Documentation Verification Report

Images

📁 Source: Mathlib/CategoryTheory/Limits/Shapes/Images.lean

Statistics

MetricCount
DefinitionsHasImage, HasImageMap, imageMap, HasImageMaps, HasImages, HasStrongEpiImages, HasStrongEpiMonoFactorisations, imageFactorisation, isImage, monoFactorisation, ImageFactorisation, F, copy, instInhabitedOfMono, isImage, ofArrowIso, ofIsoI, ImageMap, map, transport, copy, instInhabitedSelf, isoExt, ofArrowIso, ofIsoI, self, MonoFactorisation, I, compMono, copy, e, instInhabitedOfMono, isoComp, m, ofArrowIso, ofCompIso, ofIsoComp, ofIsoI, self, StrongEpiMonoFactorisation, toMonoFactorisation, toMonoIsImage, factorThruImage, functorialEpiMonoFactorizationData, im, image, compIso, eqToHom, eqToIso, isoStrongEpiMono, map, preComp, ι, imageMapComp, imageMapId, imageMonoIsoSource, inhabitedImageMap, strongEpiMonoFactorisationInhabited
58
TheoremshasStrongEpiMonoFactorisations_imp_of_isEquivalence, exists_image, mk, of_arrow_iso, uniq, comp, has_image_map, mk, transport, has_image_map, has_image, strong_factorThruImage, has_fac, mk, copy_F, copy_isImage, ofArrowIso_F, ofArrowIso_isImage, ofIsoI_F, ofIsoI_isImage, ext, ext_iff, factor_map, factor_map_assoc, map_uniq, map_uniq_aux, map_ι, map_ι_assoc, injEq', copy_lift, e_isoExt_hom, e_isoExt_inv, fac_lift, fac_lift_assoc, isoExt_hom, isoExt_hom_m, isoExt_inv, isoExt_inv_m, lift_fac, lift_fac_assoc, lift_ι, lift_ι_assoc, ofArrowIso_lift, ofIsoI_lift, self_lift, compMono_I, compMono_e, compMono_m, copy_I, copy_e, copy_m, ext, fac, fac_apply, fac_assoc, isoComp_I, isoComp_e, isoComp_m, m_mono, ofArrowIso_I, ofArrowIso_e, ofArrowIso_m, ofCompIso_I, ofCompIso_e, ofCompIso_m, ofIsoComp_I, ofIsoComp_e, ofIsoComp_m, ofIsoI_I, ofIsoI_e, ofIsoI_m, e_strong_epi, as_factorThruImage, epi_image_of_epi, epi_of_epi_image, hasImageMapOfIsIso, hasImageMapsOfHasStrongEpiImages, hasImage_comp_iso, hasImage_iso_comp, hasImages_of_hasStrongEpiMonoFactorisations, hasStrongEpiImages_of_hasPullbacks_of_hasEqualizers, hasStrongEpiImages_of_hasStrongEpiMonoFactorisations, im_map, im_obj, as_ι, compIso_hom_comp_image_ι, compIso_hom_comp_image_ι_assoc, compIso_inv_comp_image_ι, compIso_inv_comp_image_ι_assoc, eq_fac, ext, fac, fac_assoc, fac_lift, fac_lift_assoc, factorThruImage_preComp, factorThruImage_preComp_assoc, factor_map, isImage_lift, isIso_precomp_iso, isoStrongEpiMono_hom_comp_ι, isoStrongEpiMono_inv_comp_mono, lift_fac, lift_fac_assoc, lift_mk_comp, lift_mk_comp_assoc, lift_mk_factorThruImage, lift_mk_factorThruImage_assoc, lift_mono, map_comp, map_homMk'_ι, map_id, map_ι, preComp_comp, preComp_epi_of_epi, preComp_mono, preComp_ι, preComp_ι_assoc, imageMonoIsoSource_hom_self, imageMonoIsoSource_hom_self_assoc, imageMonoIsoSource_inv_ι, imageMonoIsoSource_inv_ι_assoc, instEpiFactorThruImageOfHasLimitWalkingParallelPairParallelPair, instHasImageCompOfIsIso, instHasImageHomMk, instIsIsoEqToHom, instMonoι, instSubsingletonImageMap, mono_hasImage, strongEpi_factorThruImage_of_strongEpiMonoFactorisation, strongEpi_of_strongEpiMonoFactorisation
131
Total189

CategoryTheory.Functor

Theorems

NameKindAssumesProvesValidatesDepends On
hasStrongEpiMonoFactorisations_imp_of_isEquivalence 📖mathematicalCategoryTheory.Limits.HasStrongEpiMonoFactorisationsCategoryTheory.Limits.HasStrongEpiMonoFactorisations.has_fac
CategoryTheory.mono_comp
map_mono
preservesMonomorphisms_of_isRightAdjoint
isRightAdjoint_of_isEquivalence
CategoryTheory.Limits.MonoFactorisation.m_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.strongMono_of_isIso
CategoryTheory.NatIso.hom_app_isIso
CategoryTheory.Category.assoc
map_comp_assoc
CategoryTheory.Limits.MonoFactorisation.fac
fun_inv_map
CategoryTheory.Iso.inv_hom_id_app
CategoryTheory.Category.comp_id
CategoryTheory.Iso.inv_hom_id_app_assoc
CategoryTheory.strongEpi_comp
CategoryTheory.strongEpi_of_isIso
CategoryTheory.NatIso.inv_app_isIso
CategoryTheory.Adjunction.strongEpi_map_of_isEquivalence
CategoryTheory.Limits.StrongEpiMonoFactorisation.e_strong_epi

CategoryTheory.Limits

Definitions

NameCategoryTheorems
HasImage 📖CompData
10 mathmath: HasImage.of_arrow_iso, HasImages.has_image, mono_hasImage, hasImage_iso_comp, instHasImageHomMk, instHasImageCompOfIsIso, Types.instHasImage, HasImage.mk, hasImage_comp_iso, hasImage_zero
HasImageMap 📖CompData
5 mathmath: HasImageMaps.has_image_map, hasImageMapOfIsIso, HasImageMap.transport, HasImageMap.mk, HasImageMap.comp
HasImageMaps 📖CompData
2 mathmath: hasImageMapsOfHasStrongEpiImages, Types.instHasImageMapsType
HasImages 📖CompData
5 mathmath: CategoryTheory.FunctorToTypes.instHasImagesFunctorType, Types.instHasImagesType, CategoryTheory.instHasImagesSheafType, CategoryTheory.Abelian.OfCoimageImageComparisonIsIso.hasImages, hasImages_of_hasStrongEpiMonoFactorisations
HasStrongEpiImages 📖CompData
3 mathmath: hasStrongEpiImages_of_hasPullbacks_of_hasEqualizers, SimplexCategory.instHasStrongEpiImages, hasStrongEpiImages_of_hasStrongEpiMonoFactorisations
HasStrongEpiMonoFactorisations 📖CompData
7 mathmath: CategoryTheory.FunctorToTypes.instHasStrongEpiMonoFactorisationsFunctorType, CategoryTheory.Functor.hasStrongEpiMonoFactorisations_imp_of_isEquivalence, CategoryTheory.Regular.hasStrongEpiMonoFactorisations, HasStrongEpiMonoFactorisations.mk, SimplexCategory.instHasStrongEpiMonoFactorisations, NonemptyFinLinOrd.instHasStrongEpiMonoFactorisations, CategoryTheory.Abelian.instHasStrongEpiMonoFactorisations
ImageFactorisation 📖CompData
1 mathmath: HasImage.exists_image
ImageMap 📖CompData
2 mathmath: HasImageMap.has_image_map, instSubsingletonImageMap
MonoFactorisation 📖CompData
StrongEpiMonoFactorisation 📖CompData
1 mathmath: HasStrongEpiMonoFactorisations.has_fac
factorThruImage 📖CompOp
35 mathmath: as_factorThruImage, CategoryTheory.PreservesImage.factorThruImage_comp_hom, imageToKernel_unop, image.lift_mk_factorThruImage, imageToKernel_op, kernelFactorThruImage_hom_comp_ι_assoc, CategoryTheory.image_ι_op_comp_imageUnopOp_hom, image.fac_lift, CategoryTheory.PreservesImage.factorThruImage_comp_hom_assoc, image.factorThruImage_preComp, HasStrongEpiImages.strong_factorThruImage, CategoryTheory.PreservesImage.iso_hom, CategoryTheory.MonoOver.image_map, ImageMap.factor_map_assoc, image.fac_lift_assoc, CategoryTheory.factorThruImage_comp_imageUnopOp_inv, image.fac, ImageMap.factor_map, CategoryTheory.Abelian.factorThruImage_comp_coimageIsoImage'_inv, instEpiFactorThruImageOfHasLimitWalkingParallelPairParallelPair, image.factorThruImage_preComp_assoc, kernelFactorThruImage_inv_comp_ι, CategoryTheory.imageUnopOp_hom_comp_image_ι, CategoryTheory.Abelian.coimageIsoImage'_hom, image.fac_assoc, strongEpi_factorThruImage_of_strongEpiMonoFactorisation, comp_factorThruImage_eq_zero, image.lift_mk_factorThruImage_assoc, SimplexCategory.factorThruImage_eq, kernelFactorThruImage_hom_comp_ι, CategoryTheory.PreservesImage.iso_inv, kernelFactorThruImage_inv_comp_ι_assoc, CategoryTheory.imageUnopOp_inv_comp_op_factorThruImage, SimplexCategory.instEpiFactorThruImage, image.factor_map
functorialEpiMonoFactorizationData 📖CompOp
im 📖CompOp
2 mathmath: im_map, im_obj
image 📖CompOp
99 mathmath: imageSubobject_arrow_assoc, image.isIso_precomp_iso, cokernelImageι_inv, CategoryTheory.PreservesImage.factorThruImage_comp_hom, imageToKernel_unop, image.compIso_hom_comp_image_ι, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand₀', image.compIso_hom_comp_image_ι_assoc, imageToKernel'_kernelSubobjectIso, image.lift_mk_factorThruImage, image.map_id, CategoryTheory.ShortComplex.exact_iff_isIso_imageToKernel', image.eq_fac, image.map_comp, imageToKernel_op, image.lift_fac_assoc, kernelFactorThruImage_hom_comp_ι_assoc, image.isoStrongEpiMono_hom_comp_ι, CategoryTheory.ShortComplex.HomologyData.ofEpiMonoFactorisation.isoImage_ι, CategoryTheory.image_ι_op_comp_imageUnopOp_hom, image.preComp_epi_of_epi, image.fac_lift, image.map_ι, ModuleCat.imageIsoRange_hom_subtype, ModuleCat.imageIsoRange_inv_image_ι_apply, CategoryTheory.PreservesImage.factorThruImage_comp_hom_assoc, imageMonoIsoSource_hom_self, image.factorThruImage_preComp, HasStrongEpiImages.strong_factorThruImage, CategoryTheory.PreservesImage.iso_hom, CategoryTheory.MonoOver.image_map, ImageMap.factor_map_assoc, image.ι_zero, image.lift_mono, image.fac_lift_assoc, image.map_homMk'_ι, CategoryTheory.PreservesImage.hom_comp_map_image_ι, imageSubobjectIso_comp_image_map, CategoryTheory.factorThruImage_comp_imageUnopOp_inv, image.isoStrongEpiMono_inv_comp_mono, CategoryTheory.PreservesImage.inv_comp_image_ι_map, CategoryTheory.Abelian.imageIsoImage_inv, image.lift_fac, imageMonoIsoSource_inv_ι, image.fac, ModuleCat.imageIsoRange_hom_subtype_assoc, image.preComp_ι, ImageMap.factor_map, CategoryTheory.Abelian.factorThruImage_comp_coimageIsoImage'_inv, SimplexCategory.image_eq, ModuleCat.imageIsoRange_inv_image_ι, image.factorThruImage_preComp_assoc, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand₀'_assoc, im_obj, instMonoι, ModuleCat.imageIsoRange_inv_image_ι_assoc, imageSubobjectIso_imageToKernel', imageSubobject_arrow, instIsIsoEqToHom, ImageMap.map_ι, kernelFactorThruImage_inv_comp_ι, image.preComp_mono, imageSubobject_arrow'_assoc, image.preComp_comp, CategoryTheory.ShortComplex.homologyIsoImageICyclesCompPOpcycles_ι, CategoryTheory.Abelian.imageIsoImage_hom_comp_image_ι, CategoryTheory.imageUnopOp_hom_comp_image_ι, image_ι_comp_eq_zero, CategoryTheory.Abelian.coimageIsoImage'_hom, image.fac_assoc, CategoryTheory.PreservesImage.hom_comp_map_image_ι_assoc, strongEpi_factorThruImage_of_strongEpiMonoFactorisation, image.ι_zero', epi_image_of_epi, imageMonoIsoSource_inv_ι_assoc, image_map_comp_imageSubobjectIso_inv, comp_factorThruImage_eq_zero, image.lift_mk_factorThruImage_assoc, ImageMap.map_ι_assoc, image.compIso_inv_comp_image_ι_assoc, image.preComp_ι_assoc, kernelFactorThruImage_hom_comp_ι, CategoryTheory.PreservesImage.iso_inv, kernelFactorThruImage_inv_comp_ι_assoc, imageMonoIsoSource_hom_self_assoc, CategoryTheory.ShortComplex.Exact.isIso_imageToKernel', CategoryTheory.imageUnopOp_inv_comp_op_factorThruImage, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand', SimplexCategory.instEpiFactorThruImage, ModuleCat.imageIsoRange_hom_subtype_apply, CategoryTheory.ShortComplex.exact_iff_epi_imageToKernel', image.factor_map, imageSubobject_arrow', CategoryTheory.ShortComplex.HomologyData.ofEpiMonoFactorisation.isoImage_ι_assoc, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand'_assoc, CategoryTheory.ShortComplex.homologyIsoImageICyclesCompPOpcycles_ι_assoc, CategoryTheory.PreservesImage.inv_comp_image_ι_map_assoc, cokernelImageι_hom, image.compIso_inv_comp_image_ι
imageMapComp 📖CompOp
imageMapId 📖CompOp
imageMonoIsoSource 📖CompOp
4 mathmath: imageMonoIsoSource_hom_self, imageMonoIsoSource_inv_ι, imageMonoIsoSource_inv_ι_assoc, imageMonoIsoSource_hom_self_assoc
inhabitedImageMap 📖CompOp
strongEpiMonoFactorisationInhabited 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
as_factorThruImage 📖mathematicalMonoFactorisation.e
Image.monoFactorisation
factorThruImage
epi_image_of_epi 📖mathematicalCategoryTheory.Epi
image
image.ι
CategoryTheory.epi_of_epi
image.fac
epi_of_epi_image 📖mathematicalCategoryTheory.Epiimage.fac
CategoryTheory.epi_comp
hasImageMapOfIsIso 📖mathematicalHasImageMapCategoryTheory.IsIso.inv_isIso
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.strongMono_of_isIso
CategoryTheory.Arrow.isIso_right
CategoryTheory.Category.assoc
MonoFactorisation.ofArrowIso_m
image.lift_fac
CategoryTheory.Comma.comp_right
CategoryTheory.IsIso.hom_inv_id
CategoryTheory.Comma.id_right
CategoryTheory.Category.comp_id
hasImageMapsOfHasStrongEpiImages 📖mathematicalHasImageMapsHasImages.has_image
CategoryTheory.Category.assoc
image.fac
CategoryTheory.Arrow.w_mk_right
image.fac_assoc
CategoryTheory.sq_hasLift_of_hasLiftingProperty
CategoryTheory.StrongEpi.llp
HasStrongEpiImages.strong_factorThruImage
instMonoι
CategoryTheory.CommSq.fac_right
hasImage_comp_iso 📖mathematicalHasImage
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.mono_of_strongMono
CategoryTheory.strongMono_of_isIso
CategoryTheory.Category.comp_id
CategoryTheory.IsIso.inv_hom_id
CategoryTheory.Category.assoc
image.lift_fac
image.as_ι
hasImage_iso_comp 📖mathematicalHasImage
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
image.lift_fac
hasImages_of_hasStrongEpiMonoFactorisations 📖mathematicalHasImagesHasStrongEpiMonoFactorisations.has_fac
hasStrongEpiImages_of_hasPullbacks_of_hasEqualizers 📖mathematicalHasStrongEpiImagesCategoryTheory.StrongEpi.mk'
HasImages.has_image
instEpiFactorThruImageOfHasLimitWalkingParallelPairParallelPair
hasLimitOfHasLimitsOfShape
CategoryTheory.CommSq.HasLift.mk'
CategoryTheory.mono_comp
pullback.snd_of_mono
instMonoι
CategoryTheory.CommSq.w
limit.lift_π_assoc
image.fac
image.fac_lift_assoc
pullback.lift_fst
image.ext
CategoryTheory.Category.assoc
pullback.lift_fst_assoc
hasStrongEpiImages_of_hasStrongEpiMonoFactorisations 📖mathematicalHasStrongEpiImages
hasImages_of_hasStrongEpiMonoFactorisations
hasImages_of_hasStrongEpiMonoFactorisations
strongEpi_factorThruImage_of_strongEpiMonoFactorisation
HasImages.has_image
HasStrongEpiMonoFactorisations.has_fac
im_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
im
image.map
HasImageMaps.has_image_map
im_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
im
image
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
imageMonoIsoSource_hom_self 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
image
mono_hasImage
CategoryTheory.Iso.hom
imageMonoIsoSource
image.ι
mono_hasImage
imageMonoIsoSource_inv_ι
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.id_comp
imageMonoIsoSource_hom_self_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
image
mono_hasImage
CategoryTheory.Iso.hom
imageMonoIsoSource
image.ι
mono_hasImage
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
imageMonoIsoSource_hom_self
imageMonoIsoSource_inv_ι 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
image
mono_hasImage
CategoryTheory.Iso.inv
imageMonoIsoSource
image.ι
mono_hasImage
image.fac
imageMonoIsoSource_inv_ι_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
image
mono_hasImage
CategoryTheory.Iso.inv
imageMonoIsoSource
image.ι
mono_hasImage
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
imageMonoIsoSource_inv_ι
instEpiFactorThruImageOfHasLimitWalkingParallelPairParallelPair 📖mathematicalHasLimit
WalkingParallelPair
walkingParallelPairHomCategory
parallelPair
image
CategoryTheory.Epi
factorThruImage
image.ext
instHasImageCompOfIsIso 📖mathematicalHasImage
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
instMonoι
CategoryTheory.Category.assoc
image.fac
MonoFactorisation.m_mono
MonoFactorisation.fac
CategoryTheory.IsIso.inv_hom_id_assoc
image.lift_fac
instHasImageHomMk 📖mathematicalHasImage
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
instIsIsoEqToHom 📖mathematicalCategoryTheory.IsIso
image
image.eqToHom
CategoryTheory.cancel_mono
instMonoι
CategoryTheory.Category.assoc
image.lift_mk_factorThruImage
CategoryTheory.Category.id_comp
instMonoι 📖mathematicalCategoryTheory.Mono
image
image.ι
MonoFactorisation.m_mono
instSubsingletonImageMap 📖mathematicalImageMapImageMap.ext
ImageMap.map_uniq
mono_hasImage 📖mathematicalHasImage
strongEpi_factorThruImage_of_strongEpiMonoFactorisation 📖mathematicalCategoryTheory.StrongEpi
image
factorThruImage
strongEpi_of_strongEpiMonoFactorisation
strongEpi_of_strongEpiMonoFactorisation 📖mathematicalCategoryTheory.StrongEpi
MonoFactorisation.I
MonoFactorisation.e
IsImage.e_isoExt_hom
CategoryTheory.strongEpi_comp
StrongEpiMonoFactorisation.e_strong_epi
CategoryTheory.strongEpi_of_isIso
CategoryTheory.Iso.isIso_hom

CategoryTheory.Limits.HasImage

Theorems

NameKindAssumesProvesValidatesDepends On
exists_image 📖mathematicalCategoryTheory.Limits.ImageFactorisation
mk 📖mathematicalCategoryTheory.Limits.HasImage
of_arrow_iso 📖mathematicalCategoryTheory.Limits.HasImage
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
exists_image
uniq 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.image
CategoryTheory.Limits.MonoFactorisation.I
CategoryTheory.Limits.MonoFactorisation.m
CategoryTheory.Limits.image.ι
CategoryTheory.Limits.image.liftCategoryTheory.cancel_mono
CategoryTheory.Limits.MonoFactorisation.m_mono
CategoryTheory.Limits.image.lift_fac

CategoryTheory.Limits.HasImageMap

Definitions

NameCategoryTheorems
imageMap 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
comp 📖mathematicalCategoryTheory.Limits.HasImageMap
CategoryTheory.CategoryStruct.comp
CategoryTheory.Arrow
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryArrow
CategoryTheory.Category.assoc
CategoryTheory.Limits.ImageMap.map_ι
CategoryTheory.Limits.ImageMap.map_ι_assoc
CategoryTheory.Comma.comp_right
has_image_map 📖mathematicalCategoryTheory.Limits.ImageMap
mk 📖mathematicalCategoryTheory.Limits.HasImageMap
transport 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.MonoFactorisation.I
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Limits.MonoFactorisation.m
CategoryTheory.CommaMorphism.right
CategoryTheory.Limits.HasImageMap

CategoryTheory.Limits.HasImageMaps

Theorems

NameKindAssumesProvesValidatesDepends On
has_image_map 📖mathematicalCategoryTheory.Limits.HasImageMap
CategoryTheory.Limits.HasImages.has_image
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom

CategoryTheory.Limits.HasImages

Theorems

NameKindAssumesProvesValidatesDepends On
has_image 📖mathematicalCategoryTheory.Limits.HasImage

CategoryTheory.Limits.HasStrongEpiImages

Theorems

NameKindAssumesProvesValidatesDepends On
strong_factorThruImage 📖mathematicalCategoryTheory.StrongEpi
CategoryTheory.Limits.image
CategoryTheory.Limits.HasImages.has_image
CategoryTheory.Limits.factorThruImage

CategoryTheory.Limits.HasStrongEpiMonoFactorisations

Theorems

NameKindAssumesProvesValidatesDepends On
has_fac 📖mathematicalCategoryTheory.Limits.StrongEpiMonoFactorisation
mk 📖mathematicalCategoryTheory.Limits.HasStrongEpiMonoFactorisations

CategoryTheory.Limits.Image

Definitions

NameCategoryTheorems
imageFactorisation 📖CompOp
isImage 📖CompOp
1 mathmath: CategoryTheory.Limits.image.isImage_lift
monoFactorisation 📖CompOp
6 mathmath: CategoryTheory.Limits.as_factorThruImage, CategoryTheory.Limits.IsImage.lift_ι_assoc, CategoryTheory.Limits.image.isImage_lift, CategoryTheory.Limits.IsImage.lift_ι, CategoryTheory.Limits.image.as_ι, CategoryTheory.PreservesImage.iso_inv

CategoryTheory.Limits.ImageFactorisation

Definitions

NameCategoryTheorems
F 📖CompOp
7 mathmath: CategoryTheory.Subobject.imageFactorisation_F_m, ofIsoI_F, ofArrowIso_F, ofIsoI_isImage, CategoryTheory.Subobject.imageFactorisation_F_I, CategoryTheory.Regular.frobeniusMorphism_isPullback, ofArrowIso_isImage
copy 📖CompOp
2 mathmath: copy_F, copy_isImage
instInhabitedOfMono 📖CompOp
isImage 📖CompOp
3 mathmath: ofIsoI_isImage, ofArrowIso_isImage, copy_isImage
ofArrowIso 📖CompOp
2 mathmath: ofArrowIso_F, ofArrowIso_isImage
ofIsoI 📖CompOp
2 mathmath: ofIsoI_F, ofIsoI_isImage

Theorems

NameKindAssumesProvesValidatesDepends On
copy_F 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.MonoFactorisation.I
F
CategoryTheory.Limits.MonoFactorisation.m
CategoryTheory.Limits.MonoFactorisation.e
copy
CategoryTheory.Limits.MonoFactorisation.copy
copy_isImage 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.MonoFactorisation.I
F
CategoryTheory.Limits.MonoFactorisation.m
CategoryTheory.Limits.MonoFactorisation.e
isImage
copy
CategoryTheory.Limits.IsImage.copy
ofArrowIso_F 📖mathematicalF
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
ofArrowIso
CategoryTheory.Limits.MonoFactorisation.ofArrowIso
ofArrowIso_isImage 📖mathematicalisImage
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
ofArrowIso
CategoryTheory.Limits.IsImage.ofArrowIso
F
ofIsoI_F 📖mathematicalF
ofIsoI
CategoryTheory.Limits.MonoFactorisation.ofIsoI
ofIsoI_isImage 📖mathematicalisImage
ofIsoI
CategoryTheory.Limits.IsImage.ofIsoI
F

CategoryTheory.Limits.ImageMap

Definitions

NameCategoryTheorems
map 📖CompOp
6 mathmath: factor_map_assoc, factor_map, ext_iff, map_ι, map_ι_assoc, map_uniq
transport 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
ext 📖map
ext_iff 📖mathematicalmapext
factor_map 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Limits.image
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Limits.factorThruImage
map
CategoryTheory.CommaMorphism.left
CategoryTheory.cancel_mono
CategoryTheory.Limits.instMonoι
CategoryTheory.Category.assoc
map_ι
CategoryTheory.Limits.image.fac_assoc
CategoryTheory.Limits.image.fac
CategoryTheory.Arrow.w_mk_right
factor_map_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Limits.image
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Limits.factorThruImage
map
CategoryTheory.CommaMorphism.left
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
factor_map
map_uniq 📖mathematicalmapmap_uniq_aux
map_ι
map_uniq_aux 📖Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.image
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.CategoryStruct.comp
CategoryTheory.Limits.image.ι
CategoryTheory.CommaMorphism.right
CategoryTheory.cancel_mono
CategoryTheory.Limits.instMonoι
map_ι 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.image
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
map
CategoryTheory.Limits.image.ι
CategoryTheory.CommaMorphism.right
map_ι_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.image
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
map
CategoryTheory.Limits.image.ι
CategoryTheory.CommaMorphism.right
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_ι

CategoryTheory.Limits.ImageMap.mk

Theorems

NameKindAssumesProvesValidatesDepends On
injEq' 📖Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.image
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.CategoryStruct.comp
CategoryTheory.Limits.image.ι
CategoryTheory.CommaMorphism.right
CategoryTheory.Limits.ImageMap.map_uniq_aux

CategoryTheory.Limits.IsImage

Definitions

NameCategoryTheorems
copy 📖CompOp
2 mathmath: CategoryTheory.Limits.ImageFactorisation.copy_isImage, copy_lift
instInhabitedSelf 📖CompOp
isoExt 📖CompOp
6 mathmath: e_isoExt_inv, isoExt_inv_m, isoExt_hom_m, e_isoExt_hom, isoExt_hom, isoExt_inv
ofArrowIso 📖CompOp
2 mathmath: ofArrowIso_lift, CategoryTheory.Limits.ImageFactorisation.ofArrowIso_isImage
ofIsoI 📖CompOp
2 mathmath: ofIsoI_lift, CategoryTheory.Limits.ImageFactorisation.ofIsoI_isImage
self 📖CompOp
1 mathmath: self_lift

Theorems

NameKindAssumesProvesValidatesDepends On
copy_lift 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.MonoFactorisation.I
CategoryTheory.Limits.MonoFactorisation.m
CategoryTheory.Limits.MonoFactorisation.e
lift
CategoryTheory.Limits.MonoFactorisation.copy
copy
e_isoExt_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.MonoFactorisation.I
CategoryTheory.Limits.MonoFactorisation.e
CategoryTheory.Iso.hom
isoExt
fac_lift
e_isoExt_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.MonoFactorisation.I
CategoryTheory.Limits.MonoFactorisation.e
CategoryTheory.Iso.inv
isoExt
fac_lift
fac_lift 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.MonoFactorisation.I
CategoryTheory.Limits.MonoFactorisation.e
lift
CategoryTheory.cancel_mono
CategoryTheory.Limits.MonoFactorisation.m_mono
CategoryTheory.Category.assoc
lift_fac
CategoryTheory.Limits.MonoFactorisation.fac
fac_lift_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.MonoFactorisation.I
CategoryTheory.Limits.MonoFactorisation.e
lift
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
fac_lift
isoExt_hom 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.Limits.MonoFactorisation.I
isoExt
lift
isoExt_hom_m 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.MonoFactorisation.I
CategoryTheory.Iso.hom
isoExt
CategoryTheory.Limits.MonoFactorisation.m
lift_fac
isoExt_inv 📖mathematicalCategoryTheory.Iso.inv
CategoryTheory.Limits.MonoFactorisation.I
isoExt
lift
isoExt_inv_m 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.MonoFactorisation.I
CategoryTheory.Iso.inv
isoExt
CategoryTheory.Limits.MonoFactorisation.m
lift_fac
lift_fac 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.MonoFactorisation.I
lift
CategoryTheory.Limits.MonoFactorisation.m
lift_fac_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.MonoFactorisation.I
lift
CategoryTheory.Limits.MonoFactorisation.m
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift_fac
lift_ι 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.MonoFactorisation.I
CategoryTheory.Limits.Image.monoFactorisation
lift
CategoryTheory.Limits.image.ι
CategoryTheory.Limits.MonoFactorisation.m
lift_fac
lift_ι_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.MonoFactorisation.I
CategoryTheory.Limits.Image.monoFactorisation
lift
CategoryTheory.Limits.image.ι
CategoryTheory.Limits.MonoFactorisation.m
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift_ι
ofArrowIso_lift 📖mathematicallift
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Limits.MonoFactorisation.ofArrowIso
ofArrowIso
CategoryTheory.inv
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
ofIsoI_lift 📖mathematicallift
CategoryTheory.Limits.MonoFactorisation.ofIsoI
ofIsoI
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.MonoFactorisation.I
CategoryTheory.Iso.inv
self_lift 📖mathematicallift
CategoryTheory.Limits.MonoFactorisation.self
self
CategoryTheory.Limits.MonoFactorisation.e

CategoryTheory.Limits.MonoFactorisation

Definitions

NameCategoryTheorems
I 📖CompOp
55 mathmath: fac, CategoryTheory.Limits.IsImage.e_isoExt_inv, AddCommGrpCat.image.lift_fac, ofArrowIso_e, CategoryTheory.Limits.monoFactorisationZero_I, CategoryTheory.Limits.IsImage.lift_ι_assoc, compMono_m, CategoryTheory.Limits.IsImage.lift_fac, CategoryTheory.Limits.image.lift_mk_factorThruImage, m_mono, CategoryTheory.Abelian.OfCoimageImageComparisonIsIso.imageMonoFactorisation_I, CategoryTheory.Regular.frobeniusStrongEpiMonoFactorisation_I, CategoryTheory.Limits.image.lift_fac_assoc, compMono_I, CategoryTheory.Limits.strongEpi_of_strongEpiMonoFactorisation, CategoryTheory.Limits.image.fac_lift, isoComp_e, fac_assoc, CategoryTheory.Limits.IsImage.ofIsoI_lift, CategoryTheory.Limits.StrongEpiMonoFactorisation.e_strong_epi, ModuleCat.image.lift_fac, CategoryTheory.Limits.IsImage.isoExt_inv_m, CategoryTheory.Limits.image.lift_mono, CategoryTheory.Limits.image.fac_lift_assoc, CategoryTheory.Abelian.coimageStrongEpiMonoFactorisation_I, CategoryTheory.Limits.image.lift_fac, CategoryTheory.Abelian.OfCoimageImageComparisonIsIso.instIsIsoEImageMonoFactorisationOfHasZeroObjectOfMonoOfCoimageImageComparison, CategoryTheory.Limits.IsImage.isoExt_hom_m, ofCompIso_m, ofIsoComp_e, CategoryTheory.Limits.IsImage.e_isoExt_hom, CategoryTheory.Limits.IsImage.isoExt_hom, ofIsoI_I, ofCompIso_I, ofArrowIso_m, CategoryTheory.Abelian.OfCoimageImageComparisonIsIso.instIsIsoMImageMonoFactorisationOfHasZeroObjectOfEpi, CategoryTheory.Subobject.imageFactorisation_F_I, ofIsoI_m, CategoryTheory.Limits.IsImage.lift_fac_assoc, ofArrowIso_I, kernel_ι_comp, ofIsoComp_I, CategoryTheory.MonoOver.commSqOfHasStrongEpiMonoFactorisation, CategoryTheory.Limits.IsImage.lift_ι, ofIsoI_e, CategoryTheory.Limits.IsImage.fac_lift, CategoryTheory.Abelian.imageStrongEpiMonoFactorisation_I, CategoryTheory.Limits.IsImage.isoExt_inv, CategoryTheory.FunctorToTypes.monoFactorisation_I, fac_apply, CategoryTheory.Limits.image.lift_mk_comp, CategoryTheory.Regular.instIsRegularEpiEStrongEpiMonoFactorisation, CategoryTheory.Limits.IsImage.fac_lift_assoc, CategoryTheory.Limits.Types.Image.lift_fac, isoComp_I
compMono 📖CompOp
3 mathmath: compMono_m, compMono_I, compMono_e
copy 📖CompOp
5 mathmath: copy_m, copy_I, CategoryTheory.Limits.ImageFactorisation.copy_F, copy_e, CategoryTheory.Limits.IsImage.copy_lift
e 📖CompOp
31 mathmath: fac, CategoryTheory.Limits.IsImage.e_isoExt_inv, ofArrowIso_e, CategoryTheory.Limits.as_factorThruImage, CategoryTheory.Abelian.imageStrongEpiMonoFactorisation_e, CategoryTheory.Limits.monoFactorisationZero_e, CategoryTheory.Limits.strongEpi_of_strongEpiMonoFactorisation, CategoryTheory.Limits.image.fac_lift, CategoryTheory.Abelian.coimageStrongEpiMonoFactorisation_e, isoComp_e, fac_assoc, CategoryTheory.Limits.StrongEpiMonoFactorisation.e_strong_epi, CategoryTheory.Limits.image.fac_lift_assoc, compMono_e, CategoryTheory.Abelian.OfCoimageImageComparisonIsIso.instIsIsoEImageMonoFactorisationOfHasZeroObjectOfMonoOfCoimageImageComparison, ofIsoComp_e, CategoryTheory.Limits.IsImage.e_isoExt_hom, CategoryTheory.Regular.frobeniusStrongEpiMonoFactorisation_e, CategoryTheory.Abelian.OfCoimageImageComparisonIsIso.imageMonoFactorisation_e', CategoryTheory.Limits.IsImage.self_lift, CategoryTheory.Regular.frobeniusMorphism_isPullback, kernel_ι_comp, CategoryTheory.Abelian.OfCoimageImageComparisonIsIso.imageMonoFactorisation_e, CategoryTheory.MonoOver.commSqOfHasStrongEpiMonoFactorisation, ofIsoI_e, CategoryTheory.Limits.IsImage.fac_lift, fac_apply, CategoryTheory.Regular.instIsRegularEpiEStrongEpiMonoFactorisation, CategoryTheory.Limits.IsImage.fac_lift_assoc, CategoryTheory.FunctorToTypes.monoFactorisation_e, ofCompIso_e
instInhabitedOfMono 📖CompOp
isoComp 📖CompOp
3 mathmath: isoComp_e, isoComp_I, isoComp_m
m 📖CompOp
31 mathmath: fac, AddCommGrpCat.image.lift_fac, CategoryTheory.Subobject.imageFactorisation_F_m, CategoryTheory.Limits.IsImage.lift_ι_assoc, compMono_m, CategoryTheory.Limits.IsImage.lift_fac, m_mono, CategoryTheory.Limits.image.lift_fac_assoc, fac_assoc, CategoryTheory.Limits.monoFactorisationZero_m, ModuleCat.image.lift_fac, CategoryTheory.Limits.IsImage.isoExt_inv_m, CategoryTheory.Abelian.OfCoimageImageComparisonIsIso.imageMonoFactorisation_m, CategoryTheory.Limits.image.lift_fac, CategoryTheory.Limits.IsImage.isoExt_hom_m, ofCompIso_m, CategoryTheory.Abelian.imageStrongEpiMonoFactorisation_m, ofArrowIso_m, CategoryTheory.Abelian.OfCoimageImageComparisonIsIso.instIsIsoMImageMonoFactorisationOfHasZeroObjectOfEpi, ofIsoI_m, CategoryTheory.Limits.IsImage.lift_fac_assoc, CategoryTheory.MonoOver.commSqOfHasStrongEpiMonoFactorisation, CategoryTheory.Limits.IsImage.lift_ι, CategoryTheory.Regular.frobeniusStrongEpiMonoFactorisation_m, CategoryTheory.Limits.image.as_ι, CategoryTheory.FunctorToTypes.monoFactorisation_m, fac_apply, CategoryTheory.Limits.Types.Image.lift_fac, CategoryTheory.Abelian.coimageStrongEpiMonoFactorisation_m, isoComp_m, ofIsoComp_m
ofArrowIso 📖CompOp
5 mathmath: ofArrowIso_e, CategoryTheory.Limits.IsImage.ofArrowIso_lift, CategoryTheory.Limits.ImageFactorisation.ofArrowIso_F, ofArrowIso_m, ofArrowIso_I
ofCompIso 📖CompOp
3 mathmath: ofCompIso_m, ofCompIso_I, ofCompIso_e
ofIsoComp 📖CompOp
3 mathmath: ofIsoComp_e, ofIsoComp_I, ofIsoComp_m
ofIsoI 📖CompOp
5 mathmath: CategoryTheory.Limits.IsImage.ofIsoI_lift, CategoryTheory.Limits.ImageFactorisation.ofIsoI_F, ofIsoI_I, ofIsoI_m, ofIsoI_e
self 📖CompOp
1 mathmath: CategoryTheory.Limits.IsImage.self_lift

Theorems

NameKindAssumesProvesValidatesDepends On
compMono_I 📖mathematicalI
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
compMono
compMono_e 📖mathematicale
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
compMono
compMono_m 📖mathematicalm
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
compMono
I
copy_I 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
I
m
e
copy
copy_e 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
I
m
e
copy
copy_m 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
I
m
e
copy
ext 📖I
m
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.eqToHom
CategoryTheory.Category.id_comp
CategoryTheory.cancel_mono
fac 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
I
e
m
fac_apply 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.types
I
CategoryTheory.Functor
CategoryTheory.Functor.category
m
e
fac
fac_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
I
e
m
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
fac
isoComp_I 📖mathematicalI
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
isoComp
isoComp_e 📖mathematicale
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
isoComp
I
isoComp_m 📖mathematicalm
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
isoComp
m_mono 📖mathematicalCategoryTheory.Mono
I
m
ofArrowIso_I 📖mathematicalI
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
ofArrowIso
ofArrowIso_e 📖mathematicale
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
ofArrowIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
I
CategoryTheory.inv
CategoryTheory.CommaMorphism.left
CategoryTheory.Arrow.isIso_left
ofArrowIso_m 📖mathematicalm
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
ofArrowIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
I
CategoryTheory.CommaMorphism.right
ofCompIso_I 📖mathematicalI
ofCompIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
ofCompIso_e 📖mathematicale
ofCompIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
ofCompIso_m 📖mathematicalm
ofCompIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
I
CategoryTheory.inv
ofIsoComp_I 📖mathematicalI
ofIsoComp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
ofIsoComp_e 📖mathematicale
ofIsoComp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
I
CategoryTheory.inv
ofIsoComp_m 📖mathematicalm
ofIsoComp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
ofIsoI_I 📖mathematicalI
ofIsoI
ofIsoI_e 📖mathematicale
ofIsoI
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
I
CategoryTheory.Iso.hom
ofIsoI_m 📖mathematicalm
ofIsoI
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
I
CategoryTheory.Iso.inv

CategoryTheory.Limits.StrongEpiMonoFactorisation

Definitions

NameCategoryTheorems
toMonoFactorisation 📖CompOp
12 mathmath: CategoryTheory.Abelian.imageStrongEpiMonoFactorisation_e, CategoryTheory.Regular.frobeniusStrongEpiMonoFactorisation_I, CategoryTheory.Abelian.coimageStrongEpiMonoFactorisation_e, e_strong_epi, CategoryTheory.Abelian.coimageStrongEpiMonoFactorisation_I, CategoryTheory.Abelian.imageStrongEpiMonoFactorisation_m, CategoryTheory.Regular.frobeniusStrongEpiMonoFactorisation_e, CategoryTheory.MonoOver.commSqOfHasStrongEpiMonoFactorisation, CategoryTheory.Regular.frobeniusStrongEpiMonoFactorisation_m, CategoryTheory.Abelian.imageStrongEpiMonoFactorisation_I, CategoryTheory.Regular.instIsRegularEpiEStrongEpiMonoFactorisation, CategoryTheory.Abelian.coimageStrongEpiMonoFactorisation_m
toMonoIsImage 📖CompOp
1 mathmath: CategoryTheory.PreservesImage.iso_inv

Theorems

NameKindAssumesProvesValidatesDepends On
e_strong_epi 📖mathematicalCategoryTheory.StrongEpi
CategoryTheory.Limits.MonoFactorisation.I
toMonoFactorisation
CategoryTheory.Limits.MonoFactorisation.e

CategoryTheory.Limits.image

Definitions

NameCategoryTheorems
compIso 📖CompOp
4 mathmath: compIso_hom_comp_image_ι, compIso_hom_comp_image_ι_assoc, compIso_inv_comp_image_ι_assoc, compIso_inv_comp_image_ι
eqToHom 📖CompOp
2 mathmath: CategoryTheory.Limits.instIsIsoEqToHom, preComp_comp
eqToIso 📖CompOp
1 mathmath: eq_fac
isoStrongEpiMono 📖CompOp
2 mathmath: isoStrongEpiMono_hom_comp_ι, isoStrongEpiMono_inv_comp_mono
map 📖CompOp
8 mathmath: map_id, map_comp, map_ι, map_homMk'_ι, CategoryTheory.Limits.imageSubobjectIso_comp_image_map, CategoryTheory.Limits.im_map, CategoryTheory.Limits.image_map_comp_imageSubobjectIso_inv, factor_map
preComp 📖CompOp
8 mathmath: isIso_precomp_iso, preComp_epi_of_epi, factorThruImage_preComp, preComp_ι, factorThruImage_preComp_assoc, preComp_mono, preComp_comp, preComp_ι_assoc
ι 📖CompOp
68 mathmath: CategoryTheory.Limits.imageSubobject_arrow_assoc, CategoryTheory.Limits.cokernelImageι_inv, CategoryTheory.Limits.IsImage.lift_ι_assoc, SimplexCategory.image_ι_eq, SimplicialObject.Splitting.IndexSet.fac_pull_assoc, compIso_hom_comp_image_ι, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand₀', compIso_hom_comp_image_ι_assoc, lift_mk_factorThruImage, eq_fac, lift_fac_assoc, isoStrongEpiMono_hom_comp_ι, CategoryTheory.ShortComplex.HomologyData.ofEpiMonoFactorisation.isoImage_ι, CategoryTheory.image_ι_op_comp_imageUnopOp_hom, map_ι, ModuleCat.imageIsoRange_hom_subtype, ModuleCat.imageIsoRange_inv_image_ι_apply, CategoryTheory.Limits.imageMonoIsoSource_hom_self, CategoryTheory.PreservesImage.iso_hom, CategoryTheory.MonoOver.image_map, ι_zero, map_homMk'_ι, CategoryTheory.PreservesImage.hom_comp_map_image_ι, CategoryTheory.factorThruImage_comp_imageUnopOp_inv, isoStrongEpiMono_inv_comp_mono, CategoryTheory.PreservesImage.inv_comp_image_ι_map, CategoryTheory.Abelian.imageIsoImage_inv, lift_fac, CategoryTheory.Limits.imageMonoIsoSource_inv_ι, fac, ModuleCat.imageIsoRange_hom_subtype_assoc, preComp_ι, SimplicialObject.Splitting.IndexSet.fac_pull, ModuleCat.imageIsoRange_inv_image_ι, CategoryTheory.MonoOver.imageMonoOver_arrow, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand₀'_assoc, CategoryTheory.Limits.instMonoι, ModuleCat.imageIsoRange_inv_image_ι_assoc, CategoryTheory.Limits.imageSubobject_arrow, CategoryTheory.Limits.ImageMap.map_ι, CategoryTheory.Limits.imageSubobject_arrow'_assoc, CategoryTheory.ShortComplex.homologyIsoImageICyclesCompPOpcycles_ι, CategoryTheory.Abelian.imageIsoImage_hom_comp_image_ι, CategoryTheory.imageUnopOp_hom_comp_image_ι, CategoryTheory.Limits.image_ι_comp_eq_zero, fac_assoc, CategoryTheory.PreservesImage.hom_comp_map_image_ι_assoc, CategoryTheory.Limits.IsImage.lift_ι, ι_zero', as_ι, CategoryTheory.Limits.epi_image_of_epi, CategoryTheory.Limits.imageMonoIsoSource_inv_ι_assoc, lift_mk_factorThruImage_assoc, CategoryTheory.Limits.ImageMap.map_ι_assoc, compIso_inv_comp_image_ι_assoc, preComp_ι_assoc, CategoryTheory.PreservesImage.iso_inv, CategoryTheory.Limits.imageMonoIsoSource_hom_self_assoc, CategoryTheory.imageUnopOp_inv_comp_op_factorThruImage, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand', ModuleCat.imageIsoRange_hom_subtype_apply, CategoryTheory.Limits.imageSubobject_arrow', CategoryTheory.ShortComplex.HomologyData.ofEpiMonoFactorisation.isoImage_ι_assoc, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand'_assoc, CategoryTheory.ShortComplex.homologyIsoImageICyclesCompPOpcycles_ι_assoc, CategoryTheory.PreservesImage.inv_comp_image_ι_map_assoc, CategoryTheory.Limits.cokernelImageι_hom, compIso_inv_comp_image_ι

Theorems

NameKindAssumesProvesValidatesDepends On
as_ι 📖mathematicalCategoryTheory.Limits.MonoFactorisation.m
CategoryTheory.Limits.Image.monoFactorisation
ι
compIso_hom_comp_image_ι 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.image
CategoryTheory.Limits.hasImage_comp_iso
CategoryTheory.Iso.hom
compIso
ι
ext
CategoryTheory.Limits.hasImage_comp_iso
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
fac_lift_assoc
fac
fac_assoc
compIso_hom_comp_image_ι_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.image
CategoryTheory.Limits.hasImage_comp_iso
CategoryTheory.Iso.hom
compIso
ι
CategoryTheory.Limits.hasImage_comp_iso
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
compIso_hom_comp_image_ι
compIso_inv_comp_image_ι 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.image
CategoryTheory.Limits.hasImage_comp_iso
CategoryTheory.Iso.inv
compIso
ι
CategoryTheory.inv
ext
CategoryTheory.Limits.hasImage_comp_iso
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
fac_lift_assoc
fac
fac_assoc
CategoryTheory.Category.assoc
CategoryTheory.IsIso.hom_inv_id
CategoryTheory.Category.comp_id
compIso_inv_comp_image_ι_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.image
CategoryTheory.Limits.hasImage_comp_iso
CategoryTheory.Iso.inv
compIso
ι
CategoryTheory.inv
CategoryTheory.Limits.hasImage_comp_iso
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
compIso_inv_comp_image_ι
eq_fac 📖mathematicalι
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.image
CategoryTheory.Iso.hom
eqToIso
ext
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
fac
lift_mk_factorThruImage
ext 📖CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.image
CategoryTheory.Limits.factorThruImage
CategoryTheory.mono_comp
CategoryTheory.Limits.equalizer.ι_mono
CategoryTheory.Limits.instMonoι
CategoryTheory.Limits.limit.lift_π_assoc
fac
lift_fac
CategoryTheory.cancel_mono_id
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
CategoryTheory.Limits.equalizer.condition
fac 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.image
CategoryTheory.Limits.factorThruImage
ι
CategoryTheory.Limits.MonoFactorisation.fac
fac_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.image
CategoryTheory.Limits.factorThruImage
ι
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
fac
fac_lift 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.image
CategoryTheory.Limits.MonoFactorisation.I
CategoryTheory.Limits.factorThruImage
lift
CategoryTheory.Limits.MonoFactorisation.e
CategoryTheory.Limits.IsImage.fac_lift
fac_lift_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.image
CategoryTheory.Limits.factorThruImage
CategoryTheory.Limits.MonoFactorisation.I
lift
CategoryTheory.Limits.MonoFactorisation.e
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
fac_lift
factorThruImage_preComp 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.image
CategoryTheory.Limits.factorThruImage
preComp
fac_lift
CategoryTheory.Limits.instMonoι
factorThruImage_preComp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.image
CategoryTheory.Limits.factorThruImage
preComp
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
factorThruImage_preComp
factor_map 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Limits.image
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Limits.factorThruImage
map
CategoryTheory.CommaMorphism.left
CategoryTheory.Limits.ImageMap.factor_map
isImage_lift 📖mathematicalCategoryTheory.Limits.IsImage.lift
CategoryTheory.Limits.Image.monoFactorisation
CategoryTheory.Limits.Image.isImage
lift
isIso_precomp_iso 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Limits.image
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.hasImage_iso_comp
preComp
CategoryTheory.Limits.hasImage_iso_comp
CategoryTheory.Limits.instMonoι
CategoryTheory.Category.assoc
fac
CategoryTheory.IsIso.inv_hom_id_assoc
ext
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
fac_lift_assoc
fac_lift
CategoryTheory.IsIso.hom_inv_id_assoc
CategoryTheory.Category.comp_id
isoStrongEpiMono_hom_comp_ι 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.image
CategoryTheory.Limits.HasImages.has_image
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
CategoryTheory.Iso.hom
isoStrongEpiMono
ι
CategoryTheory.Limits.HasImages.has_image
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
CategoryTheory.Limits.IsImage.lift_fac
isoStrongEpiMono_inv_comp_mono 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.image
CategoryTheory.Limits.HasImages.has_image
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
CategoryTheory.Iso.inv
isoStrongEpiMono
ι
lift_fac
lift_fac 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.image
CategoryTheory.Limits.MonoFactorisation.I
lift
CategoryTheory.Limits.MonoFactorisation.m
ι
CategoryTheory.Limits.IsImage.lift_fac
lift_fac_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.image
CategoryTheory.Limits.MonoFactorisation.I
lift
CategoryTheory.Limits.MonoFactorisation.m
ι
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift_fac
lift_mk_comp 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.image
ι
CategoryTheory.Limits.MonoFactorisation.I
CategoryTheory.Limits.instMonoι
lift
lift_fac
CategoryTheory.Limits.instMonoι
lift_mk_comp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.image
ι
lift
CategoryTheory.Limits.instMonoι
CategoryTheory.Limits.instMonoι
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift_mk_comp
lift_mk_factorThruImage 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.image
CategoryTheory.Limits.MonoFactorisation.I
ι
CategoryTheory.Limits.instMonoι
CategoryTheory.Limits.factorThruImage
lift
CategoryTheory.Limits.IsImage.lift_fac
CategoryTheory.Limits.instMonoι
lift_mk_factorThruImage_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.image
lift
ι
CategoryTheory.Limits.instMonoι
CategoryTheory.Limits.factorThruImage
CategoryTheory.Limits.instMonoι
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift_mk_factorThruImage
lift_mono 📖mathematicalCategoryTheory.Mono
CategoryTheory.Limits.image
CategoryTheory.Limits.MonoFactorisation.I
lift
CategoryTheory.mono_of_mono
lift_fac
CategoryTheory.Limits.MonoFactorisation.m_mono
map_comp 📖mathematicalmap
CategoryTheory.CategoryStruct.comp
CategoryTheory.Arrow
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryArrow
CategoryTheory.Limits.image
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Limits.instSubsingletonImageMap
map_homMk'_ι 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.image
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Limits.instHasImageHomMk
map
CategoryTheory.Arrow.homMk'
ι
CategoryTheory.Limits.instHasImageHomMk
map_ι
map_id 📖mathematicalmap
CategoryTheory.CategoryStruct.id
CategoryTheory.Arrow
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryArrow
CategoryTheory.Limits.image
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Limits.instSubsingletonImageMap
map_ι 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.image
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
map
ι
CategoryTheory.CommaMorphism.right
CategoryTheory.Limits.ImageMap.map_ι
preComp_comp 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.image
preComp
eqToHom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.assoc
CategoryTheory.Category.assoc
CategoryTheory.cancel_mono
CategoryTheory.Limits.instMonoι
lift_mk_comp
fac
lift_fac
preComp_epi_of_epi 📖mathematicalCategoryTheory.Epi
CategoryTheory.Limits.image
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
preComp
CategoryTheory.epi_of_epi_fac
CategoryTheory.epi_comp
CategoryTheory.Limits.instEpiFactorThruImageOfHasLimitWalkingParallelPairParallelPair
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
factorThruImage_preComp
preComp_mono 📖mathematicalCategoryTheory.Mono
CategoryTheory.Limits.image
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
preComp
CategoryTheory.mono_of_mono
preComp_ι
CategoryTheory.Limits.instMonoι
preComp_ι 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.image
preComp
ι
lift_mk_comp
CategoryTheory.Category.assoc
fac
preComp_ι_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.image
preComp
ι
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
preComp_ι

---

← Back to Index