| Name | Category | Theorems |
InitialMonoClass 📖 | CompData | 7 mathmath: initial_mono_of_strict_initial_objects, initialMonoClass_of_coproductsDisjoint, InitialMonoClass.of_isTerminal, InitialMonoClass.of_terminal, HasZeroObject.initialMonoClass, InitialMonoClass.of_initial, InitialMonoClass.of_isInitial
|
IsInitial 📖 | CompOp | 8 mathmath: CategoryTheory.PreGaloisCategory.initial_iff_fiber_empty, Types.initial_iff_empty, IsInitial.to_eq_descCoconeMorphism, AlgebraicGeometry.isInitial_iff_isEmpty, IsColimit.descCoconeMorphism_eq_isInitial_to, CoproductDisjoint.nonempty_isInitial_of_ne, Concrete.initial_of_empty_of_reflects, Concrete.initial_iff_empty_of_preserves_of_reflects
|
IsTerminal 📖 | CompOp | 9 mathmath: IsLimit.liftConeMorphism_eq_isTerminal_from, CategoryTheory.PreGaloisCategory.isGalois_iff_aux, TopCat.Presheaf.isSheaf_on_punit_iff_isTerminal, CategoryTheory.PreGaloisCategory.IsGalois.quotientByAutTerminal, SkyscraperPresheafFunctor.map'_app, IsTerminal.from_eq_liftConeMorphism, TopCat.Presheaf.isSheaf_iff_isTerminal_of_indiscrete, skyscraperPresheaf_map, StalkSkyscraperPresheafAdjunctionAuxs.toSkyscraperPresheaf_app
|
asEmptyCocone 📖 | CompOp | 3 mathmath: asEmptyCocone_pt, CategoryTheory.IsInitial.isVanKampenColimit, asEmptyCocone_ι_app
|
asEmptyCone 📖 | CompOp | 3 mathmath: CategoryTheory.CartesianMonoidalCategory.fullSubcategory_isTerminalTensorUnit_lift_hom, asEmptyCone_pt, asEmptyCone_π_app
|
coconeOfDiagramInitial 📖 | CompOp | 2 mathmath: coconeOfDiagramInitial_ι_app, coconeOfDiagramInitial_pt
|
coconeOfDiagramTerminal 📖 | CompOp | 3 mathmath: CategoryTheory.MorphismProperty.TransfiniteCompositionOfShape.ofComposableArrows_isColimit_desc, coconeOfDiagramTerminal_ι_app, coconeOfDiagramTerminal_pt
|
colimitOfDiagramInitial 📖 | CompOp | — |
colimitOfDiagramTerminal 📖 | CompOp | 2 mathmath: CategoryTheory.TransfiniteCompositionOfShape.iic_isColimit, CategoryTheory.TransfiniteCompositionOfShape.ofComposableArrows_isColimit
|
coneOfDiagramInitial 📖 | CompOp | 2 mathmath: coneOfDiagramInitial_π_app, coneOfDiagramInitial_pt
|
coneOfDiagramTerminal 📖 | CompOp | 2 mathmath: coneOfDiagramTerminal_π_app, coneOfDiagramTerminal_pt
|
initialOpOfTerminal 📖 | CompOp | — |
initialUnopOfTerminal 📖 | CompOp | — |
isColimitChangeEmptyCocone 📖 | CompOp | — |
isColimitEmptyCoconeEquiv 📖 | CompOp | — |
isColimitEquivIsInitialOfIsEmpty 📖 | CompOp | — |
isInitialBot 📖 | CompOp | — |
isInitialEquivUnique 📖 | CompOp | — |
isLimitChangeEmptyCone 📖 | CompOp | — |
isLimitEmptyConeEquiv 📖 | CompOp | — |
isLimitEquivIsTerminalOfIsEmpty 📖 | CompOp | — |
isTerminalEquivUnique 📖 | CompOp | — |
isTerminalTop 📖 | CompOp | 1 mathmath: CategoryTheory.TransfiniteCompositionOfShape.iic_isColimit
|
limitOfDiagramInitial 📖 | CompOp | — |
limitOfDiagramTerminal 📖 | CompOp | — |
terminalOpOfInitial 📖 | CompOp | — |
terminalUnopOfInitial 📖 | CompOp | — |