| Metric | Count |
DefinitionsCokernelCofork, desc', ofEpiOfIsZero, ofId, ofπ, ofπ', isColimitOfIsColimitOfIff, isColimitOfIsColimitOfIff', mapIsoOfIsColimit, mapOfIsColimit, ofπ, HasCokernel, HasCokernels, HasKernel, HasKernels, cokernelIso, ofIso, ofIsoComp, isoKernel, ofCompIso, ofIso, KernelFork, lift', ofId, ofMonoOfIsZero, ofι, ofι', isLimitOfIsLimitOfIff, isLimitOfIsLimitOfIff', mapIsoOfIsLimit, mapOfIsLimit, ofι, coker, π, cokernel, cokernelIso, desc, desc', isColimitCoconeZeroCocone, map, mapIso, ofEpi, ofIsoComp, zeroCokernelCofork, π, cokernelCompIsIso, cokernelComparison, cokernelEpiComp, cokernelImageι, cokernelIsCokernel, cokernelIsoOfEq, cokernelZeroIsoTarget, compNatIso, isCokernelEpiComp, isCokernelOfComp, isColimitAux, isKernelCompMono, isKernelOfComp, isLimitAux, isoOfι, isoOfπ, ker, ι, kernel, isLimitConeZeroCone, isoKernel, lift', map, mapIso, ofCompIso, ofMono, zeroKernelFork, ι, kernelCompMono, kernelComparison, kernelFactorThruImage, kernelIsIsoComp, kernelIsKernel, kernelIsoOfEq, kernelZeroIsoSource, ofιCongr, ofπCongr, zeroCokernelOfZeroCancel, zeroKernelOfCancelZero | 84 |
TheoremsisIso_π, isZero_of_epi, condition, condition_assoc, mapIsoOfIsColimit_hom, mapIsoOfIsColimit_inv, π_eq_zero, π_mapOfIsColimit, π_mapOfIsColimit_assoc, π_ofπ, has_colimit, has_limit, isIso_ι, isZero_of_mono, app_one, condition, condition_assoc, mapIsoOfIsLimit_hom, mapIsoOfIsLimit_inv, mapOfIsLimit_ι, mapOfIsLimit_ι_assoc, ι_ofι, kernel_ι_comp, coequalizer_as_cokernel, condition, condition_assoc, π_app, coker_map, coker_obj, condition, condition_assoc, congr_hom, congr_inv, desc_epi, desc_zero, mapIso_hom, mapIso_inv, map_desc, map_id, map_zero, of_kernel_of_mono, π_desc, π_desc_assoc, π_of_epi, π_of_zero, π_zero_isIso, cokernelCompIsIso_hom, cokernelCompIsIso_inv, cokernelComparison_map_desc, cokernelComparison_map_desc_assoc, cokernelEpiComp_hom, cokernelEpiComp_inv, cokernelImageι_hom, cokernelImageι_inv, cokernelIsoOfEq_hom_comp_desc, cokernelIsoOfEq_hom_comp_desc_assoc, cokernelIsoOfEq_inv_comp_desc, cokernelIsoOfEq_inv_comp_desc_assoc, cokernelIsoOfEq_refl, cokernelIsoOfEq_trans, cokernelZeroIsoTarget_hom, cokernelZeroIsoTarget_inv, cokernel_map_comp_cokernelComparison, cokernel_map_comp_cokernelComparison_assoc, cokernel_not_iso_of_nonzero, cokernel_not_mono_of_nonzero, colimit_ι_zero_cokernel_desc, colimit_ι_zero_cokernel_desc_assoc, eq_zero_of_epi_kernel, eq_zero_of_mono_cokernel, equalizer_as_kernel, hasCokernel_comp_iso, hasCokernel_epi_comp, hasCokernels_of_hasCoequalizers, hasKernel_comp_mono, hasKernel_iso_comp, hasKernels_of_hasEqualizers, instIsIsoMapOfEpi, instIsIsoMapOfMono, isCokernelEpiComp_desc, isKernelCompMono_lift, isZero_cokernel_of_epi, isZero_kernel_of_mono, condition, condition_assoc, ι_app, ker_map, ker_obj, condition, condition_assoc, congr_hom, congr_inv, lift_map, lift_mono, lift_zero, lift_ι, lift_ι_assoc, mapIso_hom, mapIso_inv, map_id, map_zero, of_cokernel_of_epi, ι_of_mono, ι_of_zero, ι_zero_isIso, kernelCompMono_hom, kernelCompMono_inv, kernelComparison_comp_kernel_map, kernelComparison_comp_kernel_map_assoc, kernelComparison_comp_ι, kernelComparison_comp_ι_assoc, kernelFactorThruImage_hom_comp_ι, kernelFactorThruImage_hom_comp_ι_assoc, kernelFactorThruImage_inv_comp_ι, kernelFactorThruImage_inv_comp_ι_assoc, kernelIsIsoComp_hom, kernelIsIsoComp_inv, kernelIsoOfEq_hom_comp_ι, kernelIsoOfEq_hom_comp_ι_assoc, kernelIsoOfEq_inv_comp_ι, kernelIsoOfEq_inv_comp_ι_assoc, kernelIsoOfEq_refl, kernelIsoOfEq_trans, kernelZeroIsoSource_hom, kernelZeroIsoSource_inv, kernel_not_epi_of_nonzero, kernel_not_iso_of_nonzero, lift_comp_kernelIsoOfEq_hom, lift_comp_kernelIsoOfEq_hom_assoc, lift_comp_kernelIsoOfEq_inv, lift_comp_kernelIsoOfEq_inv_assoc, map_lift_kernelComparison, map_lift_kernelComparison_assoc, π_comp_cokernelComparison, π_comp_cokernelComparison_assoc, π_comp_cokernelIsoOfEq_hom, π_comp_cokernelIsoOfEq_hom_assoc, π_comp_cokernelIsoOfEq_inv, π_comp_cokernelIsoOfEq_inv_assoc | 139 |
| Total | 223 |
| Name | Category | Theorems |
CokernelCofork 📖 | CompOp | — |
HasCokernel 📖 | MathDef | 11 mathmath: instHasCokernelFromSubtype, HasCokernels.has_colimit, instHasCokernelInr, instHasCokernelι, hasCokernel_comp_iso, CategoryTheory.Preadditive.hasCokernel_of_hasCoequalizer, CategoryTheory.ShortComplex.HasLeftHomology.hasCokernel, instHasCokernelMapOfPreservesColimitWalkingParallelPairParallelPairOfNatHom, CategoryTheory.ShortComplex.HasRightHomology.hasCokernel, hasCokernel_epi_comp, instHasCokernelInl
|
HasCokernels 📖 | CompData | 7 mathmath: CategoryTheory.NonPreadditiveAbelian.has_cokernels, ModuleCat.hasCokernels_moduleCat, CategoryTheory.AbelianOfAdjunction.hasCokernels, CategoryTheory.Abelian.has_cokernels, SemiNormedGrp.instHasCokernels, SemiNormedGrp₁.instHasCokernels, hasCokernels_of_hasCoequalizers
|
HasKernel 📖 | MathDef | 12 mathmath: CategoryTheory.Preadditive.hasKernel_of_hasEqualizer, instHasKernelSnd, instHasKernelFst, CategoryTheory.ShortComplex.HasLeftHomology.hasKernel, CategoryTheory.ShortComplex.HasRightHomology.hasKernel, CategoryTheory.Idempotents.isIdempotentComplete_iff_idempotents_have_kernels, HasKernels.has_limit, instHasKernelToSubtype, instHasKernelMapOfPreservesLimitWalkingParallelPairParallelPairOfNatHom, instHasKernelπ, hasKernel_iso_comp, hasKernel_comp_mono
|
HasKernels 📖 | CompData | 6 mathmath: CategoryTheory.NonPreadditiveAbelian.has_kernels, hasKernels_of_hasEqualizers, CategoryTheory.AbelianOfAdjunction.hasKernels, FDRep.instHasKernels, ModuleCat.hasKernels_moduleCat, CategoryTheory.Abelian.has_kernels
|
KernelFork 📖 | CompOp | — |
coker 📖 | CompOp | 5 mathmath: coker.π_app, coker_map, coker.condition_assoc, coker_obj, coker.condition
|
cokernel 📖 | CompOp | 176 mathmath: cokernelBiproductιIso_hom, CategoryTheory.kernelUnopOp_inv, CategoryTheory.Abelian.FunctorCategory.coimageImageComparison_app', CategoryTheory.ShortComplex.LeftHomologyData.ofHasKernelOfHasCokernel_H, CategoryTheory.ShortComplex.cokernel_π_comp_cokernelToAbelianCoimage_assoc, ModuleCat.cokernel_π_ext, cokernelImageι_inv, cokernel.map_zero, isIso_cokernel_map_of_isPushout, imageToKernel_unop, CategoryTheory.ShortComplex.abelianImageToKernel_comp_kernel_ι_comp_cokernel_π_assoc, cokernelCompIsIso_hom, CategoryTheory.ShortComplex.RightHomologyData.ofAbelian_H, ModuleCat.cokernel_π_cokernelIsoRangeQuotient_hom_apply, CategoryTheory.ShortComplex.abelianImageToKernel_comp_kernel_ι, CategoryTheory.ShortComplex.exact_iff_kernel_ι_comp_cokernel_π_zero, π_comp_cokernelIsoOfEq_hom_assoc, CategoryTheory.kernelCokernelCompSequence.inl_π_assoc, CategoryTheory.cokernelUnopUnop_inv, PreservesCokernel.π_iso_hom_assoc, CategoryTheory.kernelOpUnop_hom, cokernel.desc_epi, PreservesCokernel.iso_inv, CategoryTheory.kernelCokernelCompSequence.snakeInput_v₂₃_τ₃, CategoryTheory.ShortComplex.LeftHomologyData.ofAbelian_H, imageToKernel_op, coker_map, CategoryTheory.Abelian.instEpiFactorThruImage, CategoryTheory.Abelian.tfae_epi, CategoryTheory.cokernelOpOp_hom, cokernel.map_desc, CategoryTheory.kernelCokernelCompSequence.inr_π_assoc, CategoryTheory.Abelian.FunctorCategory.coimageImageComparison_app, cokernel.π_desc_assoc, cokernel.π_zero_isIso, cokernel_not_mono_of_nonzero, CategoryTheory.Abelian.im_map, CategoryTheory.ShortComplex.exact_iff_exact_image_ι, CategoryTheory.Abelian.subobjectIsoSubobjectOp_apply, CategoryTheory.kernelUnopUnop_inv, ModuleCat.cokernel_π_cokernelIsoRangeQuotient_hom, CategoryTheory.ShortComplex.cokernel_π_comp_cokernelToAbelianCoimage, CategoryTheory.Abelian.image_ι_comp_eq_zero, CategoryTheory.kernelOpUnop_inv, ModuleCat.cokernel_π_imageSubobject_ext, cokernel.condition, CategoryTheory.ShortComplex.Exact.mono_cokernelDesc, cokernel.map_id, CategoryTheory.ShortComplex.opcyclesIsoCokernel_inv, CategoryTheory.ShortComplex.exact_cokernel, CategoryTheory.cokernelUnopOp_hom, cokernelBiprodInlIso_inv, CategoryTheory.ShortComplex.RightHomologyData.ofAbelian_Q, CategoryTheory.NonPreadditiveAbelian.instEpiFactorThruImage, CategoryTheory.cokernel.π_unop, CategoryTheory.ShortComplex.instMonoAbelianImageToKernel, CategoryTheory.Abelian.mono_cokernel_map_of_isPullback, cokernel.mapIso_hom, CategoryTheory.Abelian.OfCoimageImageComparisonIsIso.imageMonoFactorisation_m, coker_obj, cokernelBiprodInrIso_inv, cokernelIsoOfEq_refl, CategoryTheory.kernelCokernelCompSequence.snakeInput_v₂₃_τ₂, cokernel.π_of_zero, CategoryTheory.Abelian.imageIsoImage_inv, CategoryTheory.kernelUnopOp_hom, CategoryTheory.cokernel.π_op, π_comp_cokernelIsoOfEq_inv_assoc, CategoryTheory.instIsIsoIndCoimageImageComparison, ModuleCat.range_mkQ_cokernelIsoRangeQuotient_inv, CategoryTheory.NonPreadditiveAbelian.epi_r, CategoryTheory.kernelCokernelCompSequence.inr_π, CategoryTheory.NonPreadditiveAbelian.isIso_r, cokernel.desc_zero, CategoryTheory.cokernelOpUnop_inv, CategoryTheory.Preadditive.epi_iff_isZero_cokernel, cokernelBiprodInrIso_hom, CategoryTheory.kernel.ι_unop, CategoryTheory.ShortComplex.RightHomologyData.ofHasCokernelOfHasKernel_H, CategoryTheory.ShortComplex.opcyclesIsoCokernel_hom, cokernel.condition_assoc, cokernelBiproductιIso_inv, cokernelBiproductFromSubtypeIso_hom, CategoryTheory.kernelCokernelCompSequence.instEpiπ, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₃_X₃, isZero_cokernel_of_epi, CategoryTheory.ObjectProperty.epiModSerre_iff, CategoryTheory.ShortComplex.kernel_ι_comp_cokernel_π_comp_cokernelToAbelianCoimage, instIsIsoCokernelComparison, preserves_cokernel_iso_comp_cokernel_map, π_comp_cokernelComparison_assoc, CategoryTheory.ShortComplex.LeftHomologyData.ofHasCokernel_H, cokernel.π_desc, cokernel_map_comp_cokernelComparison, cokernelComparison_map_desc, CategoryTheory.ShortComplex.RightHomologyData.ofAbelian_ι, CategoryTheory.Abelian.OfCoimageImageComparisonIsIso.imageMonoFactorisation_e', cokernelIsoOfEq_hom_comp_desc, CategoryTheory.ShortComplex.abelianImageToKernel_comp_kernel_ι_assoc, SemiNormedGrp.explicitCokernelIso_hom_π, cokernelEpiComp_inv, CategoryTheory.kernelUnopUnop_hom, CategoryTheory.ShortComplex.LeftHomologyData.ofAbelian_π, CategoryTheory.ShortComplex.HasRightHomology.hasKernel, cokernelIsoOfEq_inv_comp_desc, CategoryTheory.kernelCokernelCompSequence.δ_fac, CategoryTheory.ShortComplex.RightHomologyData.ofHasCokernelOfHasKernel_ι, cokernelIsoOfEq_trans, ModuleCat.range_mkQ_cokernelIsoRangeQuotient_inv_apply, CategoryTheory.ShortComplex.instEpiCokernelToAbelianCoimage, CategoryTheory.ComposableArrows.Exact.cokerIsoKer_hom_fac_assoc, CategoryTheory.ShortComplex.exact_iff_mono_cokernel_desc, kernel.of_cokernel_of_epi, CategoryTheory.Abelian.coimageImageComparisonFunctor_map, cokernelIsoOfEq_hom_comp_desc_assoc, CategoryTheory.cokernelUnopUnop_hom, cokernel.congr_inv, CategoryTheory.Abelian.imageIsoImage_hom_comp_image_ι, π_comp_cokernelComparison, CategoryTheory.cokernelOpUnop_hom, CategoryTheory.kernel.ι_op, CategoryTheory.ShortComplex.RightHomologyData.ofHasCokernelOfHasKernel_Q, CategoryTheory.kernelCokernelCompSequence.φ_π, CategoryTheory.NonPreadditiveAbelian.mono_r, CategoryTheory.ComposableArrows.Exact.cokerIsoKer_hom_fac, CategoryTheory.Abelian.FunctorCategory.coimageObjIso_inv, cokernelBiprodInlIso_hom, CategoryTheory.Abelian.image.ι_comp_eq_zero, CategoryTheory.Abelian.OfCoimageImageComparisonIsIso.imageMonoFactorisation_e, cokernel_map_comp_cokernelComparison_assoc, CategoryTheory.ShortComplex.abelianImageToKernel_comp_kernel_ι_comp_cokernel_π, CategoryTheory.ShortComplex.cokernelSequence_X₃, cokernelIsoOfEq_inv_comp_desc_assoc, CategoryTheory.Abelian.FunctorCategory.imageObjIso_hom, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₃_X₁, CategoryTheory.kernelOpOp_inv, PreservesCokernel.π_iso_hom, CategoryTheory.NonPreadditiveAbelian.diag_σ_assoc, CategoryTheory.Abelian.FunctorCategory.functor_category_isIso_coimageImageComparison, cokernel.π_of_epi, SemiNormedGrp.explicitCokernelIso_hom_desc, cokernel.π_desc_apply, CategoryTheory.kernelCokernelCompSequence.snakeInput_v₂₃_τ₁, CategoryTheory.Abelian.isIso_factorThruImage, cokernelCompIsIso_inv, CategoryTheory.NonPreadditiveAbelian.isIso_factorThruImage, CategoryTheory.cokernelUnopOp_inv, SemiNormedGrp.explicitCokernelIso_inv_π, CategoryTheory.kernelOpOp_hom, CategoryTheory.NonPreadditiveAbelian.lift_σ_assoc, π_comp_cokernelIsoOfEq_inv, preserves_cokernel_iso_comp_cokernel_map_assoc, cokernelZeroIsoTarget_hom, CategoryTheory.kernelCokernelCompSequence.inl_π, cokernelComparison_map_desc_assoc, CategoryTheory.Abelian.instIsIsoCoimageImageComparison, π_comp_cokernelIsoOfEq_hom, cokernelZeroIsoTarget_inv, CategoryTheory.Abelian.FunctorCategory.coimageObjIso_hom, cokernelBiproductFromSubtypeIso_inv, CategoryTheory.ComposableArrows.IsComplex.cokerToKer_fac, cokernelOrderHom_coe, instIsIsoMapOfEpi, CategoryTheory.Abelian.FunctorCategory.imageObjIso_inv, cokernel.mapIso_inv, cokernelEpiComp_hom, CategoryTheory.cokernel_zero_of_nonzero_to_simple, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₃_X₂, CategoryTheory.cokernelOpOp_inv, cokernelImageι_hom, cokernel.congr_hom, cokernel.of_kernel_of_mono, CategoryTheory.ComposableArrows.IsComplex.cokerToKer_fac_assoc, CategoryTheory.kernelCokernelCompSequence.φ_π_assoc, FGModuleCat.instIsIsoCoimageImageComparison, cokernel.condition_apply
|
cokernelCompIsIso 📖 | CompOp | 2 mathmath: cokernelCompIsIso_hom, cokernelCompIsIso_inv
|
cokernelComparison 📖 | CompOp | 10 mathmath: PreservesCokernel.iso_inv, instIsIsoCokernelComparison, π_comp_cokernelComparison_assoc, cokernel_map_comp_cokernelComparison, cokernelComparison_map_desc, π_comp_cokernelComparison, CategoryTheory.Abelian.FunctorCategory.coimageObjIso_inv, cokernel_map_comp_cokernelComparison_assoc, cokernelComparison_map_desc_assoc, CategoryTheory.Abelian.FunctorCategory.imageObjIso_inv
|
cokernelEpiComp 📖 | CompOp | 2 mathmath: cokernelEpiComp_inv, cokernelEpiComp_hom
|
cokernelImageι 📖 | CompOp | 2 mathmath: cokernelImageι_inv, cokernelImageι_hom
|
cokernelIsCokernel 📖 | CompOp | — |
cokernelIsoOfEq 📖 | CompOp | 10 mathmath: π_comp_cokernelIsoOfEq_hom_assoc, cokernelIsoOfEq_refl, π_comp_cokernelIsoOfEq_inv_assoc, cokernelIsoOfEq_hom_comp_desc, cokernelIsoOfEq_inv_comp_desc, cokernelIsoOfEq_trans, cokernelIsoOfEq_hom_comp_desc_assoc, cokernelIsoOfEq_inv_comp_desc_assoc, π_comp_cokernelIsoOfEq_inv, π_comp_cokernelIsoOfEq_hom
|
cokernelZeroIsoTarget 📖 | CompOp | 2 mathmath: cokernelZeroIsoTarget_hom, cokernelZeroIsoTarget_inv
|
compNatIso 📖 | CompOp | — |
isCokernelEpiComp 📖 | CompOp | 1 mathmath: isCokernelEpiComp_desc
|
isCokernelOfComp 📖 | CompOp | — |
isColimitAux 📖 | CompOp | — |
isKernelCompMono 📖 | CompOp | 1 mathmath: isKernelCompMono_lift
|
isKernelOfComp 📖 | CompOp | — |
isLimitAux 📖 | CompOp | — |
isoOfι 📖 | CompOp | — |
isoOfπ 📖 | CompOp | — |
ker 📖 | CompOp | 5 mathmath: ker.ι_app, ker_obj, ker.condition, ker.condition_assoc, ker_map
|
kernel 📖 | CompOp | 204 mathmath: CategoryTheory.kernelCokernelCompSequence.snakeInput_v₀₁_τ₂, CategoryTheory.kernelUnopOp_inv, CategoryTheory.Abelian.FunctorCategory.coimageImageComparison_app', CategoryTheory.kernelCokernelCompSequence.snakeInput_L₀_X₁, kernelIsoOfEq_trans, CategoryTheory.ShortComplex.Exact.epi_kernelLift, CategoryTheory.ShortComplex.LeftHomologyData.ofHasKernelOfHasCokernel_H, CategoryTheory.ShortComplex.cokernel_π_comp_cokernelToAbelianCoimage_assoc, CategoryTheory.ShortComplex.LeftHomologyData.ofAbelian_K, CategoryTheory.IsGrothendieckAbelian.IsPresentable.injectivity₀.F_obj, imageToKernel_unop, CategoryTheory.ShortComplex.abelianImageToKernel_comp_kernel_ι_comp_cokernel_π_assoc, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₀_X₂, kernelBiprodSndIso_hom, CategoryTheory.ShortComplex.RightHomologyData.ofAbelian_H, CategoryTheory.ShortComplex.abelianImageToKernel_comp_kernel_ι, imageToKernel'_kernelSubobjectIso, CategoryTheory.ShortComplex.exact_iff_kernel_ι_comp_cokernel_π_zero, CategoryTheory.ShortComplex.LeftHomologyData.ofHasKernelOfHasCokernel_K, kernelSubobject_arrow'_apply, PresheafOfModules.toFreeYonedaCoproduct_fromFreeYonedaCoproduct, CategoryTheory.ShortComplex.exact_iff_isIso_imageToKernel', PreservesKernel.iso_inv_ι, kernel_not_epi_of_nonzero, CategoryTheory.cokernelUnopUnop_inv, CategoryTheory.kernelOpUnop_hom, isZero_kernel_of_mono, kernel.condition_apply, kernel.congr_inv, CategoryTheory.ShortComplex.LeftHomologyData.ofAbelian_H, imageToKernel_op, kernelBiprodFstIso_hom, kernelFactorThruImage_hom_comp_ι_assoc, CategoryTheory.Abelian.coim_map, CategoryTheory.kernel_zero_of_nonzero_from_simple, CategoryTheory.NonPreadditiveAbelian.isIso_factorThruCoimage, kernelBiproductπIso_hom, kernelCompMono_hom, CategoryTheory.cokernelOpOp_hom, kernel_map_comp_preserves_kernel_iso_inv_assoc, kernelSubobject_arrow_assoc, CategoryTheory.kernelCokernelCompSequence.ι_φ, CategoryTheory.Abelian.LeftResolution.map_chainComplex_d, kernelIsoOfEq_hom_comp_ι, CategoryTheory.Abelian.FunctorCategory.coimageImageComparison_app, kernelComparison_comp_ι, instIsIsoMapOfMono, CategoryTheory.kernelCokernelCompSequence.ι_fst_assoc, lift_comp_kernelIsoOfEq_hom_assoc, kernel.mapIso_hom, kernel.lift_ι_apply, PreservesKernel.iso_inv_ι_assoc, CategoryTheory.kernelUnopUnop_inv, CategoryTheory.ShortComplex.cokernel_π_comp_cokernelToAbelianCoimage, CategoryTheory.kernelCokernelCompSequence.ι_fst, CategoryTheory.kernelOpUnop_inv, kernelBiprodFstIso_inv, kernelBiproductToSubtypeIso_hom, kernelComparison_comp_kernel_map_assoc, CategoryTheory.Abelian.LeftResolution.chainComplexMap_f_1, lift_comp_kernelIsoOfEq_hom, kernelIsIsoComp_hom, CategoryTheory.cokernelUnopOp_hom, ker_obj, CategoryTheory.Abelian.instMonoFactorThruCoimage, kernel.map_zero, kernel.ι_of_mono, kernelIsIsoComp_inv, CategoryTheory.cokernel.π_unop, CategoryTheory.ShortComplex.instMonoAbelianImageToKernel, kernelSubobjectIso_comp_kernel_map, CategoryTheory.Abelian.epi_kernel_map_of_isPushout, CategoryTheory.ShortComplex.cyclesIsoKernel_hom, ModuleCat.kernelIsoKer_inv_kernel_ι_apply, CategoryTheory.ShortComplex.kernelSequence_X₁, kernel.lift_mono, kernel.lift_map, kernel.lift_ι_assoc, kernelComparison_comp_ι_assoc, CategoryTheory.kernelCokernelCompSequence.ι_snd, PresheafOfModules.toFreeYonedaCoproduct_fromFreeYonedaCoproduct_assoc, CategoryTheory.kernelUnopOp_hom, CategoryTheory.kernelCokernelCompSequence.ι_snd_assoc, CategoryTheory.ShortComplex.exact_kernel, CategoryTheory.cokernel.π_op, CategoryTheory.instIsIsoIndCoimageImageComparison, kernel.ι_of_zero, CategoryTheory.cokernelOpUnop_inv, kernelOrderHom_coe, instIsIsoKernelComparison, kernelIsoOfEq_hom_comp_ι_assoc, kernel.condition, CategoryTheory.kernel.ι_unop, CategoryTheory.ShortComplex.RightHomologyData.ofHasCokernelOfHasKernel_H, CategoryTheory.IsGrothendieckAbelian.IsPresentable.injectivity₀.F_map, CategoryTheory.Abelian.factorThruImage_comp_coimageIsoImage'_inv, CategoryTheory.ObjectProperty.monoModSerre_iff, kernelBiproductπIso_inv, CategoryTheory.ShortComplex.kernel_ι_comp_cokernel_π_comp_cokernelToAbelianCoimage, kernelSubobjectIso_comp_kernel_map_assoc, AddCommGrpCat.kernelIsoKer_inv_comp_ι, map_lift_kernelComparison, kernelSubobject_arrow, CategoryTheory.ShortComplex.RightHomologyData.ofAbelian_ι, SheafOfModules.Presentation.map_relations_I, kernelComparison_comp_kernel_map, imageSubobjectIso_imageToKernel', CategoryTheory.Abelian.OfCoimageImageComparisonIsIso.imageMonoFactorisation_e', ModuleCat.kernelIsoKer_hom_ker_subtype, SheafOfModules.Presentation.mapRelations_mapGenerators, CategoryTheory.ShortComplex.abelianImageToKernel_comp_kernel_ι_assoc, kernel.ι_zero_isIso, SheafOfModules.relationsOfIsCokernelFree_I, PreservesKernel.iso_hom, CategoryTheory.kernelUnopUnop_hom, CategoryTheory.ShortComplex.LeftHomologyData.ofAbelian_π, kernel.map_id, kernel_map_comp_preserves_kernel_iso_inv, CategoryTheory.kernelCokernelCompSequence.δ_fac, CategoryTheory.Preadditive.mono_iff_isZero_kernel, CategoryTheory.ShortComplex.instEpiCokernelToAbelianCoimage, ModuleCat.kernelIsoKer_hom_ker_subtype_apply, kernelFactorThruImage_inv_comp_ι, CategoryTheory.IsGrothendieckAbelian.GabrielPopescuAux.kernel_ι_d_comp_d, CategoryTheory.ComposableArrows.Exact.cokerIsoKer_hom_fac_assoc, kernel.of_cokernel_of_epi, kernel_map_comp_kernelSubobjectIso_inv, CategoryTheory.Abelian.coimageImageComparisonFunctor_map, SheafOfModules.Presentation.of_isIso_relations, CategoryTheory.cokernelUnopUnop_hom, SheafOfModules.Presentation.mapRelations_mapGenerators_assoc, CategoryTheory.Abelian.coimage.comp_π_eq_zero, map_lift_kernelComparison_assoc, CategoryTheory.kernelCokernelCompSequence.snakeInput_v₀₁_τ₁, kernelSubobject_arrow'_assoc, CategoryTheory.ShortComplex.HasLeftHomology.hasCokernel, kernelZeroIsoSource_hom, CategoryTheory.Abelian.coimageIsoImage'_hom, CategoryTheory.cokernelOpUnop_hom, MonoFactorisation.kernel_ι_comp, CategoryTheory.kernelCokernelCompSequence.snakeInput_v₀₁_τ₃, CategoryTheory.kernel.ι_op, CategoryTheory.ShortComplex.LeftHomologyData.ofHasKernelOfHasCokernel_π, CategoryTheory.ComposableArrows.Exact.cokerIsoKer_hom_fac, CategoryTheory.Abelian.FunctorCategory.coimageObjIso_inv, kernel.condition_assoc, kernelIsoOfEq_inv_comp_ι, CategoryTheory.ShortComplex.exact_iff_epi_kernel_lift, CategoryTheory.ShortComplex.abelianImageToKernel_comp_kernel_ι_comp_cokernel_π, kernelIsoOfEq_inv_comp_ι_assoc, kernelZeroIsoSource_inv, kernelBiprodSndIso_inv, CategoryTheory.Abelian.FunctorCategory.imageObjIso_hom, SheafOfModules.relationsOfIsCokernelFree_s, AddCommGrpCat.kernelIsoKer_hom_comp_subtype, kernel.lift_ι, CategoryTheory.kernelOpOp_inv, CategoryTheory.ShortComplex.RightHomologyData.ofHasKernel_H, CategoryTheory.Abelian.tfae_mono, CategoryTheory.NonPreadditiveAbelian.instMonoFactorThruCoimage, CategoryTheory.ShortComplex.exact_iff_exact_coimage_π, CategoryTheory.Abelian.LeftResolution.map_chainComplex_d_1_0, CategoryTheory.Abelian.FunctorCategory.functor_category_isIso_coimageImageComparison, kernel_map_comp_kernelSubobjectIso_inv_assoc, kernelSubobject_arrow_apply, SheafOfModules.Presentation.IsFinite.finite_relations, kernelFactorThruImage_hom_comp_ι, CategoryTheory.Abelian.LeftResolution.chainComplexMap_f_succ_succ, CategoryTheory.cokernelUnopOp_inv, kernelIsoOfEq_refl, isIso_kernel_map_of_isPullback, kernelFactorThruImage_inv_comp_ι_assoc, CategoryTheory.kernelOpOp_hom, CategoryTheory.Abelian.LeftResolution.map_chainComplex_d_1_0_assoc, kernel.lift_zero, CategoryTheory.IsGrothendieckAbelian.IsPresentable.injectivity₀.hf, CategoryTheory.ShortComplex.Exact.isIso_imageToKernel', CategoryTheory.kernelCokernelCompSequence.snakeInput_L₀_X₃, CategoryTheory.Abelian.instIsIsoCoimageImageComparison, factorThruKernelSubobject_comp_kernelSubobjectIso, kernel.congr_hom, lift_comp_kernelIsoOfEq_inv, ModuleCat.kernelIsoKer_inv_kernel_ι, kernel.mapIso_inv, CategoryTheory.Abelian.FunctorCategory.coimageObjIso_hom, CategoryTheory.Abelian.subobjectIsoSubobjectOp_symm_apply, CategoryTheory.ComposableArrows.IsComplex.cokerToKer_fac, CategoryTheory.ShortComplex.cyclesIsoKernel_inv, kernelCompMono_inv, CategoryTheory.ShortComplex.exact_iff_epi_imageToKernel', CategoryTheory.Abelian.isIso_factorThruCoimage, lift_comp_kernelIsoOfEq_inv_assoc, CategoryTheory.Abelian.comp_coimage_π_eq_zero, kernelBiproductToSubtypeIso_inv, CategoryTheory.Abelian.FunctorCategory.imageObjIso_inv, kernelSubobject_arrow', CategoryTheory.IsGrothendieckAbelian.IsPresentable.injectivity₀.epi_f, CategoryTheory.kernelCokernelCompSequence.instMonoι, CategoryTheory.cokernelOpOp_inv, CategoryTheory.kernelCokernelCompSequence.ι_φ_assoc, cokernel.of_kernel_of_mono, ker_map, CategoryTheory.ComposableArrows.IsComplex.cokerToKer_fac_assoc, FGModuleCat.instIsIsoCoimageImageComparison
|
kernelCompMono 📖 | CompOp | 3 mathmath: kernelCompMono_hom, SheafOfModules.Presentation.of_isIso_relations, kernelCompMono_inv
|
kernelComparison 📖 | CompOp | 10 mathmath: kernelComparison_comp_ι, kernelComparison_comp_kernel_map_assoc, kernelComparison_comp_ι_assoc, instIsIsoKernelComparison, map_lift_kernelComparison, kernelComparison_comp_kernel_map, PreservesKernel.iso_hom, map_lift_kernelComparison_assoc, CategoryTheory.Abelian.FunctorCategory.imageObjIso_hom, CategoryTheory.Abelian.FunctorCategory.coimageObjIso_hom
|
kernelFactorThruImage 📖 | CompOp | 4 mathmath: kernelFactorThruImage_hom_comp_ι_assoc, kernelFactorThruImage_inv_comp_ι, kernelFactorThruImage_hom_comp_ι, kernelFactorThruImage_inv_comp_ι_assoc
|
kernelIsIsoComp 📖 | CompOp | 2 mathmath: kernelIsIsoComp_hom, kernelIsIsoComp_inv
|
kernelIsKernel 📖 | CompOp | — |
kernelIsoOfEq 📖 | CompOp | 10 mathmath: kernelIsoOfEq_trans, kernelIsoOfEq_hom_comp_ι, lift_comp_kernelIsoOfEq_hom_assoc, lift_comp_kernelIsoOfEq_hom, kernelIsoOfEq_hom_comp_ι_assoc, kernelIsoOfEq_inv_comp_ι, kernelIsoOfEq_inv_comp_ι_assoc, kernelIsoOfEq_refl, lift_comp_kernelIsoOfEq_inv, lift_comp_kernelIsoOfEq_inv_assoc
|
kernelZeroIsoSource 📖 | CompOp | 2 mathmath: kernelZeroIsoSource_hom, kernelZeroIsoSource_inv
|
ofιCongr 📖 | CompOp | — |
ofπCongr 📖 | CompOp | — |
zeroCokernelOfZeroCancel 📖 | CompOp | — |
zeroKernelOfCancelZero 📖 | CompOp | — |