalizer_of_isKernelPair
|
HasCoequalizers 📖 | MathDef | 9 mathmath: AlgebraicGeometry.LocallyRingedSpace.instHasCoequalizers, hasCoequalizers_opposite, CategoryTheory.Abelian.hasCoequalizers, CategoryTheory.NormalEpiCategory.hasCoequalizers, CategoryTheory.Preadditive.hasCoequalizers_of_hasCokernels, hasCoequalizers_of_hasColimit_parallelPair, hasCoequalizers_of_hasPushouts_and_binary_coproducts, hasCoequalizers_of_hasWideCoequalizers, ModuleCat.instHasCoequalizers
|
HasEqualizer 📖 | MathDef | 12 mathmath: hasEqualizer_of_common_retraction, Multiequalizer.instHasEqualizerFstPiMapSndPiMap, CategoryTheory.Comonad.HasEqualizerOfIsCosplitPair.out, hasEqualizer_of_hasSplitEqualizer, HasCoreflexiveEqualizers.has_eq, hasEqualizer_precomp_of_equalizer, hasEqualizer_of_self, hasEqualizer_precomp_of_hasEqualizer, CategoryTheory.Idempotents.isIdempotentComplete_iff_hasEqualizer_of_id_and_idempotent, CategoryTheory.Comonad.instHasEqualizerMapAAppUnitObjAOfHasEqualizerOfIsCosplitPair, hasEqualizer_comp_mono, CategoryTheory.Preadditive.hasEqualizer_of_hasKernel
|
HasEqualizers 📖 | MathDef | 11 mathmath: SemiNormedGrp.instHasEqualizers, hasEqualizers_opposite, hasEqualizers_of_hasLimit_parallelPair, CategoryTheory.PreGaloisCategory.instHasEqualizers, hasEqualizers_of_hasPullbacks_and_binary_products, CategoryTheory.Preadditive.hasEqualizers_of_hasKernels, hasEqualizers_of_hasWideEqualizers, CategoryTheory.Over.instHasEqualizers, ωCPO.instHasEqualizers, CategoryTheory.Abelian.hasEqualizers, CategoryTheory.NormalMonoCategory.hasEqualizers
|
WalkingParallelPair 📖 | CompData | 484 mathmath: Fork.IsLimit.homIso_natural, walkingParallelPairOpEquiv_unitIso_hom_app_zero, CategoryTheory.PreOneHypercover.forkOfIsColimit_ι_map_inj_assoc, cokernelBiproductιIso_hom, CategoryTheory.Abelian.FunctorCategory.coimageImageComparison_app', CategoryTheory.ComposableArrows.Exact.cokerIsoKer'_hom_inv_id_assoc, AlgebraicGeometry.instCompactSpaceCarrierCarrierCommRingCatEqualizerSchemeOfQuasiSeparatedSpace, CategoryTheory.ShortComplex.pOpcycles_π_isoOpcyclesOfIsColimit_inv_assoc, CategoryTheory.Equalizer.Sieve.equalizer_sheaf_condition, MulticospanIndex.multiforkEquivPiFork_counitIso_hom_app_hom, MulticospanIndex.multiforkEquivPiFork_unitIso_inv_app_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverse_obj_π_app, HasColimitOfHasCoproductsOfHasCoequalizers.buildColimit_pt, AlgebraicGeometry.instQuasiCompactιSchemeOfQuasiSeparatedSpaceCarrierCarrierCommRingCat, CategoryTheory.ShortComplex.RightHomologyData.IsPreservedBy.hg', Fork.IsLimit.lift_ι'_assoc, walkingParallelPairOp_left, map_π_preserves_coequalizer_inv_colimMap, parallelPairOpIso_inv_app_zero, CategoryTheory.Comonad.ComonadicityInternal.unitFork_π_app, Types.coequalizerIso_quot_comp_inv, CategoryTheory.PreOneHypercover.forkOfIsColimit_pt, CategoryTheory.ShortComplex.LeftHomologyData.IsPreservedBy.hg, kernelBiprodSndIso_hom, colimit_ι_zero_cokernel_desc_assoc, Fork.π_comp_hom, MultispanIndex.multicoforkEquivSigmaCoforkOfIsColimit_counitIso, CategoryTheory.Comonad.beckCoalgebraFork_pt, MultispanIndex.multicoforkEquivSigmaCofork_functor_obj_ι_app, Bimod.whiskerLeft_hom, MultispanIndex.multicoforkEquivSigmaCofork_counitIso_inv_app_hom, CategoryTheory.Comonad.ComonadicityInternal.unitFork_pt, CategoryTheory.Functor.PreservesHomology.preservesKernels, MulticospanIndex.multiforkEquivPiFork_functor_map_hom, walkingParallelFamilyEquivWalkingParallelPair_unitIso_hom_app, walkingParallelPairOpEquiv_counitIso_hom_app_op_one, Fork.unop_ι_app_zero, isClosedUnderLimitsOfShape_isIndObject_walkingParallelPair, KernelFork.condition_assoc, KernelFork.mapOfIsLimit_ι_assoc, Cofork.ofCocone_ι, walkingParallelPairOpEquiv_counitIso_inv_app_op_zero, CategoryTheory.Preadditive.isColimitCoforkOfCokernelCofork_desc, Fork.isoForkOfι_hom_hom, PresheafOfModules.toFreeYonedaCoproduct_fromFreeYonedaCoproduct, CategoryTheory.Monad.beckCoequalizer_desc, CategoryTheory.ShortComplex.isoCyclesOfIsLimit_hom_iCycles_assoc, Fork.IsLimit.mono, kernelForkBiproductToSubtype_cone, KernelFork.IsLimit.isZero_of_mono, CategoryTheory.Monad.ReflectsColimitOfIsSplitPair.out, TopCat.Presheaf.SheafConditionEqualizerProducts.fork_π_app_walkingParallelPair_one, cokernelCoforkBiproductFromSubtype_isColimit, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivCounitIso_hom_app_hom, CategoryTheory.IsSplitCoequalizer.asCofork_pt, PreservesCokernel.of_iso_comparison, AlgebraicGeometry.Scheme.instIsClosedImmersionιOfIsSeparated, TopCat.coequalizer_isOpen_iff, kernelBiprodFstIso_hom, walkingParallelPairHom_id, of_iso_comparison, AlgebraicGeometry.IsImmersion.instιScheme, CategoryTheory.ComposableArrows.Exact.cokerIsoKer'_hom, closedUnderLimitsOfShape_walkingParallelPair_isIndObject, WalkingParallelPair.inclusionWalkingReflexivePair_map, parallelPairOpIso_inv_app_one, Types.coequalizerIso_π_comp_hom_apply, MulticospanIndex.parallelPairDiagram_map, kernelBiproductπIso_hom, MultispanIndex.multicoforkEquivSigmaCofork_counitIso_hom_app_hom, Multicofork.ofSigmaCofork_ι_app_right', CategoryTheory.Monad.PreservesColimitOfIsReflexivePair.out, Fork.ofι_pt, CategoryTheory.ShortComplex.LeftHomologyData.IsPreservedBy.f', equalizerPullbackMapIso_inv_ι_snd, CokernelCofork.π_mapOfIsColimit, CategoryTheory.ShortComplex.LeftHomologyData.IsPreservedBy.hf', Cofork.unop_π_app_one, binaryBiconeOfIsSplitEpiOfKernel_inl, Cofork.IsColimit.epi, CategoryTheory.instHasColimitsOfShapeWalkingParallelPairInd, walkingParallelPairOpEquiv_counitIso_zero, equalizerPullbackMapIso_inv_ι_fst, CategoryTheory.LiftLeftAdjoint.constructLeftAdjointEquiv_symm_apply, MulticospanIndex.toPiForkFunctor_map_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverseObj_π_app, CategoryTheory.Monad.instReflectsColimitWalkingParallelPairParallelPairMapAAppCounitObjAOfReflectsColimitOfIsSplitPair, CategoryTheory.Monad.instPreservesColimitWalkingParallelPairParallelPairMapAAppCounitObjAOfPreservesColimitOfIsReflexivePair, map_π_preserves_coequalizer_inv_colimMap_desc, CategoryTheory.Abelian.FunctorCategory.coimageImageComparison_app, Types.equalizerIso_inv_comp_ι, PreservesEqualizer.of_iso_comparison, Cofork.condition_assoc, Fork.ι_postcompose, Fork.equivOfIsos_functor_obj_ι, CategoryTheory.ShortComplex.LeftHomologyData.ofIsLimitKernelFork_H, CategoryTheory.Comonad.ComonadicityInternal.comparisonAdjunction_counit_f, Fork.IsLimit.existsUnique, CategoryTheory.Comonad.instPreservesLimitWalkingParallelPairParallelPairMapAAppUnitObjAOfPreservesLimitOfIsCoreflexivePair, CokernelCofork.IsColimit.isIso_π, equalizerPullbackMapIso_hom_fst_assoc, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquiv_counitIso, Fork.hom_comp_ι, Multicofork.toSigmaCofork_pt, CategoryTheory.Monad.instPreservesColimitWalkingParallelPairParallelPairMapAAppCounitObjAOfPreservesColimitOfIsSplitPair, CategoryTheory.ShortComplex.RightHomologyData.wι_assoc, Multifork.toPiFork_pt, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctorObj_π_app, AlgebraicGeometry.LocallyRingedSpace.HasCoequalizer.imageBasicOpen_image_open, parallelPairOpIso_hom_app_one, preservesKernel_zero, HasEqualizersOfHasPullbacksAndBinaryProducts.pullbackFst_eq_pullback_snd, id_tensor_π_preserves_coequalizer_inv_colimMap_desc, CategoryTheory.Comonad.instReflectsLimitWalkingParallelPairParallelPairOfIsCosplitPairOfReflectsLimitOfIsCosplitPair, MulticospanIndex.multiforkEquivPiForkOfIsLimit_functor, CategoryTheory.LiftLeftAdjoint.constructLeftAdjointEquiv_apply, MultispanIndex.multicoforkEquivSigmaCofork_functor_map_hom, Fork.unop_ι_app_one, CategoryTheory.ShortComplex.HomologyData.ofEpiMonoFactorisation.g'_eq, CategoryTheory.Monad.MonadicityInternal.comparisonLeftAdjointHomEquiv_apply_f, MulticospanIndex.multiforkOfParallelHomsEquivFork_inverse_obj_ι, CategoryTheory.NormalMonoCategory.hasLimit_parallelPair, kernelBiprodFstIso_inv, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivCounitIso_inv_app_hom, kernelBiproductToSubtypeIso_hom, CokernelCofork.condition, isIso_limit_cone_parallelPair_of_epi, CategoryTheory.ShortComplex.RightHomologyData.ofIsColimitCokernelCofork_Q, opParallelPairIso_hom_app_zero, CategoryTheory.ShortComplex.LeftHomologyData.IsPreservedBy.g, binaryBiconeOfIsSplitMonoOfCokernel_inr, parallelPair_map_left, Fork.IsLimit.homIso_symm_apply, CategoryTheory.Monad.beckAlgebraCofork_pt, Cofork.app_zero_eq_comp_π_left, diagramIsoParallelPair_hom_app, CategoryTheory.ShortComplex.RightHomologyData.ofIsColimitCokernelCofork_H, CommRingCat.Under.instPreservesLimitsOfShapeUnderWalkingParallelPairTensorProdOfFlatCarrier, CategoryTheory.ComposableArrows.IsComplex.mono_cokerToKer', cokernelBiprodInlIso_inv, CategoryTheory.Equalizer.Presieve.isSheafFor_singleton_iff, opParallelPairIso_hom_app_one, Cofork.IsColimit.homIso_apply_coe, coneOfIsSplitMono_π_app, CategoryTheory.ShortComplex.RightHomologyData.IsPreservedBy.hf, MulticospanIndex.parallelPairDiagram_obj, CommRingCat.instIsLocalHomCarrierObjWalkingParallelPairFunctorConstPtEqualizerForkZeroParallelPairRingHomHomι, Multicofork.ofSigmaCofork_π, MulticospanIndex.multiforkEquivPiFork_inverse_map_hom, walkingParallelFamilyEquivWalkingParallelPair_counitIso_hom_app, CategoryTheory.Comonad.instPreservesLimitWalkingParallelPairParallelPairMapAAppUnitObjAOfPreservesLimitOfIsCosplitPair, CokernelCofork.mapIsoOfIsColimit_inv, Types.coequalizerIso_quot_comp_inv_apply, Multicofork.ofSigmaCofork_pt, CategoryTheory.Preadditive.forkOfKernelFork_pt, Fork.op_pt, walkingParallelPairOpEquiv_functor, CategoryTheory.ShortComplex.Exact.leftHomologyDataOfIsLimitKernelFork_K, Types.coequalizerIso_π_comp_hom, Fork.ofι_π_app, Cofork.op_π_app_zero, Cofork.IsColimit.π_desc_assoc, MulticospanIndex.multiforkEquivPiForkOfIsLimit_counitIso, CategoryTheory.Comonad.ReflectsLimitOfIsCosplitPair.out, cokernelBiprodInrIso_inv, ωCPO.instHasLimitWalkingParallelPairParallelPair, MulticospanIndex.multiforkEquivPiFork_functor_obj_pt, walkingParallelFamilyEquivWalkingParallelPair_functor_map, walkingParallelFamilyEquivWalkingParallelPair_counitIso_inv_app, Fork.hom_comp_ι_assoc, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctor_obj_pt, walkingParallelFamilyEquivWalkingParallelPair_inverse_obj, KernelFork.mapIsoOfIsLimit_inv, Types.equalizerIso_hom_comp_subtype_apply, WalkingParallelPair.inclusionWalkingReflexivePair_obj, MultispanIndex.ofSigmaCoforkFunctor_obj, CategoryTheory.Comonad.PreservesLimitOfIsCosplitPair.out, CategoryTheory.ComposableArrows.Exact.cokerIsoKer'_inv_hom_id, PresheafOfModules.toFreeYonedaCoproduct_fromFreeYonedaCoproduct_assoc, binaryBiconeOfIsSplitMonoOfCokernel_pt, CategoryTheory.regularTopology.mapToEqualizer_eq_comp, HasLimitOfHasProductsOfHasEqualizers.buildLimit_pt, CokernelCofork.mapIsoOfIsColimit_hom, Fork.ofCone_π, π_tensor_id_preserves_coequalizer_inv_desc, CategoryTheory.Monad.instPreservesColimitWalkingParallelPairParallelPairOfIsReflexivePairOfPreservesColimitOfIsReflexivePair, KernelFork.IsLimit.isIso_ι, Cofork.π_precompose, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquiv_inverse, CategoryTheory.Equalizer.Presieve.sheaf_condition, KernelFork.condition, CategoryTheory.ShortComplex.exact_and_epi_g_iff_g_is_cokernel, MulticospanIndex.multiforkEquivPiFork_counitIso_inv_app_hom, MulticospanIndex.parallelPairDiagramOfIsLimit_map, Fork.IsLimit.homIso_apply_coe, map_π_preserves_coequalizer_inv_colimMap_assoc, Fork.IsLimit.lift_ι, Multicofork.ofSigmaCofork_ι_app_right, CategoryTheory.Functor.PreservesHomology.preservesCokernels, Types.equalizerIso_hom_comp_subtype, cokernelBiprodInrIso_hom, CategoryTheory.Monad.MonadicityInternal.instHasColimitWalkingParallelPairParallelPairMapAppCounitObjOfHasCoequalizerAA, CategoryTheory.ShortComplex.LeftHomologyData.wπ_assoc, CategoryTheory.ShortComplex.RightHomologyData.IsPreservedBy.g', binaryBiconeOfIsSplitEpiOfKernel_pt, HasCoequalizersOfHasPushoutsAndBinaryCoproducts.pushoutInl_eq_pushout_inr, CategoryTheory.ShortComplex.Exact.rightHomologyDataOfIsColimitCokernelCofork_Q, isIso_colimit_cocone_parallelPair_of_eq, CategoryTheory.regularTopology.parallelPair_pullback_initial, walkingParallelFamilyEquivWalkingParallelPair_inverse_map, HomologicalComplex.extend.rightHomologyData.d_comp_desc_eq_zero_iff, Fork.op_π, Cocone.ofCofork_ι, CategoryTheory.ComposableArrows.Exact.cokerIsoKer'_hom_inv_id, Fork.app_one_eq_ι_comp_left, binaryBiconeOfIsSplitMonoOfCokernel_snd, preservesSplitEqualizers, cokernelBiproductιIso_inv, CategoryTheory.Monad.instReflectsColimitWalkingParallelPairParallelPairOfIsSplitPairOfReflectsColimitOfIsSplitPair, kernelBiproductπIso_inv, cokernelBiproductFromSubtypeIso_hom, walkingParallelPairOpEquiv_unitIso_inv_app_zero, Fork.π_comp_hom_assoc, MultispanIndex.multicoforkEquivSigmaCofork_functor_obj_pt, reflexiveCoforkEquivCofork_functor_obj_pt, CategoryTheory.ShortComplex.RightHomologyData.wι, AlgebraicGeometry.LocallyRingedSpace.HasCoequalizer.coequalizer_π_stalk_isLocalHom, CategoryTheory.Monad.beckCofork_pt, Fork.app_one_eq_ι_comp_right_assoc, CategoryTheory.Preadditive.mono_iff_isZero_kernel', binaryBiconeOfIsSplitMonoOfCokernel_inl, CategoryTheory.ShortComplex.Exact.leftHomologyDataOfIsLimitKernelFork_π, CategoryTheory.ShortComplex.LeftHomologyData.ofIsColimitCokernelCofork_H, Cofork.condition, Cofork.app_zero_eq_comp_π_right, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivUnitIso_inv_app_hom, Multifork.toPiFork_π_app_one, Multifork.ofPiFork_pt, walkingParallelFamilyEquivWalkingParallelPair_unitIso_inv_app, isIso_limit_cone_parallelPair_of_eq, reflexiveCoforkEquivCofork_functor_obj_π, coconeOfIsSplitEpi_pt, AddCommGrpCat.kernelIsoKer_inv_comp_ι, CategoryTheory.Monad.MonadicityInternal.comparisonLeftAdjointHomEquiv_symm_apply, AlgebraicGeometry.LocallyRingedSpace.HasCoequalizer.coequalizer_π_app_isLocalHom, parallelPair_obj_one, CategoryTheory.Monad.MonadicityInternal.comparisonAdjunction_unit_f, CategoryTheory.regularTopology.equalizerCondition_iff_isIso_lift, parallelPair_functor_obj, SemiNormedGrp.hasLimit_parallelPair, SheafOfModules.Presentation.map_relations_I, CategoryTheory.Equalizer.Presieve.Arrows.sheaf_condition, MulticospanIndex.multiforkEquivPiFork_functor_obj_π_app, id_tensor_π_preserves_coequalizer_inv_desc, reflexiveCoforkEquivCofork_inverse_obj_pt, Fork.condition, CategoryTheory.ComposableArrows.Exact.cokerIsoKer'_inv_hom_id_assoc, CategoryTheory.ShortComplex.LeftHomologyData.wπ, walkingParallelPairOpEquiv_unitIso_inv_app_one, CategoryTheory.instHasLimitsOfShapeWalkingParallelPairInd, SheafOfModules.Presentation.mapRelations_mapGenerators, KernelFork.app_one, Fork.app_zero_eq_ι, MultispanIndex.multicoforkEquivSigmaCofork_inverse_obj_pt, parallelPairHom_app_one, isKernelCompMono_lift, SheafOfModules.relationsOfIsCokernelFree_I, CategoryTheory.IsSplitEqualizer.asFork_pt, MulticospanIndex.toPiForkFunctor_obj, Cofork.app_zero_eq_comp_π_right_assoc, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctor_obj_π_app, Fork.equivOfIsos_inverse_obj_ι, CategoryTheory.Comonad.PreservesLimitOfIsCoreflexivePair.out, Cofork.IsColimit.homIso_natural, CokernelCofork.π_mapOfIsColimit_assoc, equalizerPullbackMapIso_hom_snd_assoc, Fork.op_ι_app, MulticospanIndex.multiforkEquivPiForkOfIsLimit_inverse, CategoryTheory.Comonad.instPreservesLimitWalkingParallelPairParallelPairOfIsCosplitPairOfPreservesLimitOfIsCosplitPair, MulticospanIndex.multiforkEquivPiFork_inverse_obj_π_app, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctor_map_hom, CommRingCat.equalizer_ι_isLocalHom', CategoryTheory.ShortComplex.RightHomologyData.IsPreservedBy.f, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverse_obj_pt, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivUnitIso_hom_app_hom, binaryBiconeOfIsSplitEpiOfKernel_snd, CategoryTheory.Monad.MonadicityInternal.comparisonAdjunction_counit, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivUnitIsoApp_hom_hom, splitEpiOfIdempotentOfIsColimitCofork_section_, parallelPair_map_right, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctorObj_pt, walkingParallelPairOp_zero, Fork.op_ι_app_one, mono_of_isLimit_fork, MultispanIndex.multicoforkEquivSigmaCofork_inverse_obj_ι_app, MulticospanIndex.multiforkEquivPiFork_inverse_obj_pt, PreservesKernel.of_iso_comparison, CategoryTheory.ShortComplex.pOpcycles_π_isoOpcyclesOfIsColimit_inv, equalizerPullbackMapIso_hom_snd, Cofork.unop_π_app_zero, CategoryTheory.ShortComplex.isoCyclesOfIsLimit_inv_ι_assoc, CategoryTheory.Monad.MonadicityInternal.unitCofork_pt, CategoryTheory.ShortComplex.Exact.rightHomologyDataOfIsColimitCokernelCofork_ι, Cofork.IsColimit.existsUnique, CategoryTheory.ShortComplex.exact_and_mono_f_iff_f_is_kernel, CokernelCofork.condition_assoc, parallelPair_initial_mk, equalizerPullbackMapIso_hom_fst, MultispanIndex.toSigmaCoforkFunctor_obj, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverse_map_hom, AlgebraicGeometry.isClosedImmersion_equalizer_ι_left, equalizerPullbackMapIso_inv_ι_snd_assoc, parallelPair_obj_zero, CategoryTheory.LiftRightAdjoint.constructRightAdjointEquiv_apply, CategoryTheory.Monad.beckAlgebraCofork_ι_app, Cone.ofFork_π, MultispanIndex.parallelPairDiagramOfIsColimit_map, colimit_ι_zero_cokernel_desc, CokernelCofork.map_condition, CategoryTheory.ShortComplex.LeftHomologyData.ofIsLimitKernelFork_K, SheafOfModules.Presentation.mapRelations_mapGenerators_assoc, preservesSplitCoequalizers, TopCat.Presheaf.SheafConditionEqualizerProducts.fork_pt, walkingParallelPairOpEquiv_unitIso_one, Fork.IsLimit.lift_ι_assoc, CategoryTheory.Preadditive.isLimitForkOfKernelFork_lift, CategoryTheory.Preadditive.epi_iff_isZero_cokernel', CokernelCofork.map_π, Fork.IsLimit.lift_ι', CommRingCat.equalizer_ι_isLocalHom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivUnitIsoApp_inv_hom, CategoryTheory.Abelian.FunctorCategory.coimageObjIso_inv, Multifork.ofPiFork_π_app_right, reflexiveCoforkEquivCofork_inverse_obj_π, cokernelBiprodInlIso_hom, Multifork.ofPiFork_π_app_left, CategoryTheory.ShortComplex.isoCyclesOfIsLimit_hom_iCycles, CategoryTheory.Subfunctor.equalizer.fork_pt, WalkingParallelPair.instIsConnectedStructuredArrowWalkingReflexivePairInclusionWalkingReflexivePair, binaryBiconeOfIsSplitEpiOfKernel_fst, walkingParallelPairOpEquiv_unitIso_zero, CategoryTheory.ComposableArrows.IsComplex.epi_cokerToKer', preservesEqualizers_of_preservesPullbacks_and_binaryProducts, CategoryTheory.Comonad.beckEqualizer_lift, MulticospanIndex.ofPiForkFunctor_obj, CategoryTheory.ShortComplex.RightHomologyData.ofIsColimitCokernelCofork_ι, MultispanIndex.multicoforkEquivSigmaCoforkOfIsColimit_inverse, KernelFork.mapIsoOfIsLimit_hom, CategoryTheory.Monad.instPreservesColimitWalkingParallelPairParallelPairOfIsSplitPairOfPreservesColimitOfIsSplitPair, CategoryTheory.ShortComplex.LeftHomologyData.ofIsLimitKernelFork_π, CategoryTheory.ComposableArrows.Exact.isIso_cokerToKer', kernelBiprodSndIso_inv, CategoryTheory.Comonad.beckFork_pt, MulticospanIndex.parallelPairDiagramOfIsLimit_obj, CategoryTheory.NormalEpiCategory.hasColimit_parallelPair, CategoryTheory.Abelian.FunctorCategory.imageObjIso_hom, KernelFork.map_condition, MultispanIndex.toSigmaCoforkFunctor_map_hom, SheafOfModules.relationsOfIsCokernelFree_s, AddCommGrpCat.kernelIsoKer_hom_comp_subtype, Fork.op_ι_app_zero, Cofork.op_π_app_one, CategoryTheory.LiftRightAdjoint.constructRightAdjointEquiv_symm_apply, AlgebraicGeometry.LocallyRingedSpace.HasCoequalizer.imageBasicOpen_image_preimage, Cofork.IsColimit.π_desc, TopCat.isOpen_iff_of_isColimit_cofork, Bimod.whiskerRight_hom, TopCat.isQuotientMap_of_isColimit_cofork, KernelFork.map_ι, MultispanIndex.multicoforkEquivSigmaCofork_inverse_map_hom, equalizer.fork_π_app_zero, splitMonoOfIdempotentOfIsLimitFork_retraction, MulticospanIndex.multiforkEquivPiForkOfIsLimit_unitIso, CategoryTheory.ShortComplex.π_isoOpcyclesOfIsColimit_hom_assoc, CategoryTheory.Abelian.FunctorCategory.functor_category_isIso_coimageImageComparison, MulticospanIndex.ofPiForkFunctor_map_hom, WalkingParallelPair.inclusionWalkingReflexivePair_final, Cofork.ofπ_pt, parallelPair.eqOfHomEq_hom_app, CategoryTheory.ShortComplex.exact_iff_of_forks, coequalizer.cofork_ι_app_one, CategoryTheory.Functor.PreservesHomology.preservesCokernel, CategoryTheory.ShortComplex.HomologyData.ofEpiMonoFactorisation.f'_eq, HomologicalComplex.extend.leftHomologyData.lift_d_comp_eq_zero_iff, coconeOfIsSplitEpi_ι_app, SheafOfModules.Presentation.IsFinite.finite_relations, walkingParallelPairOp_one, CategoryTheory.Monad.MonadicityInternal.counitCofork_pt, CokernelCofork.map_condition_assoc, CategoryTheory.PreGaloisCategory.fiberEqualizerEquiv_symm_ι_apply, walkingParallelFamilyEquivWalkingParallelPair_functor_obj, CategoryTheory.Monad.MonadicityInternal.counitCofork_ι_app, Multifork.ofPiFork_ι, Cofork.IsColimit.homIso_symm_apply, Fork.condition_assoc, Cofork.IsColimit.π_desc', CokernelCofork.π_eq_zero, CategoryTheory.ComposableArrows.IsComplex.cokerToKer'_fac_assoc, isIso_colimit_cocone_parallelPair_of_self, CategoryTheory.Comonad.instReflectsLimitWalkingParallelPairParallelPairMapAAppUnitObjAOfReflectsLimitOfIsCosplitPair, Fork.isoForkOfι_inv_hom, Cofork.ofπ_ι_app, MultispanIndex.multicoforkEquivSigmaCofork_unitIso_hom_app_hom, walkingParallelPairOpEquiv_unitIso_hom_app_one, preservesCoequalizers_of_preservesPushouts_and_binaryCoproducts, MultispanIndex.multicoforkEquivSigmaCoforkOfIsColimit_unitIso, Cofork.unop_ι, CategoryTheory.ShortComplex.RightHomologyData.ofIsLimitKernelFork_H, TopCat.Presheaf.SheafConditionEqualizerProducts.fork_π_app_walkingParallelPair_zero, CategoryTheory.IsGrothendieckAbelian.IsPresentable.injectivity₀.hf, WalkingParallelPair.instNonemptyStructuredArrowWalkingReflexivePairInclusionWalkingReflexivePair, CokernelCofork.IsColimit.isZero_of_epi, opParallelPairIso_inv_app_zero, cokernelCoforkBiproductFromSubtype_cocone, CategoryTheory.Comonad.ComonadicityInternal.counitFork_pt, opParallelPairIso_inv_app_one, walkingParallelPairOpEquiv_counitIso_one, HasLimitOfHasProductsOfHasEqualizers.buildLimit_π_app, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquiv_functor, Multicofork.ofSigmaCofork_ι_app_left, AlgebraicGeometry.SheafedSpace.instEpiTopCatBaseHomPresheafedSpaceπ, coneOfIsSplitMono_pt, CategoryTheory.Comonad.ComonadicityInternal.comparisonAdjunction_unit_app, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquiv_unitIso, MulticospanIndex.multiforkOfParallelHomsEquivFork_functor_obj_ι, parallelPair.eqOfHomEq_inv_app, CategoryTheory.ComposableArrows.IsComplex.cokerToKer'_fac, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverseObj_pt, equalizerPullbackMapIso_inv_ι_fst_assoc, CategoryTheory.PreOneHypercover.forkOfIsColimit_ι_map_inj, MultispanIndex.ofSigmaCoforkFunctor_map_hom, Cofork.IsColimit.π_desc'_assoc, CommRingCat.Under.instPreservesLimitUnderWalkingParallelPairParallelPairTensorProdOfFlatCarrier, CategoryTheory.Abelian.FunctorCategory.coimageObjIso_hom, cokernelBiproductFromSubtypeIso_inv, CategoryTheory.Comonad.ComonadicityInternal.instHasLimitWalkingParallelPairParallelPairMapAppUnitObjOfHasEqualizerAA, CategoryTheory.Comonad.beckCoalgebraFork_π_app, CategoryTheory.Equalizer.Presieve.isSheafFor_singleton_iff_of_hasPullback, preservesCokernel_zero', CategoryTheory.Monad.MonadicityInternal.comparisonAdjunction_counit_app, preservesCokernel_zero, Types.equalizerIso_inv_comp_ι_apply, MultispanIndex.multicoforkEquivSigmaCofork_unitIso_inv_app_hom, diagramIsoParallelPair_inv_app, MultispanIndex.parallelPairDiagramOfIsColimit_obj, isIso_limit_cone_parallelPair_of_self, kernelForkBiproductToSubtype_isLimit, Cofork.app_one_eq_π, kernelBiproductToSubtypeIso_inv, CategoryTheory.ShortComplex.π_isoOpcyclesOfIsColimit_hom, walkingParallelPairOpEquiv_counitIso_inv_app_op_one, HasColimitOfHasCoproductsOfHasCoequalizers.buildColimit_ι_app, CategoryTheory.parallel_pair_connected, walkingParallelPairOpEquiv_counitIso_hom_app_op_zero, Cofork.op_ι, CategoryTheory.Abelian.FunctorCategory.imageObjIso_inv, map_π_preserves_coequalizer_inv_colimMap_desc_assoc, walkingParallelPairOp_right, MultispanIndex.multicoforkEquivSigmaCoforkOfIsColimit_functor, CategoryTheory.Functor.PreservesHomology.preservesKernel, CategoryTheory.IsGrothendieckAbelian.IsPresentable.injectivity₀.epi_f, AlgebraicGeometry.LocallyRingedSpace.preservesCoequalizer, Fork.unop_π, binaryBiconeOfIsSplitEpiOfKernel_inr, CategoryTheory.Comonad.instPreservesLimitWalkingParallelPairParallelPairOfIsCoreflexivePairOfPreservesLimitOfIsCoreflexivePair, coequalizer.π_colimMap_desc, Types.type_equalizer_iff_unique, isCokernelEpiComp_desc, isIso_limit_cocone_parallelPair_of_epi, MulticospanIndex.multiforkEquivPiFork_unitIso_hom_app_hom, CategoryTheory.Monad.PreservesColimitOfIsSplitPair.out, KernelFork.mapOfIsLimit_ι, parallelPairHom_app_zero, walkingParallelPairOpEquiv_inverse, Fork.app_one_eq_ι_comp_right, CategoryTheory.Preadditive.coforkOfCokernelCofork_pt, binaryBiconeOfIsSplitMonoOfCokernel_fst, preservesKernel_zero', CategoryTheory.ShortComplex.isoCyclesOfIsLimit_inv_ι, π_tensor_id_preserves_coequalizer_inv_colimMap_desc, FGModuleCat.instIsIsoCoimageImageComparison, epi_of_isColimit_cofork, KernelFork.map_condition_assoc, parallelPairOpIso_hom_app_zero
|
WalkingParallelPairHom 📖 | CompData | — |
coconeOfIsSplitEpi 📖 | CompOp | 3 mathmath: coconeOfIsSplitEpi_pt, coconeOfIsSplitEpi_π, coconeOfIsSplitEpi_ι_app
|
coequalizer 📖 | CompOp | 57 mathmath: coequalizer.π_of_self, Bimod.TensorBimod.π_tensor_id_actRight, map_π_preserves_coequalizer_inv_colimMap, Types.coequalizerIso_quot_comp_inv, Bimod.TensorBimod.whiskerLeft_π_actLeft, TopCat.coequalizer_isOpen_iff, Types.coequalizerIso_π_comp_hom_apply, map_π_preserves_coequalizer_inv_colimMap_desc, coequalizer.condition, coequalizer.π_epi, AlgebraicGeometry.LocallyRingedSpace.HasCoequalizer.imageBasicOpen_image_open, π_reflexiveCoequalizerIsoCoequalizer_inv_assoc, id_tensor_π_preserves_coequalizer_inv_colimMap_desc, coequalizer.isoTargetOfSelf_inv, isPushout_coequalizer_coprod, Types.coequalizerIso_quot_comp_inv_apply, Types.coequalizerIso_π_comp_hom, CategoryTheory.Monad.MonadicityInternal.unitCofork_π, π_tensor_id_preserves_coequalizer_inv_desc, map_π_preserves_coequalizer_inv_colimMap_assoc, coequalizerComparison_map_desc, AlgebraicGeometry.LocallyRingedSpace.HasCoequalizer.coequalizer_π_stalk_isLocalHom, AlgebraicGeometry.LocallyRingedSpace.HasCoequalizer.coequalizer_π_app_isLocalHom, id_tensor_π_preserves_coequalizer_inv_desc, map_π_preserves_coequalizer_inv_assoc, ι_comp_coequalizerComparison_assoc, ι_colimitOfIsReflexivePairIsoCoequalizer_hom, PreservesCoequalizer.iso_hom, CategoryTheory.Monad.MonadicityInternal.comparisonAdjunction_unit_f_aux, CategoryTheory.Monad.MonadicityInternal.unitCofork_pt, coequalizer.isoTargetOfSelf_hom, ι_comp_coequalizerComparison, π_colimitOfIsReflexivePairIsoCoequalizer_inv, coequalizer.π_desc_assoc, coequalizer.hom_ext_iff, π_reflexiveCoequalizerIsoCoequalizer_inv, ι_reflexiveCoequalizerIsoCoequalizer_hom, coequalizerComparison_map_desc_assoc, instIsIsoCoequalizerComparison, AlgebraicGeometry.LocallyRingedSpace.HasCoequalizer.imageBasicOpen_image_preimage, coequalizer.condition_assoc, map_π_preserves_coequalizer_inv_desc, coequalizer.existsUnique, π_colimitOfIsReflexivePairIsoCoequalizer_inv_assoc, coequalizer.π_desc, ι_reflexiveCoequalizerIsoCoequalizer_hom_assoc, AlgebraicGeometry.SheafedSpace.instEpiTopCatBaseHomPresheafedSpaceπ, map_π_epi, map_π_preserves_coequalizer_inv, map_π_preserves_coequalizer_inv_colimMap_desc_assoc, ι_colimitOfIsReflexivePairIsoCoequalizer_hom_assoc, coequalizer.π_of_eq, coequalizer.π_colimMap_desc, CategoryTheory.instIsRegularEpiπ, map_π_preserves_coequalizer_inv_desc_assoc, π_tensor_id_preserves_coequalizer_inv_colimMap_desc, CategoryTheory.Regular.instMonoDesc
|
coequalizerComparison 📖 | CompOp | 6 mathmath: coequalizerComparison_map_desc, ι_comp_coequalizerComparison_assoc, PreservesCoequalizer.iso_hom, ι_comp_coequalizerComparison, coequalizerComparison_map_desc_assoc, instIsIsoCoequalizerComparison
|
coequalizerIsCoequalizer 📖 | CompOp | — |
coneOfIsSplitMono 📖 | CompOp | 3 mathmath: coneOfIsSplitMono_ι, coneOfIsSplitMono_π_app, coneOfIsSplitMono_pt
|
diagramIsoParallelPair 📖 | CompOp | 2 mathmath: diagramIsoParallelPair_hom_app, diagramIsoParallelPair_inv_app
|
equalizer 📖 | CompOp | 48 mathmath: PreservesEqualizer.iso_hom, AlgebraicGeometry.instCompactSpaceCarrierCarrierCommRingCatEqualizerSchemeOfQuasiSeparatedSpace, equalizer.ι_of_eq, equalizerComparison_comp_π, AlgebraicGeometry.instQuasiCompactιSchemeOfQuasiSeparatedSpaceCarrierCarrierCommRingCat, equalizerSubobject_arrow'_assoc, equalizer.lift_ι, isPullback_equalizer_prod, AlgebraicGeometry.Scheme.instIsClosedImmersionιOfIsSeparated, AlgebraicGeometry.IsImmersion.instιScheme, CategoryTheory.instIsRegularMonoι, equalizerPullbackMapIso_inv_ι_snd, equalizerPullbackMapIso_inv_ι_fst, Types.equalizerIso_inv_comp_ι, equalizer.condition, equalizerPullbackMapIso_hom_fst_assoc, CategoryTheory.Comonad.ComonadicityInternal.unitFork_ι, Types.equalizerIso_hom_comp_subtype_apply, CategoryTheory.regularTopology.mapToEqualizer_eq_comp, instIsIsoEqualizerComparison, equalizer.lift_ι_assoc, Types.equalizerIso_hom_comp_subtype, equalizer.ι_mono, equalizer.condition_assoc, CategoryTheory.regularTopology.equalizerCondition_iff_isIso_lift, PreservesEqualizer.iso_inv_ι, equalizer.existsUnique, equalizerPullbackMapIso_hom_snd_assoc, equalizerSubobject_arrow, equalizerPullbackMapIso_hom_snd, equalizerPullbackMapIso_hom_fst, AlgebraicGeometry.isClosedImmersion_equalizer_ι_left, equalizerPullbackMapIso_inv_ι_snd_assoc, equalizerSubobject_arrow', equalizerSubobject_arrow_assoc, equalizer.ι_of_self, equalizer.isoSourceOfSelf_hom, equalizerComparison_comp_π_assoc, CategoryTheory.PreGaloisCategory.fiberEqualizerEquiv_symm_ι_apply, CategoryTheory.Comonad.ComonadicityInternal.counitFork_pt, equalizerPullbackMapIso_inv_ι_fst_assoc, CategoryTheory.Comonad.ComonadicityInternal.comparisonAdjunction_counit_f_aux, map_lift_equalizerComparison_assoc, map_lift_equalizerComparison, Types.equalizerIso_inv_comp_ι_apply, equalizer.hom_ext_iff, equalizer.isoSourceOfSelf_inv, pullback_equalizer
|
equalizerComparison 📖 | CompOp | 6 mathmath: PreservesEqualizer.iso_hom, equalizerComparison_comp_π, instIsIsoEqualizerComparison, equalizerComparison_comp_π_assoc, map_lift_equalizerComparison_assoc, map_lift_equalizerComparison
|
equalizerIsEqualizer 📖 | CompOp | — |
idCofork 📖 | CompOp | — |
idFork 📖 | CompOp | — |
instDecidableEqWalkingParallelPair 📖 | CompOp | — |
instDecidableEqWalkingParallelPairHom 📖 | CompOp | — |
instInhabitedWalkingParallelPair 📖 | CompOp | — |
instInhabitedWalkingParallelPairHomZeroOne 📖 | CompOp | — |
isCoequalizerEpiComp 📖 | CompOp | — |
isColimitIdCofork 📖 | CompOp | — |
isEqualizerCompMono 📖 | CompOp | — |
isLimitIdFork 📖 | CompOp | — |
isLimitPrecompFork 📖 | CompOp | — |
isSplitEpiCoequalizes 📖 | CompOp | — |
isSplitMonoEqualizes 📖 | CompOp | — |
liftPrecomp 📖 | CompOp | — |
parallelPair 📖 | CompOp | 416 mathmath: Fork.IsLimit.homIso_natural, CategoryTheory.PreOneHypercover.forkOfIsColimit_ι_map_inj_assoc, cokernelBiproductιIso_hom, CategoryTheory.Abelian.FunctorCategory.coimageImageComparison_app', CategoryTheory.ComposableArrows.Exact.cokerIsoKer'_hom_inv_id_assoc, AlgebraicGeometry.instCompactSpaceCarrierCarrierCommRingCatEqualizerSchemeOfQuasiSeparatedSpace, CategoryTheory.ShortComplex.pOpcycles_π_isoOpcyclesOfIsColimit_inv_assoc, CategoryTheory.Equalizer.Sieve.equalizer_sheaf_condition, MulticospanIndex.multiforkEquivPiFork_counitIso_hom_app_hom, MulticospanIndex.multiforkEquivPiFork_unitIso_inv_app_hom, HasColimitOfHasCoproductsOfHasCoequalizers.buildColimit_pt, AlgebraicGeometry.instQuasiCompactιSchemeOfQuasiSeparatedSpaceCarrierCarrierCommRingCat, CategoryTheory.ShortComplex.RightHomologyData.IsPreservedBy.hg', Fork.IsLimit.lift_ι'_assoc, map_π_preserves_coequalizer_inv_colimMap, parallelPairOpIso_inv_app_zero, CategoryTheory.Comonad.ComonadicityInternal.unitFork_π_app, Types.coequalizerIso_quot_comp_inv, CategoryTheory.PreOneHypercover.forkOfIsColimit_pt, CategoryTheory.ShortComplex.LeftHomologyData.IsPreservedBy.hg, kernelBiprodSndIso_hom, colimit_ι_zero_cokernel_desc_assoc, Fork.π_comp_hom, MultispanIndex.multicoforkEquivSigmaCoforkOfIsColimit_counitIso, CategoryTheory.Comonad.beckCoalgebraFork_pt, MultispanIndex.multicoforkEquivSigmaCofork_functor_obj_ι_app, Bimod.whiskerLeft_hom, MultispanIndex.multicoforkEquivSigmaCofork_counitIso_inv_app_hom, CategoryTheory.Comonad.ComonadicityInternal.unitFork_pt, CategoryTheory.Functor.PreservesHomology.preservesKernels, MulticospanIndex.multiforkEquivPiFork_functor_map_hom, walkingParallelFamilyEquivWalkingParallelPair_unitIso_hom_app, Fork.unop_ι_app_zero, KernelFork.condition_assoc, KernelFork.mapOfIsLimit_ι_assoc, Cofork.ofCocone_ι, CategoryTheory.Preadditive.isColimitCoforkOfCokernelCofork_desc, Fork.isoForkOfι_hom_hom, PresheafOfModules.toFreeYonedaCoproduct_fromFreeYonedaCoproduct, CategoryTheory.Monad.beckCoequalizer_desc, CategoryTheory.ShortComplex.isoCyclesOfIsLimit_hom_iCycles_assoc, Fork.IsLimit.mono, kernelForkBiproductToSubtype_cone, KernelFork.IsLimit.isZero_of_mono, CategoryTheory.Monad.ReflectsColimitOfIsSplitPair.out, TopCat.Presheaf.SheafConditionEqualizerProducts.fork_π_app_walkingParallelPair_one, cokernelCoforkBiproductFromSubtype_isColimit, CategoryTheory.IsSplitCoequalizer.asCofork_pt, PreservesCokernel.of_iso_comparison, AlgebraicGeometry.Scheme.instIsClosedImmersionιOfIsSeparated, TopCat.coequalizer_isOpen_iff, kernelBiprodFstIso_hom, of_iso_comparison, AlgebraicGeometry.IsImmersion.instιScheme, CategoryTheory.ComposableArrows.Exact.cokerIsoKer'_hom, parallelPairOpIso_inv_app_one, Types.coequalizerIso_π_comp_hom_apply, kernelBiproductπIso_hom, MultispanIndex.multicoforkEquivSigmaCofork_counitIso_hom_app_hom, Multicofork.ofSigmaCofork_ι_app_right', CategoryTheory.Monad.PreservesColimitOfIsReflexivePair.out, Fork.ofι_pt, CategoryTheory.ShortComplex.LeftHomologyData.IsPreservedBy.f', equalizerPullbackMapIso_inv_ι_snd, CokernelCofork.π_mapOfIsColimit, CategoryTheory.ShortComplex.LeftHomologyData.IsPreservedBy.hf', Cofork.unop_π_app_one, binaryBiconeOfIsSplitEpiOfKernel_inl, Cofork.IsColimit.epi, equalizerPullbackMapIso_inv_ι_fst, CategoryTheory.LiftLeftAdjoint.constructLeftAdjointEquiv_symm_apply, MulticospanIndex.toPiForkFunctor_map_hom, CategoryTheory.Monad.instReflectsColimitWalkingParallelPairParallelPairMapAAppCounitObjAOfReflectsColimitOfIsSplitPair, CategoryTheory.Monad.instPreservesColimitWalkingParallelPairParallelPairMapAAppCounitObjAOfPreservesColimitOfIsReflexivePair, map_π_preserves_coequalizer_inv_colimMap_desc, CategoryTheory.Abelian.FunctorCategory.coimageImageComparison_app, Types.equalizerIso_inv_comp_ι, PreservesEqualizer.of_iso_comparison, Cofork.condition_assoc, Fork.ι_postcompose, Fork.equivOfIsos_functor_obj_ι, CategoryTheory.ShortComplex.LeftHomologyData.ofIsLimitKernelFork_H, CategoryTheory.Comonad.ComonadicityInternal.comparisonAdjunction_counit_f, Fork.IsLimit.existsUnique, CategoryTheory.Comonad.instPreservesLimitWalkingParallelPairParallelPairMapAAppUnitObjAOfPreservesLimitOfIsCoreflexivePair, CokernelCofork.IsColimit.isIso_π, equalizerPullbackMapIso_hom_fst_assoc, Fork.hom_comp_ι, Multicofork.toSigmaCofork_pt, CategoryTheory.Monad.instPreservesColimitWalkingParallelPairParallelPairMapAAppCounitObjAOfPreservesColimitOfIsSplitPair, CategoryTheory.ShortComplex.RightHomologyData.wι_assoc, Multifork.toPiFork_pt, AlgebraicGeometry.LocallyRingedSpace.HasCoequalizer.imageBasicOpen_image_open, parallelPairOpIso_hom_app_one, preservesKernel_zero, id_tensor_π_preserves_coequalizer_inv_colimMap_desc, CategoryTheory.Comonad.instReflectsLimitWalkingParallelPairParallelPairOfIsCosplitPairOfReflectsLimitOfIsCosplitPair, MulticospanIndex.multiforkEquivPiForkOfIsLimit_functor, CategoryTheory.LiftLeftAdjoint.constructLeftAdjointEquiv_apply, MultispanIndex.multicoforkEquivSigmaCofork_functor_map_hom, Fork.unop_ι_app_one, CategoryTheory.ShortComplex.HomologyData.ofEpiMonoFactorisation.g'_eq, CategoryTheory.Monad.MonadicityInternal.comparisonLeftAdjointHomEquiv_apply_f, MulticospanIndex.multiforkOfParallelHomsEquivFork_inverse_obj_ι, CategoryTheory.NormalMonoCategory.hasLimit_parallelPair, kernelBiprodFstIso_inv, kernelBiproductToSubtypeIso_hom, CokernelCofork.condition, isIso_limit_cone_parallelPair_of_epi, CategoryTheory.ShortComplex.RightHomologyData.ofIsColimitCokernelCofork_Q, opParallelPairIso_hom_app_zero, CategoryTheory.ShortComplex.LeftHomologyData.IsPreservedBy.g, binaryBiconeOfIsSplitMonoOfCokernel_inr, parallelPair_map_left, Fork.IsLimit.homIso_symm_apply, CategoryTheory.Monad.beckAlgebraCofork_pt, Cofork.app_zero_eq_comp_π_left, diagramIsoParallelPair_hom_app, CategoryTheory.ShortComplex.RightHomologyData.ofIsColimitCokernelCofork_H, CategoryTheory.ComposableArrows.IsComplex.mono_cokerToKer', cokernelBiprodInlIso_inv, CategoryTheory.Equalizer.Presieve.isSheafFor_singleton_iff, opParallelPairIso_hom_app_one, Cofork.IsColimit.homIso_apply_coe, coneOfIsSplitMono_π_app, CategoryTheory.ShortComplex.RightHomologyData.IsPreservedBy.hf, CommRingCat.instIsLocalHomCarrierObjWalkingParallelPairFunctorConstPtEqualizerForkZeroParallelPairRingHomHomι, Multicofork.ofSigmaCofork_π, MulticospanIndex.multiforkEquivPiFork_inverse_map_hom, walkingParallelFamilyEquivWalkingParallelPair_counitIso_hom_app, CategoryTheory.Comonad.instPreservesLimitWalkingParallelPairParallelPairMapAAppUnitObjAOfPreservesLimitOfIsCosplitPair, CokernelCofork.mapIsoOfIsColimit_inv, Types.coequalizerIso_quot_comp_inv_apply, Multicofork.ofSigmaCofork_pt, CategoryTheory.Preadditive.forkOfKernelFork_pt, Fork.op_pt, CategoryTheory.ShortComplex.Exact.leftHomologyDataOfIsLimitKernelFork_K, Types.coequalizerIso_π_comp_hom, Fork.ofι_π_app, Cofork.op_π_app_zero, Cofork.IsColimit.π_desc_assoc, MulticospanIndex.multiforkEquivPiForkOfIsLimit_counitIso, CategoryTheory.Comonad.ReflectsLimitOfIsCosplitPair.out, cokernelBiprodInrIso_inv, ωCPO.instHasLimitWalkingParallelPairParallelPair, MulticospanIndex.multiforkEquivPiFork_functor_obj_pt, walkingParallelFamilyEquivWalkingParallelPair_counitIso_inv_app, Fork.hom_comp_ι_assoc, KernelFork.mapIsoOfIsLimit_inv, Types.equalizerIso_hom_comp_subtype_apply, MultispanIndex.ofSigmaCoforkFunctor_obj, CategoryTheory.Comonad.PreservesLimitOfIsCosplitPair.out, CategoryTheory.ComposableArrows.Exact.cokerIsoKer'_inv_hom_id, PresheafOfModules.toFreeYonedaCoproduct_fromFreeYonedaCoproduct_assoc, binaryBiconeOfIsSplitMonoOfCokernel_pt, CategoryTheory.regularTopology.mapToEqualizer_eq_comp, HasLimitOfHasProductsOfHasEqualizers.buildLimit_pt, CokernelCofork.mapIsoOfIsColimit_hom, Fork.ofCone_π, π_tensor_id_preserves_coequalizer_inv_desc, CategoryTheory.Monad.instPreservesColimitWalkingParallelPairParallelPairOfIsReflexivePairOfPreservesColimitOfIsReflexivePair, KernelFork.IsLimit.isIso_ι, Cofork.π_precompose, CategoryTheory.Equalizer.Presieve.sheaf_condition, KernelFork.condition, CategoryTheory.ShortComplex.exact_and_epi_g_iff_g_is_cokernel, MulticospanIndex.multiforkEquivPiFork_counitIso_inv_app_hom, Fork.IsLimit.homIso_apply_coe, map_π_preserves_coequalizer_inv_colimMap_assoc, Fork.IsLimit.lift_ι, Multicofork.ofSigmaCofork_ι_app_right, CategoryTheory.Functor.PreservesHomology.preservesCokernels, Types.equalizerIso_hom_comp_subtype, cokernelBiprodInrIso_hom, CategoryTheory.Monad.MonadicityInternal.instHasColimitWalkingParallelPairParallelPairMapAppCounitObjOfHasCoequalizerAA, CategoryTheory.ShortComplex.LeftHomologyData.wπ_assoc, CategoryTheory.ShortComplex.RightHomologyData.IsPreservedBy.g', binaryBiconeOfIsSplitEpiOfKernel_pt, CategoryTheory.ShortComplex.Exact.rightHomologyDataOfIsColimitCokernelCofork_Q, isIso_colimit_cocone_parallelPair_of_eq, CategoryTheory.regularTopology.parallelPair_pullback_initial, HomologicalComplex.extend.rightHomologyData.d_comp_desc_eq_zero_iff, Fork.op_π, Cocone.ofCofork_ι, CategoryTheory.ComposableArrows.Exact.cokerIsoKer'_hom_inv_id, Fork.app_one_eq_ι_comp_left, binaryBiconeOfIsSplitMonoOfCokernel_snd, preservesSplitEqualizers, cokernelBiproductιIso_inv, CategoryTheory.Monad.instReflectsColimitWalkingParallelPairParallelPairOfIsSplitPairOfReflectsColimitOfIsSplitPair, kernelBiproductπIso_inv, cokernelBiproductFromSubtypeIso_hom, Fork.π_comp_hom_assoc, MultispanIndex.multicoforkEquivSigmaCofork_functor_obj_pt, reflexiveCoforkEquivCofork_functor_obj_pt, CategoryTheory.ShortComplex.RightHomologyData.wι, AlgebraicGeometry.LocallyRingedSpace.HasCoequalizer.coequalizer_π_stalk_isLocalHom, CategoryTheory.Monad.beckCofork_pt, Fork.app_one_eq_ι_comp_right_assoc, CategoryTheory.Preadditive.mono_iff_isZero_kernel', binaryBiconeOfIsSplitMonoOfCokernel_inl, CategoryTheory.ShortComplex.Exact.leftHomologyDataOfIsLimitKernelFork_π, CategoryTheory.ShortComplex.LeftHomologyData.ofIsColimitCokernelCofork_H, Cofork.condition, Cofork.app_zero_eq_comp_π_right, Multifork.toPiFork_π_app_one, Multifork.ofPiFork_pt, walkingParallelFamilyEquivWalkingParallelPair_unitIso_inv_app, isIso_limit_cone_parallelPair_of_eq, reflexiveCoforkEquivCofork_functor_obj_π, coconeOfIsSplitEpi_pt, AddCommGrpCat.kernelIsoKer_inv_comp_ι, CategoryTheory.Monad.MonadicityInternal.comparisonLeftAdjointHomEquiv_symm_apply, AlgebraicGeometry.LocallyRingedSpace.HasCoequalizer.coequalizer_π_app_isLocalHom, parallelPair_obj_one, CategoryTheory.Monad.MonadicityInternal.comparisonAdjunction_unit_f, CategoryTheory.regularTopology.equalizerCondition_iff_isIso_lift, parallelPair_functor_obj, SemiNormedGrp.hasLimit_parallelPair, SheafOfModules.Presentation.map_relations_I, CategoryTheory.Equalizer.Presieve.Arrows.sheaf_condition, MulticospanIndex.multiforkEquivPiFork_functor_obj_π_app, id_tensor_π_preserves_coequalizer_inv_desc, reflexiveCoforkEquivCofork_inverse_obj_pt, Fork.condition, CategoryTheory.ComposableArrows.Exact.cokerIsoKer'_inv_hom_id_assoc, CategoryTheory.ShortComplex.LeftHomologyData.wπ, SheafOfModules.Presentation.mapRelations_mapGenerators, KernelFork.app_one, Fork.app_zero_eq_ι, MultispanIndex.multicoforkEquivSigmaCofork_inverse_obj_pt, parallelPairHom_app_one, isKernelCompMono_lift, SheafOfModules.relationsOfIsCokernelFree_I, CategoryTheory.IsSplitEqualizer.asFork_pt, MulticospanIndex.toPiForkFunctor_obj, Cofork.app_zero_eq_comp_π_right_assoc, Fork.equivOfIsos_inverse_obj_ι, CategoryTheory.Comonad.PreservesLimitOfIsCoreflexivePair.out, Cofork.IsColimit.homIso_natural, CokernelCofork.π_mapOfIsColimit_assoc, equalizerPullbackMapIso_hom_snd_assoc, Fork.op_ι_app, MulticospanIndex.multiforkEquivPiForkOfIsLimit_inverse, CategoryTheory.Comonad.instPreservesLimitWalkingParallelPairParallelPairOfIsCosplitPairOfPreservesLimitOfIsCosplitPair, MulticospanIndex.multiforkEquivPiFork_inverse_obj_π_app, CategoryTheory.ShortComplex.RightHomologyData.IsPreservedBy.f, binaryBiconeOfIsSplitEpiOfKernel_snd, CategoryTheory.Monad.MonadicityInternal.comparisonAdjunction_counit, splitEpiOfIdempotentOfIsColimitCofork_section_, parallelPair_map_right, Fork.op_ι_app_one, mono_of_isLimit_fork, MultispanIndex.multicoforkEquivSigmaCofork_inverse_obj_ι_app, MulticospanIndex.multiforkEquivPiFork_inverse_obj_pt, PreservesKernel.of_iso_comparison, CategoryTheory.ShortComplex.pOpcycles_π_isoOpcyclesOfIsColimit_inv, equalizerPullbackMapIso_hom_snd, Cofork.unop_π_app_zero, CategoryTheory.ShortComplex.isoCyclesOfIsLimit_inv_ι_assoc, CategoryTheory.Monad.MonadicityInternal.unitCofork_pt, CategoryTheory.ShortComplex.Exact.rightHomologyDataOfIsColimitCokernelCofork_ι, Cofork.IsColimit.existsUnique, CategoryTheory.ShortComplex.exact_and_mono_f_iff_f_is_kernel, CokernelCofork.condition_assoc, parallelPair_initial_mk, equalizerPullbackMapIso_hom_fst, MultispanIndex.toSigmaCoforkFunctor_obj, AlgebraicGeometry.isClosedImmersion_equalizer_ι_left, equalizerPullbackMapIso_inv_ι_snd_assoc, parallelPair_obj_zero, CategoryTheory.LiftRightAdjoint.constructRightAdjointEquiv_apply, CategoryTheory.Monad.beckAlgebraCofork_ι_app, Cone.ofFork_π, colimit_ι_zero_cokernel_desc, CokernelCofork.map_condition, CategoryTheory.ShortComplex.LeftHomologyData.ofIsLimitKernelFork_K, SheafOfModules.Presentation.mapRelations_mapGenerators_assoc, preservesSplitCoequalizers, TopCat.Presheaf.SheafConditionEqualizerProducts.fork_pt, Fork.IsLimit.lift_ι_assoc, CategoryTheory.Preadditive.isLimitForkOfKernelFork_lift, CategoryTheory.Preadditive.epi_iff_isZero_cokernel', CokernelCofork.map_π, Fork.IsLimit.lift_ι', CategoryTheory.Abelian.FunctorCategory.coimageObjIso_inv, Multifork.ofPiFork_π_app_right, reflexiveCoforkEquivCofork_inverse_obj_π, cokernelBiprodInlIso_hom, Multifork.ofPiFork_π_app_left, CategoryTheory.ShortComplex.isoCyclesOfIsLimit_hom_iCycles, CategoryTheory.Subfunctor.equalizer.fork_pt, binaryBiconeOfIsSplitEpiOfKernel_fst, CategoryTheory.ComposableArrows.IsComplex.epi_cokerToKer', CategoryTheory.Comonad.beckEqualizer_lift, MulticospanIndex.ofPiForkFunctor_obj, CategoryTheory.ShortComplex.RightHomologyData.ofIsColimitCokernelCofork_ι, MultispanIndex.multicoforkEquivSigmaCoforkOfIsColimit_inverse, KernelFork.mapIsoOfIsLimit_hom, CategoryTheory.Monad.instPreservesColimitWalkingParallelPairParallelPairOfIsSplitPairOfPreservesColimitOfIsSplitPair, CategoryTheory.ShortComplex.LeftHomologyData.ofIsLimitKernelFork_π, CategoryTheory.ComposableArrows.Exact.isIso_cokerToKer', kernelBiprodSndIso_inv, CategoryTheory.Comonad.beckFork_pt, CategoryTheory.NormalEpiCategory.hasColimit_parallelPair, CategoryTheory.Abelian.FunctorCategory.imageObjIso_hom, KernelFork.map_condition, MultispanIndex.toSigmaCoforkFunctor_map_hom, SheafOfModules.relationsOfIsCokernelFree_s, AddCommGrpCat.kernelIsoKer_hom_comp_subtype, Fork.op_ι_app_zero, Cofork.op_π_app_one, CategoryTheory.LiftRightAdjoint.constructRightAdjointEquiv_symm_apply, AlgebraicGeometry.LocallyRingedSpace.HasCoequalizer.imageBasicOpen_image_preimage, Cofork.IsColimit.π_desc, TopCat.isOpen_iff_of_isColimit_cofork, Bimod.whiskerRight_hom, TopCat.isQuotientMap_of_isColimit_cofork, KernelFork.map_ι, MultispanIndex.multicoforkEquivSigmaCofork_inverse_map_hom, equalizer.fork_π_app_zero, splitMonoOfIdempotentOfIsLimitFork_retraction, MulticospanIndex.multiforkEquivPiForkOfIsLimit_unitIso, CategoryTheory.ShortComplex.π_isoOpcyclesOfIsColimit_hom_assoc, CategoryTheory.Abelian.FunctorCategory.functor_category_isIso_coimageImageComparison, MulticospanIndex.ofPiForkFunctor_map_hom, Cofork.ofπ_pt, parallelPair.eqOfHomEq_hom_app, CategoryTheory.ShortComplex.exact_iff_of_forks, coequalizer.cofork_ι_app_one, CategoryTheory.Functor.PreservesHomology.preservesCokernel, CategoryTheory.ShortComplex.HomologyData.ofEpiMonoFactorisation.f'_eq, HomologicalComplex.extend.leftHomologyData.lift_d_comp_eq_zero_iff, coconeOfIsSplitEpi_ι_app, SheafOfModules.Presentation.IsFinite.finite_relations, CategoryTheory.Monad.MonadicityInternal.counitCofork_pt, CokernelCofork.map_condition_assoc, CategoryTheory.PreGaloisCategory.fiberEqualizerEquiv_symm_ι_apply, CategoryTheory.Monad.MonadicityInternal.counitCofork_ι_app, Multifork.ofPiFork_ι, Cofork.IsColimit.homIso_symm_apply, Fork.condition_assoc, Cofork.IsColimit.π_desc', CokernelCofork.π_eq_zero, CategoryTheory.ComposableArrows.IsComplex.cokerToKer'_fac_assoc, isIso_colimit_cocone_parallelPair_of_self, CategoryTheory.Comonad.instReflectsLimitWalkingParallelPairParallelPairMapAAppUnitObjAOfReflectsLimitOfIsCosplitPair, Fork.isoForkOfι_inv_hom, Cofork.ofπ_ι_app, MultispanIndex.multicoforkEquivSigmaCofork_unitIso_hom_app_hom, MultispanIndex.multicoforkEquivSigmaCoforkOfIsColimit_unitIso, Cofork.unop_ι, CategoryTheory.ShortComplex.RightHomologyData.ofIsLimitKernelFork_H, TopCat.Presheaf.SheafConditionEqualizerProducts.fork_π_app_walkingParallelPair_zero, CategoryTheory.IsGrothendieckAbelian.IsPresentable.injectivity₀.hf, CokernelCofork.IsColimit.isZero_of_epi, opParallelPairIso_inv_app_zero, cokernelCoforkBiproductFromSubtype_cocone, CategoryTheory.Comonad.ComonadicityInternal.counitFork_pt, opParallelPairIso_inv_app_one, HasLimitOfHasProductsOfHasEqualizers.buildLimit_π_app, Multicofork.ofSigmaCofork_ι_app_left, AlgebraicGeometry.SheafedSpace.instEpiTopCatBaseHomPresheafedSpaceπ, coneOfIsSplitMono_pt, CategoryTheory.Comonad.ComonadicityInternal.comparisonAdjunction_unit_app, MulticospanIndex.multiforkOfParallelHomsEquivFork_functor_obj_ι, parallelPair.eqOfHomEq_inv_app, CategoryTheory.ComposableArrows.IsComplex.cokerToKer'_fac, equalizerPullbackMapIso_inv_ι_fst_assoc, CategoryTheory.PreOneHypercover.forkOfIsColimit_ι_map_inj, MultispanIndex.ofSigmaCoforkFunctor_map_hom, Cofork.IsColimit.π_desc'_assoc, CommRingCat.Under.instPreservesLimitUnderWalkingParallelPairParallelPairTensorProdOfFlatCarrier, CategoryTheory.Abelian.FunctorCategory.coimageObjIso_hom, cokernelBiproductFromSubtypeIso_inv, CategoryTheory.Comonad.ComonadicityInternal.instHasLimitWalkingParallelPairParallelPairMapAppUnitObjOfHasEqualizerAA, CategoryTheory.Comonad.beckCoalgebraFork_π_app, CategoryTheory.Equalizer.Presieve.isSheafFor_singleton_iff_of_hasPullback, preservesCokernel_zero', CategoryTheory.Monad.MonadicityInternal.comparisonAdjunction_counit_app, preservesCokernel_zero, Types.equalizerIso_inv_comp_ι_apply, MultispanIndex.multicoforkEquivSigmaCofork_unitIso_inv_app_hom, diagramIsoParallelPair_inv_app, isIso_limit_cone_parallelPair_of_self, kernelForkBiproductToSubtype_isLimit, Cofork.app_one_eq_π, kernelBiproductToSubtypeIso_inv, CategoryTheory.ShortComplex.π_isoOpcyclesOfIsColimit_hom, HasColimitOfHasCoproductsOfHasCoequalizers.buildColimit_ι_app, Cofork.op_ι, CategoryTheory.Abelian.FunctorCategory.imageObjIso_inv, map_π_preserves_coequalizer_inv_colimMap_desc_assoc, MultispanIndex.multicoforkEquivSigmaCoforkOfIsColimit_functor, CategoryTheory.Functor.PreservesHomology.preservesKernel, CategoryTheory.IsGrothendieckAbelian.IsPresentable.injectivity₀.epi_f, Fork.unop_π, binaryBiconeOfIsSplitEpiOfKernel_inr, CategoryTheory.Comonad.instPreservesLimitWalkingParallelPairParallelPairOfIsCoreflexivePairOfPreservesLimitOfIsCoreflexivePair, coequalizer.π_colimMap_desc, Types.type_equalizer_iff_unique, isCokernelEpiComp_desc, isIso_limit_cocone_parallelPair_of_epi, MulticospanIndex.multiforkEquivPiFork_unitIso_hom_app_hom, CategoryTheory.Monad.PreservesColimitOfIsSplitPair.out, KernelFork.mapOfIsLimit_ι, parallelPairHom_app_zero, Fork.app_one_eq_ι_comp_right, CategoryTheory.Preadditive.coforkOfCokernelCofork_pt, binaryBiconeOfIsSplitMonoOfCokernel_fst, preservesKernel_zero', CategoryTheory.ShortComplex.isoCyclesOfIsLimit_inv_ι, π_tensor_id_preserves_coequalizer_inv_colimMap_desc, epi_of_isColimit_cofork, KernelFork.map_condition_assoc, parallelPairOpIso_hom_app_zero
|
parallelPairHom 📖 | CompOp | 11 mathmath: map_π_preserves_coequalizer_inv_colimMap, Bimod.whiskerLeft_hom, map_π_preserves_coequalizer_inv_colimMap_desc, id_tensor_π_preserves_coequalizer_inv_colimMap_desc, map_π_preserves_coequalizer_inv_colimMap_assoc, parallelPairHom_app_one, Bimod.whiskerRight_hom, map_π_preserves_coequalizer_inv_colimMap_desc_assoc, coequalizer.π_colimMap_desc, parallelPairHom_app_zero, π_tensor_id_preserves_coequalizer_inv_colimMap_desc
|
parallelPairHomMk 📖 | CompOp | 1 mathmath: parallelPairHomMk_app
|
parallelPairIso 📖 | CompOp | — |
parallelPairIsoMk 📖 | CompOp | 3 mathmath: parallelPairIsoMk_inv_app, parallelPairIsoMk_hom_app, SheafOfModules.Presentation.map_relations_I
|
precompFork 📖 | CompOp | — |
splitEpiOfCoequalizer 📖 | CompOp | — |
splitEpiOfIdempotentCoequalizer 📖 | CompOp | — |
splitEpiOfIdempotentOfIsColimitCofork 📖 | CompOp | 1 mathmath: splitEpiOfIdempotentOfIsColimitCofork_section_
|
splitMonoOfEqualizer 📖 | CompOp | — |
splitMonoOfIdempotentEqualizer 📖 | CompOp | — |
splitMonoOfIdempotentOfIsLimitFork 📖 | CompOp | 1 mathmath: splitMonoOfIdempotentOfIsLimitFork_retraction
|
walkingParallelPairHomCategory 📖 | CompOp | 484 mathmath: Fork.IsLimit.homIso_natural, walkingParallelPairOpEquiv_unitIso_hom_app_zero, CategoryTheory.PreOneHypercover.forkOfIsColimit_ι_map_inj_assoc, cokernelBiproductιIso_hom, CategoryTheory.Abelian.FunctorCategory.coimageImageComparison_app', CategoryTheory.ComposableArrows.Exact.cokerIsoKer'_hom_inv_id_assoc, AlgebraicGeometry.instCompactSpaceCarrierCarrierCommRingCatEqualizerSchemeOfQuasiSeparatedSpace, CategoryTheory.ShortComplex.pOpcycles_π_isoOpcyclesOfIsColimit_inv_assoc, CategoryTheory.Equalizer.Sieve.equalizer_sheaf_condition, MulticospanIndex.multiforkEquivPiFork_counitIso_hom_app_hom, MulticospanIndex.multiforkEquivPiFork_unitIso_inv_app_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverse_obj_π_app, HasColimitOfHasCoproductsOfHasCoequalizers.buildColimit_pt, AlgebraicGeometry.instQuasiCompactιSchemeOfQuasiSeparatedSpaceCarrierCarrierCommRingCat, CategoryTheory.ShortComplex.RightHomologyData.IsPreservedBy.hg', Fork.IsLimit.lift_ι'_assoc, walkingParallelPairOp_left, map_π_preserves_coequalizer_inv_colimMap, parallelPairOpIso_inv_app_zero, CategoryTheory.Comonad.ComonadicityInternal.unitFork_π_app, Types.coequalizerIso_quot_comp_inv, CategoryTheory.PreOneHypercover.forkOfIsColimit_pt, CategoryTheory.ShortComplex.LeftHomologyData.IsPreservedBy.hg, kernelBiprodSndIso_hom, colimit_ι_zero_cokernel_desc_assoc, Fork.π_comp_hom, MultispanIndex.multicoforkEquivSigmaCoforkOfIsColimit_counitIso, CategoryTheory.Comonad.beckCoalgebraFork_pt, MultispanIndex.multicoforkEquivSigmaCofork_functor_obj_ι_app, Bimod.whiskerLeft_hom, MultispanIndex.multicoforkEquivSigmaCofork_counitIso_inv_app_hom, CategoryTheory.Comonad.ComonadicityInternal.unitFork_pt, CategoryTheory.Functor.PreservesHomology.preservesKernels, MulticospanIndex.multiforkEquivPiFork_functor_map_hom, walkingParallelFamilyEquivWalkingParallelPair_unitIso_hom_app, walkingParallelPairOpEquiv_counitIso_hom_app_op_one, Fork.unop_ι_app_zero, isClosedUnderLimitsOfShape_isIndObject_walkingParallelPair, KernelFork.condition_assoc, KernelFork.mapOfIsLimit_ι_assoc, Cofork.ofCocone_ι, walkingParallelPairOpEquiv_counitIso_inv_app_op_zero, CategoryTheory.Preadditive.isColimitCoforkOfCokernelCofork_desc, Fork.isoForkOfι_hom_hom, PresheafOfModules.toFreeYonedaCoproduct_fromFreeYonedaCoproduct, CategoryTheory.Monad.beckCoequalizer_desc, CategoryTheory.ShortComplex.isoCyclesOfIsLimit_hom_iCycles_assoc, Fork.IsLimit.mono, kernelForkBiproductToSubtype_cone, KernelFork.IsLimit.isZero_of_mono, CategoryTheory.Monad.ReflectsColimitOfIsSplitPair.out, TopCat.Presheaf.SheafConditionEqualizerProducts.fork_π_app_walkingParallelPair_one, cokernelCoforkBiproductFromSubtype_isColimit, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivCounitIso_hom_app_hom, CategoryTheory.IsSplitCoequalizer.asCofork_pt, PreservesCokernel.of_iso_comparison, AlgebraicGeometry.Scheme.instIsClosedImmersionιOfIsSeparated, TopCat.coequalizer_isOpen_iff, kernelBiprodFstIso_hom, walkingParallelPairHom_id, of_iso_comparison, AlgebraicGeometry.IsImmersion.instιScheme, CategoryTheory.ComposableArrows.Exact.cokerIsoKer'_hom, closedUnderLimitsOfShape_walkingParallelPair_isIndObject, WalkingParallelPair.inclusionWalkingReflexivePair_map, parallelPairOpIso_inv_app_one, Types.coequalizerIso_π_comp_hom_apply, MulticospanIndex.parallelPairDiagram_map, kernelBiproductπIso_hom, MultispanIndex.multicoforkEquivSigmaCofork_counitIso_hom_app_hom, Multicofork.ofSigmaCofork_ι_app_right', CategoryTheory.Monad.PreservesColimitOfIsReflexivePair.out, Fork.ofι_pt, CategoryTheory.ShortComplex.LeftHomologyData.IsPreservedBy.f', equalizerPullbackMapIso_inv_ι_snd, CokernelCofork.π_mapOfIsColimit, CategoryTheory.ShortComplex.LeftHomologyData.IsPreservedBy.hf', Cofork.unop_π_app_one, binaryBiconeOfIsSplitEpiOfKernel_inl, Cofork.IsColimit.epi, CategoryTheory.instHasColimitsOfShapeWalkingParallelPairInd, walkingParallelPairOpEquiv_counitIso_zero, equalizerPullbackMapIso_inv_ι_fst, CategoryTheory.LiftLeftAdjoint.constructLeftAdjointEquiv_symm_apply, MulticospanIndex.toPiForkFunctor_map_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverseObj_π_app, CategoryTheory.Monad.instReflectsColimitWalkingParallelPairParallelPairMapAAppCounitObjAOfReflectsColimitOfIsSplitPair, CategoryTheory.Monad.instPreservesColimitWalkingParallelPairParallelPairMapAAppCounitObjAOfPreservesColimitOfIsReflexivePair, map_π_preserves_coequalizer_inv_colimMap_desc, CategoryTheory.Abelian.FunctorCategory.coimageImageComparison_app, Types.equalizerIso_inv_comp_ι, PreservesEqualizer.of_iso_comparison, Cofork.condition_assoc, Fork.ι_postcompose, Fork.equivOfIsos_functor_obj_ι, CategoryTheory.ShortComplex.LeftHomologyData.ofIsLimitKernelFork_H, CategoryTheory.Comonad.ComonadicityInternal.comparisonAdjunction_counit_f, Fork.IsLimit.existsUnique, CategoryTheory.Comonad.instPreservesLimitWalkingParallelPairParallelPairMapAAppUnitObjAOfPreservesLimitOfIsCoreflexivePair, CokernelCofork.IsColimit.isIso_π, equalizerPullbackMapIso_hom_fst_assoc, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquiv_counitIso, Fork.hom_comp_ι, Multicofork.toSigmaCofork_pt, CategoryTheory.Monad.instPreservesColimitWalkingParallelPairParallelPairMapAAppCounitObjAOfPreservesColimitOfIsSplitPair, CategoryTheory.ShortComplex.RightHomologyData.wι_assoc, Multifork.toPiFork_pt, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctorObj_π_app, AlgebraicGeometry.LocallyRingedSpace.HasCoequalizer.imageBasicOpen_image_open, parallelPairOpIso_hom_app_one, preservesKernel_zero, HasEqualizersOfHasPullbacksAndBinaryProducts.pullbackFst_eq_pullback_snd, id_tensor_π_preserves_coequalizer_inv_colimMap_desc, CategoryTheory.Comonad.instReflectsLimitWalkingParallelPairParallelPairOfIsCosplitPairOfReflectsLimitOfIsCosplitPair, MulticospanIndex.multiforkEquivPiForkOfIsLimit_functor, CategoryTheory.LiftLeftAdjoint.constructLeftAdjointEquiv_apply, MultispanIndex.multicoforkEquivSigmaCofork_functor_map_hom, Fork.unop_ι_app_one, CategoryTheory.ShortComplex.HomologyData.ofEpiMonoFactorisation.g'_eq, CategoryTheory.Monad.MonadicityInternal.comparisonLeftAdjointHomEquiv_apply_f, MulticospanIndex.multiforkOfParallelHomsEquivFork_inverse_obj_ι, CategoryTheory.NormalMonoCategory.hasLimit_parallelPair, kernelBiprodFstIso_inv, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivCounitIso_inv_app_hom, kernelBiproductToSubtypeIso_hom, CokernelCofork.condition, isIso_limit_cone_parallelPair_of_epi, CategoryTheory.ShortComplex.RightHomologyData.ofIsColimitCokernelCofork_Q, opParallelPairIso_hom_app_zero, CategoryTheory.ShortComplex.LeftHomologyData.IsPreservedBy.g, binaryBiconeOfIsSplitMonoOfCokernel_inr, parallelPair_map_left, Fork.IsLimit.homIso_symm_apply, CategoryTheory.Monad.beckAlgebraCofork_pt, Cofork.app_zero_eq_comp_π_left, diagramIsoParallelPair_hom_app, CategoryTheory.ShortComplex.RightHomologyData.ofIsColimitCokernelCofork_H, CommRingCat.Under.instPreservesLimitsOfShapeUnderWalkingParallelPairTensorProdOfFlatCarrier, CategoryTheory.ComposableArrows.IsComplex.mono_cokerToKer', cokernelBiprodInlIso_inv, CategoryTheory.Equalizer.Presieve.isSheafFor_singleton_iff, opParallelPairIso_hom_app_one, Cofork.IsColimit.homIso_apply_coe, coneOfIsSplitMono_π_app, CategoryTheory.ShortComplex.RightHomologyData.IsPreservedBy.hf, MulticospanIndex.parallelPairDiagram_obj, CommRingCat.instIsLocalHomCarrierObjWalkingParallelPairFunctorConstPtEqualizerForkZeroParallelPairRingHomHomι, Multicofork.ofSigmaCofork_π, MulticospanIndex.multiforkEquivPiFork_inverse_map_hom, walkingParallelFamilyEquivWalkingParallelPair_counitIso_hom_app, CategoryTheory.Comonad.instPreservesLimitWalkingParallelPairParallelPairMapAAppUnitObjAOfPreservesLimitOfIsCosplitPair, CokernelCofork.mapIsoOfIsColimit_inv, Types.coequalizerIso_quot_comp_inv_apply, Multicofork.ofSigmaCofork_pt, CategoryTheory.Preadditive.forkOfKernelFork_pt, Fork.op_pt, walkingParallelPairOpEquiv_functor, CategoryTheory.ShortComplex.Exact.leftHomologyDataOfIsLimitKernelFork_K, Types.coequalizerIso_π_comp_hom, Fork.ofι_π_app, Cofork.op_π_app_zero, Cofork.IsColimit.π_desc_assoc, MulticospanIndex.multiforkEquivPiForkOfIsLimit_counitIso, CategoryTheory.Comonad.ReflectsLimitOfIsCosplitPair.out, cokernelBiprodInrIso_inv, ωCPO.instHasLimitWalkingParallelPairParallelPair, MulticospanIndex.multiforkEquivPiFork_functor_obj_pt, walkingParallelFamilyEquivWalkingParallelPair_functor_map, walkingParallelFamilyEquivWalkingParallelPair_counitIso_inv_app, Fork.hom_comp_ι_assoc, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctor_obj_pt, walkingParallelFamilyEquivWalkingParallelPair_inverse_obj, KernelFork.mapIsoOfIsLimit_inv, Types.equalizerIso_hom_comp_subtype_apply, WalkingParallelPair.inclusionWalkingReflexivePair_obj, MultispanIndex.ofSigmaCoforkFunctor_obj, CategoryTheory.Comonad.PreservesLimitOfIsCosplitPair.out, CategoryTheory.ComposableArrows.Exact.cokerIsoKer'_inv_hom_id, PresheafOfModules.toFreeYonedaCoproduct_fromFreeYonedaCoproduct_assoc, binaryBiconeOfIsSplitMonoOfCokernel_pt, CategoryTheory.regularTopology.mapToEqualizer_eq_comp, HasLimitOfHasProductsOfHasEqualizers.buildLimit_pt, CokernelCofork.mapIsoOfIsColimit_hom, Fork.ofCone_π, π_tensor_id_preserves_coequalizer_inv_desc, CategoryTheory.Monad.instPreservesColimitWalkingParallelPairParallelPairOfIsReflexivePairOfPreservesColimitOfIsReflexivePair, KernelFork.IsLimit.isIso_ι, Cofork.π_precompose, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquiv_inverse, CategoryTheory.Equalizer.Presieve.sheaf_condition, KernelFork.condition, CategoryTheory.ShortComplex.exact_and_epi_g_iff_g_is_cokernel, MulticospanIndex.multiforkEquivPiFork_counitIso_inv_app_hom, MulticospanIndex.parallelPairDiagramOfIsLimit_map, Fork.IsLimit.homIso_apply_coe, map_π_preserves_coequalizer_inv_colimMap_assoc, Fork.IsLimit.lift_ι, Multicofork.ofSigmaCofork_ι_app_right, CategoryTheory.Functor.PreservesHomology.preservesCokernels, Types.equalizerIso_hom_comp_subtype, cokernelBiprodInrIso_hom, CategoryTheory.Monad.MonadicityInternal.instHasColimitWalkingParallelPairParallelPairMapAppCounitObjOfHasCoequalizerAA, CategoryTheory.ShortComplex.LeftHomologyData.wπ_assoc, CategoryTheory.ShortComplex.RightHomologyData.IsPreservedBy.g', binaryBiconeOfIsSplitEpiOfKernel_pt, HasCoequalizersOfHasPushoutsAndBinaryCoproducts.pushoutInl_eq_pushout_inr, CategoryTheory.ShortComplex.Exact.rightHomologyDataOfIsColimitCokernelCofork_Q, isIso_colimit_cocone_parallelPair_of_eq, CategoryTheory.regularTopology.parallelPair_pullback_initial, walkingParallelFamilyEquivWalkingParallelPair_inverse_map, HomologicalComplex.extend.rightHomologyData.d_comp_desc_eq_zero_iff, Fork.op_π, Cocone.ofCofork_ι, CategoryTheory.ComposableArrows.Exact.cokerIsoKer'_hom_inv_id, Fork.app_one_eq_ι_comp_left, binaryBiconeOfIsSplitMonoOfCokernel_snd, preservesSplitEqualizers, cokernelBiproductιIso_inv, CategoryTheory.Monad.instReflectsColimitWalkingParallelPairParallelPairOfIsSplitPairOfReflectsColimitOfIsSplitPair, kernelBiproductπIso_inv, cokernelBiproductFromSubtypeIso_hom, walkingParallelPairOpEquiv_unitIso_inv_app_zero, Fork.π_comp_hom_assoc, MultispanIndex.multicoforkEquivSigmaCofork_functor_obj_pt, reflexiveCoforkEquivCofork_functor_obj_pt, CategoryTheory.ShortComplex.RightHomologyData.wι, AlgebraicGeometry.LocallyRingedSpace.HasCoequalizer.coequalizer_π_stalk_isLocalHom, CategoryTheory.Monad.beckCofork_pt, Fork.app_one_eq_ι_comp_right_assoc, CategoryTheory.Preadditive.mono_iff_isZero_kernel', binaryBiconeOfIsSplitMonoOfCokernel_inl, CategoryTheory.ShortComplex.Exact.leftHomologyDataOfIsLimitKernelFork_π, CategoryTheory.ShortComplex.LeftHomologyData.ofIsColimitCokernelCofork_H, Cofork.condition, Cofork.app_zero_eq_comp_π_right, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivUnitIso_inv_app_hom, Multifork.toPiFork_π_app_one, Multifork.ofPiFork_pt, walkingParallelFamilyEquivWalkingParallelPair_unitIso_inv_app, isIso_limit_cone_parallelPair_of_eq, reflexiveCoforkEquivCofork_functor_obj_π, coconeOfIsSplitEpi_pt, AddCommGrpCat.kernelIsoKer_inv_comp_ι, CategoryTheory.Monad.MonadicityInternal.comparisonLeftAdjointHomEquiv_symm_apply, AlgebraicGeometry.LocallyRingedSpace.HasCoequalizer.coequalizer_π_app_isLocalHom, parallelPair_obj_one, CategoryTheory.Monad.MonadicityInternal.comparisonAdjunction_unit_f, CategoryTheory.regularTopology.equalizerCondition_iff_isIso_lift, parallelPair_functor_obj, SemiNormedGrp.hasLimit_parallelPair, SheafOfModules.Presentation.map_relations_I, CategoryTheory.Equalizer.Presieve.Arrows.sheaf_condition, MulticospanIndex.multiforkEquivPiFork_functor_obj_π_app, id_tensor_π_preserves_coequalizer_inv_desc, reflexiveCoforkEquivCofork_inverse_obj_pt, Fork.condition, CategoryTheory.ComposableArrows.Exact.cokerIsoKer'_inv_hom_id_assoc, CategoryTheory.ShortComplex.LeftHomologyData.wπ, walkingParallelPairOpEquiv_unitIso_inv_app_one, CategoryTheory.instHasLimitsOfShapeWalkingParallelPairInd, SheafOfModules.Presentation.mapRelations_mapGenerators, KernelFork.app_one, Fork.app_zero_eq_ι, MultispanIndex.multicoforkEquivSigmaCofork_inverse_obj_pt, parallelPairHom_app_one, isKernelCompMono_lift, SheafOfModules.relationsOfIsCokernelFree_I, CategoryTheory.IsSplitEqualizer.asFork_pt, MulticospanIndex.toPiForkFunctor_obj, Cofork.app_zero_eq_comp_π_right_assoc, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctor_obj_π_app, Fork.equivOfIsos_inverse_obj_ι, CategoryTheory.Comonad.PreservesLimitOfIsCoreflexivePair.out, Cofork.IsColimit.homIso_natural, CokernelCofork.π_mapOfIsColimit_assoc, equalizerPullbackMapIso_hom_snd_assoc, Fork.op_ι_app, MulticospanIndex.multiforkEquivPiForkOfIsLimit_inverse, CategoryTheory.Comonad.instPreservesLimitWalkingParallelPairParallelPairOfIsCosplitPairOfPreservesLimitOfIsCosplitPair, MulticospanIndex.multiforkEquivPiFork_inverse_obj_π_app, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctor_map_hom, CommRingCat.equalizer_ι_isLocalHom', CategoryTheory.ShortComplex.RightHomologyData.IsPreservedBy.f, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverse_obj_pt, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivUnitIso_hom_app_hom, binaryBiconeOfIsSplitEpiOfKernel_snd, CategoryTheory.Monad.MonadicityInternal.comparisonAdjunction_counit, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivUnitIsoApp_hom_hom, splitEpiOfIdempotentOfIsColimitCofork_section_, parallelPair_map_right, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctorObj_pt, walkingParallelPairOp_zero, Fork.op_ι_app_one, mono_of_isLimit_fork, MultispanIndex.multicoforkEquivSigmaCofork_inverse_obj_ι_app, MulticospanIndex.multiforkEquivPiFork_inverse_obj_pt, PreservesKernel.of_iso_comparison, CategoryTheory.ShortComplex.pOpcycles_π_isoOpcyclesOfIsColimit_inv, equalizerPullbackMapIso_hom_snd, Cofork.unop_π_app_zero, CategoryTheory.ShortComplex.isoCyclesOfIsLimit_inv_ι_assoc, CategoryTheory.Monad.MonadicityInternal.unitCofork_pt, CategoryTheory.ShortComplex.Exact.rightHomologyDataOfIsColimitCokernelCofork_ι, Cofork.IsColimit.existsUnique, CategoryTheory.ShortComplex.exact_and_mono_f_iff_f_is_kernel, CokernelCofork.condition_assoc, parallelPair_initial_mk, equalizerPullbackMapIso_hom_fst, MultispanIndex.toSigmaCoforkFunctor_obj, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverse_map_hom, AlgebraicGeometry.isClosedImmersion_equalizer_ι_left, equalizerPullbackMapIso_inv_ι_snd_assoc, parallelPair_obj_zero, CategoryTheory.LiftRightAdjoint.constructRightAdjointEquiv_apply, CategoryTheory.Monad.beckAlgebraCofork_ι_app, Cone.ofFork_π, MultispanIndex.parallelPairDiagramOfIsColimit_map, colimit_ι_zero_cokernel_desc, CokernelCofork.map_condition, CategoryTheory.ShortComplex.LeftHomologyData.ofIsLimitKernelFork_K, SheafOfModules.Presentation.mapRelations_mapGenerators_assoc, preservesSplitCoequalizers, TopCat.Presheaf.SheafConditionEqualizerProducts.fork_pt, walkingParallelPairOpEquiv_unitIso_one, Fork.IsLimit.lift_ι_assoc, CategoryTheory.Preadditive.isLimitForkOfKernelFork_lift, CategoryTheory.Preadditive.epi_iff_isZero_cokernel', CokernelCofork.map_π, Fork.IsLimit.lift_ι', CommRingCat.equalizer_ι_isLocalHom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivUnitIsoApp_inv_hom, CategoryTheory.Abelian.FunctorCategory.coimageObjIso_inv, Multifork.ofPiFork_π_app_right, reflexiveCoforkEquivCofork_inverse_obj_π, cokernelBiprodInlIso_hom, Multifork.ofPiFork_π_app_left, CategoryTheory.ShortComplex.isoCyclesOfIsLimit_hom_iCycles, CategoryTheory.Subfunctor.equalizer.fork_pt, WalkingParallelPair.instIsConnectedStructuredArrowWalkingReflexivePairInclusionWalkingReflexivePair, binaryBiconeOfIsSplitEpiOfKernel_fst, walkingParallelPairOpEquiv_unitIso_zero, CategoryTheory.ComposableArrows.IsComplex.epi_cokerToKer', preservesEqualizers_of_preservesPullbacks_and_binaryProducts, CategoryTheory.Comonad.beckEqualizer_lift, MulticospanIndex.ofPiForkFunctor_obj, CategoryTheory.ShortComplex.RightHomologyData.ofIsColimitCokernelCofork_ι, MultispanIndex.multicoforkEquivSigmaCoforkOfIsColimit_inverse, KernelFork.mapIsoOfIsLimit_hom, CategoryTheory.Monad.instPreservesColimitWalkingParallelPairParallelPairOfIsSplitPairOfPreservesColimitOfIsSplitPair, CategoryTheory.ShortComplex.LeftHomologyData.ofIsLimitKernelFork_π, CategoryTheory.ComposableArrows.Exact.isIso_cokerToKer', kernelBiprodSndIso_inv, CategoryTheory.Comonad.beckFork_pt, MulticospanIndex.parallelPairDiagramOfIsLimit_obj, CategoryTheory.NormalEpiCategory.hasColimit_parallelPair, CategoryTheory.Abelian.FunctorCategory.imageObjIso_hom, KernelFork.map_condition, MultispanIndex.toSigmaCoforkFunctor_map_hom, SheafOfModules.relationsOfIsCokernelFree_s, AddCommGrpCat.kernelIsoKer_hom_comp_subtype, Fork.op_ι_app_zero, Cofork.op_π_app_one, CategoryTheory.LiftRightAdjoint.constructRightAdjointEquiv_symm_apply, AlgebraicGeometry.LocallyRingedSpace.HasCoequalizer.imageBasicOpen_image_preimage, Cofork.IsColimit.π_desc, TopCat.isOpen_iff_of_isColimit_cofork, Bimod.whiskerRight_hom, TopCat.isQuotientMap_of_isColimit_cofork, KernelFork.map_ι, MultispanIndex.multicoforkEquivSigmaCofork_inverse_map_hom, equalizer.fork_π_app_zero, splitMonoOfIdempotentOfIsLimitFork_retraction, MulticospanIndex.multiforkEquivPiForkOfIsLimit_unitIso, CategoryTheory.ShortComplex.π_isoOpcyclesOfIsColimit_hom_assoc, CategoryTheory.Abelian.FunctorCategory.functor_category_isIso_coimageImageComparison, MulticospanIndex.ofPiForkFunctor_map_hom, WalkingParallelPair.inclusionWalkingReflexivePair_final, Cofork.ofπ_pt, parallelPair.eqOfHomEq_hom_app, CategoryTheory.ShortComplex.exact_iff_of_forks, coequalizer.cofork_ι_app_one, CategoryTheory.Functor.PreservesHomology.preservesCokernel, CategoryTheory.ShortComplex.HomologyData.ofEpiMonoFactorisation.f'_eq, HomologicalComplex.extend.leftHomologyData.lift_d_comp_eq_zero_iff, coconeOfIsSplitEpi_ι_app, SheafOfModules.Presentation.IsFinite.finite_relations, walkingParallelPairOp_one, CategoryTheory.Monad.MonadicityInternal.counitCofork_pt, CokernelCofork.map_condition_assoc, CategoryTheory.PreGaloisCategory.fiberEqualizerEquiv_symm_ι_apply, walkingParallelFamilyEquivWalkingParallelPair_functor_obj, CategoryTheory.Monad.MonadicityInternal.counitCofork_ι_app, Multifork.ofPiFork_ι, Cofork.IsColimit.homIso_symm_apply, Fork.condition_assoc, Cofork.IsColimit.π_desc', CokernelCofork.π_eq_zero, CategoryTheory.ComposableArrows.IsComplex.cokerToKer'_fac_assoc, isIso_colimit_cocone_parallelPair_of_self, CategoryTheory.Comonad.instReflectsLimitWalkingParallelPairParallelPairMapAAppUnitObjAOfReflectsLimitOfIsCosplitPair, Fork.isoForkOfι_inv_hom, Cofork.ofπ_ι_app, MultispanIndex.multicoforkEquivSigmaCofork_unitIso_hom_app_hom, walkingParallelPairOpEquiv_unitIso_hom_app_one, preservesCoequalizers_of_preservesPushouts_and_binaryCoproducts, MultispanIndex.multicoforkEquivSigmaCoforkOfIsColimit_unitIso, Cofork.unop_ι, CategoryTheory.ShortComplex.RightHomologyData.ofIsLimitKernelFork_H, TopCat.Presheaf.SheafConditionEqualizerProducts.fork_π_app_walkingParallelPair_zero, CategoryTheory.IsGrothendieckAbelian.IsPresentable.injectivity₀.hf, WalkingParallelPair.instNonemptyStructuredArrowWalkingReflexivePairInclusionWalkingReflexivePair, CokernelCofork.IsColimit.isZero_of_epi, opParallelPairIso_inv_app_zero, cokernelCoforkBiproductFromSubtype_cocone, CategoryTheory.Comonad.ComonadicityInternal.counitFork_pt, opParallelPairIso_inv_app_one, walkingParallelPairOpEquiv_counitIso_one, HasLimitOfHasProductsOfHasEqualizers.buildLimit_π_app, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquiv_functor, Multicofork.ofSigmaCofork_ι_app_left, AlgebraicGeometry.SheafedSpace.instEpiTopCatBaseHomPresheafedSpaceπ, coneOfIsSplitMono_pt, CategoryTheory.Comonad.ComonadicityInternal.comparisonAdjunction_unit_app, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquiv_unitIso, MulticospanIndex.multiforkOfParallelHomsEquivFork_functor_obj_ι, parallelPair.eqOfHomEq_inv_app, CategoryTheory.ComposableArrows.IsComplex.cokerToKer'_fac, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverseObj_pt, equalizerPullbackMapIso_inv_ι_fst_assoc, CategoryTheory.PreOneHypercover.forkOfIsColimit_ι_map_inj, MultispanIndex.ofSigmaCoforkFunctor_map_hom, Cofork.IsColimit.π_desc'_assoc, CommRingCat.Under.instPreservesLimitUnderWalkingParallelPairParallelPairTensorProdOfFlatCarrier, CategoryTheory.Abelian.FunctorCategory.coimageObjIso_hom, cokernelBiproductFromSubtypeIso_inv, CategoryTheory.Comonad.ComonadicityInternal.instHasLimitWalkingParallelPairParallelPairMapAppUnitObjOfHasEqualizerAA, CategoryTheory.Comonad.beckCoalgebraFork_π_app, CategoryTheory.Equalizer.Presieve.isSheafFor_singleton_iff_of_hasPullback, preservesCokernel_zero', CategoryTheory.Monad.MonadicityInternal.comparisonAdjunction_counit_app, preservesCokernel_zero, Types.equalizerIso_inv_comp_ι_apply, MultispanIndex.multicoforkEquivSigmaCofork_unitIso_inv_app_hom, diagramIsoParallelPair_inv_app, MultispanIndex.parallelPairDiagramOfIsColimit_obj, isIso_limit_cone_parallelPair_of_self, kernelForkBiproductToSubtype_isLimit, Cofork.app_one_eq_π, kernelBiproductToSubtypeIso_inv, CategoryTheory.ShortComplex.π_isoOpcyclesOfIsColimit_hom, walkingParallelPairOpEquiv_counitIso_inv_app_op_one, HasColimitOfHasCoproductsOfHasCoequalizers.buildColimit_ι_app, CategoryTheory.parallel_pair_connected, walkingParallelPairOpEquiv_counitIso_hom_app_op_zero, Cofork.op_ι, CategoryTheory.Abelian.FunctorCategory.imageObjIso_inv, map_π_preserves_coequalizer_inv_colimMap_desc_assoc, walkingParallelPairOp_right, MultispanIndex.multicoforkEquivSigmaCoforkOfIsColimit_functor, CategoryTheory.Functor.PreservesHomology.preservesKernel, CategoryTheory.IsGrothendieckAbelian.IsPresentable.injectivity₀.epi_f, AlgebraicGeometry.LocallyRingedSpace.preservesCoequalizer, Fork.unop_π, binaryBiconeOfIsSplitEpiOfKernel_inr, CategoryTheory.Comonad.instPreservesLimitWalkingParallelPairParallelPairOfIsCoreflexivePairOfPreservesLimitOfIsCoreflexivePair, coequalizer.π_colimMap_desc, Types.type_equalizer_iff_unique, isCokernelEpiComp_desc, isIso_limit_cocone_parallelPair_of_epi, MulticospanIndex.multiforkEquivPiFork_unitIso_hom_app_hom, CategoryTheory.Monad.PreservesColimitOfIsSplitPair.out, KernelFork.mapOfIsLimit_ι, parallelPairHom_app_zero, walkingParallelPairOpEquiv_inverse, Fork.app_one_eq_ι_comp_right, CategoryTheory.Preadditive.coforkOfCokernelCofork_pt, binaryBiconeOfIsSplitMonoOfCokernel_fst, preservesKernel_zero', CategoryTheory.ShortComplex.isoCyclesOfIsLimit_inv_ι, π_tensor_id_preserves_coequalizer_inv_colimMap_desc, FGModuleCat.instIsIsoCoimageImageComparison, epi_of_isColimit_cofork, KernelFork.map_condition_assoc, parallelPairOpIso_hom_app_zero
|
walkingParallelPairOp 📖 | CompOp | 7 mathmath: walkingParallelPairOp_left, walkingParallelPairOpEquiv_functor, Fork.op_ι_app, walkingParallelPairOp_zero, walkingParallelPairOp_one, walkingParallelPairOp_right, walkingParallelPairOpEquiv_inverse
|
walkingParallelPairOpEquiv 📖 | CompOp | 23 mathmath: walkingParallelPairOpEquiv_unitIso_hom_app_zero, parallelPairOpIso_inv_app_zero, walkingParallelPairOpEquiv_counitIso_hom_app_op_one, walkingParallelPairOpEquiv_counitIso_inv_app_op_zero, parallelPairOpIso_inv_app_one, walkingParallelPairOpEquiv_counitIso_zero, parallelPairOpIso_hom_app_one, opParallelPairIso_hom_app_zero, opParallelPairIso_hom_app_one, walkingParallelPairOpEquiv_functor, walkingParallelPairOpEquiv_unitIso_inv_app_zero, walkingParallelPairOpEquiv_unitIso_inv_app_one, Fork.op_ι_app, walkingParallelPairOpEquiv_unitIso_one, walkingParallelPairOpEquiv_unitIso_zero, walkingParallelPairOpEquiv_unitIso_hom_app_one, opParallelPairIso_inv_app_zero, opParallelPairIso_inv_app_one, walkingParallelPairOpEquiv_counitIso_one, walkingParallelPairOpEquiv_counitIso_inv_app_op_one, walkingParallelPairOpEquiv_counitIso_hom_app_op_zero, walkingParallelPairOpEquiv_inverse, parallelPairOpIso_hom_app_zero
|