Documentation Verification Report

IsTerminal

📁 Source: Mathlib/CategoryTheory/Limits/Shapes/IsTerminal.lean

Statistics

MetricCount
DefinitionsIsTerminal, InitialMonoClass, IsInitial, equivOfIso, ofIso, ofUnique, ofUniqueHom, to, uniqueUpToIso, IsTerminal, equivOfIso, from, ofIso, ofUnique, ofUniqueHom, uniqueUpToIso, asEmptyCocone, asEmptyCone, coconeOfDiagramInitial, coconeOfDiagramTerminal, colimitOfDiagramInitial, colimitOfDiagramTerminal, coneOfDiagramInitial, coneOfDiagramTerminal, initialOpOfTerminal, initialUnopOfTerminal, isColimitChangeEmptyCocone, isColimitEmptyCoconeEquiv, isColimitEquivIsInitialOfIsEmpty, isInitialBot, isInitialEquivUnique, isLimitChangeEmptyCone, isLimitEmptyConeEquiv, isLimitEquivIsTerminalOfIsEmpty, isTerminalEquivUnique, isTerminalTop, limitOfDiagramInitial, limitOfDiagramTerminal, terminalOpOfInitial, terminalUnopOfInitial
40
TheoremsisInitial_mono_from, of_isInitial, of_isTerminal, isIso_ι_app_of_isTerminal, epi_to, hom_ext, isSplitEpi_to, mono_from, to_comp, to_self, uniqueUpToIso_hom, uniqueUpToIso_inv, isIso_π_app_of_isInitial, comp_from, from_self, hom_ext, isSplitMono_from, mono_from, uniqueUpToIso_hom, uniqueUpToIso_inv, asEmptyCocone_pt, asEmptyCocone_ι_app, asEmptyCone_pt, asEmptyCone_π_app, coconeOfDiagramInitial_pt, coconeOfDiagramInitial_ι_app, coconeOfDiagramTerminal_pt, coconeOfDiagramTerminal_ι_app, coneOfDiagramInitial_pt, coneOfDiagramInitial_π_app, coneOfDiagramTerminal_pt, coneOfDiagramTerminal_π_app, isIso_of_isInitial, isIso_of_isTerminal
34
Total74

CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Diagram

Definitions

NameCategoryTheorems
IsTerminal 📖CompData
1 mathmath: IsTerminal.instSubsingleton

CategoryTheory.Limits

Definitions

NameCategoryTheorems
InitialMonoClass 📖CompData
7 mathmath: initial_mono_of_strict_initial_objects, initialMonoClass_of_coproductsDisjoint, InitialMonoClass.of_isTerminal, InitialMonoClass.of_terminal, HasZeroObject.initialMonoClass, InitialMonoClass.of_initial, InitialMonoClass.of_isInitial
IsInitial 📖CompOp
8 mathmath: CategoryTheory.PreGaloisCategory.initial_iff_fiber_empty, Types.initial_iff_empty, IsInitial.to_eq_descCoconeMorphism, AlgebraicGeometry.isInitial_iff_isEmpty, IsColimit.descCoconeMorphism_eq_isInitial_to, CoproductDisjoint.nonempty_isInitial_of_ne, Concrete.initial_of_empty_of_reflects, Concrete.initial_iff_empty_of_preserves_of_reflects
IsTerminal 📖CompOp
9 mathmath: IsLimit.liftConeMorphism_eq_isTerminal_from, CategoryTheory.PreGaloisCategory.isGalois_iff_aux, TopCat.Presheaf.isSheaf_on_punit_iff_isTerminal, CategoryTheory.PreGaloisCategory.IsGalois.quotientByAutTerminal, SkyscraperPresheafFunctor.map'_app, IsTerminal.from_eq_liftConeMorphism, TopCat.Presheaf.isSheaf_iff_isTerminal_of_indiscrete, skyscraperPresheaf_map, StalkSkyscraperPresheafAdjunctionAuxs.toSkyscraperPresheaf_app
asEmptyCocone 📖CompOp
3 mathmath: asEmptyCocone_pt, CategoryTheory.IsInitial.isVanKampenColimit, asEmptyCocone_ι_app
asEmptyCone 📖CompOp
3 mathmath: CategoryTheory.CartesianMonoidalCategory.fullSubcategory_isTerminalTensorUnit_lift_hom, asEmptyCone_pt, asEmptyCone_π_app
coconeOfDiagramInitial 📖CompOp
2 mathmath: coconeOfDiagramInitial_ι_app, coconeOfDiagramInitial_pt
coconeOfDiagramTerminal 📖CompOp
3 mathmath: CategoryTheory.MorphismProperty.TransfiniteCompositionOfShape.ofComposableArrows_isColimit_desc, coconeOfDiagramTerminal_ι_app, coconeOfDiagramTerminal_pt
colimitOfDiagramInitial 📖CompOp
colimitOfDiagramTerminal 📖CompOp
2 mathmath: CategoryTheory.TransfiniteCompositionOfShape.iic_isColimit, CategoryTheory.TransfiniteCompositionOfShape.ofComposableArrows_isColimit
coneOfDiagramInitial 📖CompOp
2 mathmath: coneOfDiagramInitial_π_app, coneOfDiagramInitial_pt
coneOfDiagramTerminal 📖CompOp
2 mathmath: coneOfDiagramTerminal_π_app, coneOfDiagramTerminal_pt
initialOpOfTerminal 📖CompOp
initialUnopOfTerminal 📖CompOp
isColimitChangeEmptyCocone 📖CompOp
isColimitEmptyCoconeEquiv 📖CompOp
isColimitEquivIsInitialOfIsEmpty 📖CompOp
isInitialBot 📖CompOp
isInitialEquivUnique 📖CompOp
isLimitChangeEmptyCone 📖CompOp
isLimitEmptyConeEquiv 📖CompOp
isLimitEquivIsTerminalOfIsEmpty 📖CompOp
isTerminalEquivUnique 📖CompOp
isTerminalTop 📖CompOp
1 mathmath: CategoryTheory.TransfiniteCompositionOfShape.iic_isColimit
limitOfDiagramInitial 📖CompOp
limitOfDiagramTerminal 📖CompOp
terminalOpOfInitial 📖CompOp
terminalUnopOfInitial 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
asEmptyCocone_pt 📖mathematicalCocone.pt
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.empty
asEmptyCocone
asEmptyCocone_ι_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.empty
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
Cocone.ι
asEmptyCocone
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
asEmptyCone_pt 📖mathematicalCone.pt
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.empty
asEmptyCone
asEmptyCone_π_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Functor.empty
Cone.π
asEmptyCone
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
coconeOfDiagramInitial_pt 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
Cocone.pt
coconeOfDiagramInitial
coconeOfDiagramInitial_ι_app 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
Cocone.ι
coconeOfDiagramInitial
CategoryTheory.inv
IsInitial.to
coconeOfDiagramTerminal_pt 📖mathematicalCocone.pt
coconeOfDiagramTerminal
CategoryTheory.Functor.obj
coconeOfDiagramTerminal_ι_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
Cocone.ι
coconeOfDiagramTerminal
CategoryTheory.Functor.map
IsTerminal.from
coneOfDiagramInitial_pt 📖mathematicalCone.pt
coneOfDiagramInitial
CategoryTheory.Functor.obj
coneOfDiagramInitial_π_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
Cone.π
coneOfDiagramInitial
CategoryTheory.Functor.map
IsInitial.to
coneOfDiagramTerminal_pt 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
Cone.pt
coneOfDiagramTerminal
coneOfDiagramTerminal_π_app 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
Cone.π
coneOfDiagramTerminal
CategoryTheory.inv
IsTerminal.from
isIso_of_isInitial 📖mathematicalCategoryTheory.IsIsoIsInitial.to_comp
IsInitial.to_self
IsInitial.hom_ext
isIso_of_isTerminal 📖mathematicalCategoryTheory.IsIsoIsTerminal.comp_from
IsTerminal.from_self
IsTerminal.hom_ext

CategoryTheory.Limits.InitialMonoClass

Theorems

NameKindAssumesProvesValidatesDepends On
isInitial_mono_from 📖mathematicalCategoryTheory.Mono
CategoryTheory.Limits.IsInitial.to
of_isInitial 📖mathematicalCategoryTheory.Mono
CategoryTheory.Limits.IsInitial.to
CategoryTheory.Limits.InitialMonoClassCategoryTheory.Limits.IsInitial.hom_ext
CategoryTheory.mono_comp
CategoryTheory.IsSplitMono.mono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_hom
of_isTerminal 📖mathematicalCategoryTheory.Limits.InitialMonoClassof_isInitial
CategoryTheory.mono_of_mono_fac
CategoryTheory.Limits.IsInitial.hom_ext

CategoryTheory.Limits.IsColimit

Theorems

NameKindAssumesProvesValidatesDepends On
isIso_ι_app_of_isTerminal 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ι
CategoryTheory.Iso.isIso_hom

CategoryTheory.Limits.IsInitial

Definitions

NameCategoryTheorems
equivOfIso 📖CompOp
ofIso 📖CompOp
ofUnique 📖CompOp
ofUniqueHom 📖CompOp
to 📖CompOp
50 mathmath: CategoryTheory.Limits.InitialMonoClass.isInitial_mono_from, CategoryTheory.WithInitial.opEquiv_unitIso_inv_app, CategoryTheory.Under.forgetMapInitial_inv_app, CategoryTheory.WithInitial.liftToInitialUnique_hom_app, CategoryTheory.Under.equivalenceOfIsInitial_counitIso, CategoryTheory.StructuredArrow.IsUniversal.uniq, CategoryTheory.Limits.initialIsoIsInitial_hom, CategoryTheory.WithInitial.opEquiv_counitIso_hom_app, CategoryTheory.WithTerminal.opEquiv_counitIso_inv_app, CategoryTheory.Limits.coneOfDiagramInitial_π_app, CategoryTheory.WithTerminal.opEquiv_unitIso_hom_app, CategoryTheory.WithTerminal.opEquiv_counitIso_hom_app, CategoryTheory.initial_mono, to_eq_descCoconeMorphism, to_self, CategoryTheory.WithInitial.liftStar_lift_map, CategoryTheory.WithInitial.inclLiftToInitial_inv_app, CategoryTheory.WithInitial.mkCommaObject_hom_app, CategoryTheory.Limits.initialIsoIsInitial_inv, CategoryTheory.WithInitial.starIsoInitial_inv, CategoryTheory.IsPushout.of_isColimit_binaryCofan_of_isInitial, to_comp, CategoryTheory.Under.forgetMapInitial_hom_app, CategoryTheory.WithInitial.equivComma_functor_obj_hom_app, CategoryTheory.Limits.IsColimit.descCoconeMorphism_eq_isInitial_to, CategoryTheory.Under.equivalenceOfIsInitial_unitIso, CategoryTheory.Limits.coconeOfDiagramInitial_ι_app, AlgebraicGeometry.emptyIsInitial_to, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_hom_app, CategoryTheory.WithInitial.opEquiv_counitIso_inv_app, CategoryTheory.WithInitial.inclLiftToInitial_hom_app, CategoryTheory.Limits.isInitialMul_inv, uniqueUpToIso_inv, CategoryTheory.zeroMul_inv, CategoryTheory.IsPushout.of_is_coproduct, uniqueUpToIso_hom, CategoryTheory.Limits.mulIsInitial_inv, CategoryTheory.WithInitial.starIsoInitial_hom, CategoryTheory.WithInitial.liftToInitial_map, CategoryTheory.Under.equivalenceOfIsInitial_inverse_map, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_left_map, CategoryTheory.Under.mkIdInitial_to_right, CategoryTheory.Under.equivalenceOfIsInitial_inverse_obj, CategoryTheory.IsPushout.of_is_coproduct', CategoryTheory.WithInitial.opEquiv_inverse_map, CategoryTheory.WithInitial.liftToInitialUnique_inv_app, CategoryTheory.WithInitial.opEquiv_unitIso_hom_app, CategoryTheory.WithTerminal.opEquiv_unitIso_inv_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_obj_hom_app, CategoryTheory.WithTerminal.opEquiv_functor_map
uniqueUpToIso 📖CompOp
2 mathmath: uniqueUpToIso_inv, uniqueUpToIso_hom

Theorems

NameKindAssumesProvesValidatesDepends On
epi_to 📖mathematicalCategoryTheory.EpiCategoryTheory.IsSplitEpi.epi
isSplitEpi_to
hom_ext 📖CategoryTheory.Limits.IsColimit.hom_ext
CategoryTheory.instIsEmptyDiscrete
PEmpty.instIsEmpty
isSplitEpi_to 📖mathematicalCategoryTheory.IsSplitEpiCategoryTheory.IsSplitEpi.mk'
hom_ext
mono_from 📖mathematicalCategoryTheory.Monohom_ext
CategoryTheory.Limits.InitialMonoClass.isInitial_mono_from
to_comp 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
to
hom_ext
to_self 📖mathematicalto
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
hom_ext
uniqueUpToIso_hom 📖mathematicalCategoryTheory.Iso.hom
uniqueUpToIso
to
uniqueUpToIso_inv 📖mathematicalCategoryTheory.Iso.inv
uniqueUpToIso
to

CategoryTheory.Limits.IsLimit

Theorems

NameKindAssumesProvesValidatesDepends On
isIso_π_app_of_isInitial 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cone.π
CategoryTheory.Iso.isIso_hom

CategoryTheory.Limits.IsTerminal

Definitions

NameCategoryTheorems
equivOfIso 📖CompOp
from 📖CompOp
54 mathmath: CategoryTheory.Limits.IsLimit.liftConeMorphism_eq_isTerminal_from, CategoryTheory.WithInitial.opEquiv_unitIso_inv_app, CategoryTheory.MorphismProperty.TransfiniteCompositionOfShape.ofComposableArrows_incl_app, CategoryTheory.IsPullback.of_isLimit_binaryFan_of_isTerminal, CategoryTheory.Over.forgetMapTerminal_hom_app, CategoryTheory.Over.equivalenceOfIsTerminal_counitIso, CategoryTheory.IsSubterminal.mono_isTerminal_from, CategoryTheory.WithInitial.opEquiv_functor_map, CategoryTheory.WithInitial.opEquiv_counitIso_hom_app, CategoryTheory.Limits.coneOfDiagramTerminal_π_app, CategoryTheory.WithTerminal.opEquiv_counitIso_inv_app, CategoryTheory.WithTerminal.opEquiv_unitIso_hom_app, CategoryTheory.WithTerminal.opEquiv_counitIso_hom_app, CategoryTheory.WithTerminal.liftToTerminal_map, CategoryTheory.IsPullback.of_is_product', CategoryTheory.Over.equivalenceOfIsTerminal_inverse_map, CategoryTheory.Over.forgetMapTerminal_inv_app, uniqueUpToIso_hom, CategoryTheory.Classifier.isTerminalFrom_eq_χ₀, CategoryTheory.WithTerminal.liftToTerminalUnique_inv_app, CategoryTheory.WithTerminal.lift_map_liftStar, CategoryTheory.WithTerminal.inclLiftToTerminal_inv_app, CategoryTheory.Over.equivalenceOfIsTerminal_inverse_obj, CategoryTheory.WithTerminal.equivComma_functor_obj_hom_app, CategoryTheory.WithTerminal.starIsoTerminal_inv, CategoryTheory.Limits.coconeOfDiagramTerminal_ι_app, comp_from, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_hom_app, CategoryTheory.WithTerminal.starIsoTerminal_hom, CategoryTheory.Limits.terminalIsoIsTerminal_hom, CategoryTheory.WithInitial.opEquiv_counitIso_inv_app, uniqueUpToIso_inv, CategoryTheory.WithTerminal.mkCommaObject_hom_app, CategoryTheory.Over.equivalenceOfIsTerminal_unitIso, CategoryTheory.WithTerminal.inclLiftToTerminal_hom_app, AlgebraicGeometry.Scheme.emptyTo_c_app, from_self, CategoryTheory.TransfiniteCompositionOfShape.ofComposableArrows_incl_app, CategoryTheory.CostructuredArrow.IsUniversal.uniq, CategoryTheory.Limits.terminalIsoIsTerminal_inv, SkyscraperPresheafFunctor.map'_app, CategoryTheory.SemiCartesianMonoidalCategory.fst_def, CategoryTheory.Over.mkIdTerminal_from_left, CategoryTheory.constantPresheafAdj_counit_app_app, CategoryTheory.WithInitial.opEquiv_unitIso_hom_app, CategoryTheory.WithTerminal.opEquiv_unitIso_inv_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_obj_map, from_eq_liftConeMorphism, CategoryTheory.WithTerminal.liftToTerminalUnique_hom_app, CategoryTheory.IsPullback.of_is_product, CategoryTheory.SemiCartesianMonoidalCategory.snd_def, skyscraperPresheaf_map, StalkSkyscraperPresheafAdjunctionAuxs.toSkyscraperPresheaf_app, CategoryTheory.WithTerminal.opEquiv_inverse_map
ofIso 📖CompOp
ofUnique 📖CompOp
ofUniqueHom 📖CompOp
uniqueUpToIso 📖CompOp
2 mathmath: uniqueUpToIso_hom, uniqueUpToIso_inv

Theorems

NameKindAssumesProvesValidatesDepends On
comp_from 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
from
hom_ext
from_self 📖mathematicalfrom
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
hom_ext
hom_ext 📖CategoryTheory.Limits.IsLimit.hom_ext
CategoryTheory.instIsEmptyDiscrete
PEmpty.instIsEmpty
isSplitMono_from 📖mathematicalCategoryTheory.IsSplitMonoCategoryTheory.IsSplitMono.mk'
hom_ext
mono_from 📖mathematicalCategoryTheory.MonoCategoryTheory.IsSplitMono.mono
isSplitMono_from
uniqueUpToIso_hom 📖mathematicalCategoryTheory.Iso.hom
uniqueUpToIso
from
uniqueUpToIso_inv 📖mathematicalCategoryTheory.Iso.inv
uniqueUpToIso
from

---

← Back to Index