Documentation Verification Report

Kernels

📁 Source: Mathlib/CategoryTheory/Limits/Shapes/Kernels.lean

Statistics

MetricCount
DefinitionsCokernelCofork, desc', ofEpiOfIsZero, ofId, ofπ, ofπ', isColimitOfIsColimitOfIff, isColimitOfIsColimitOfIff', mapIsoOfIsColimit, mapOfIsColimit, ofπ, HasCokernel, HasCokernels, HasKernel, HasKernels, cokernelIso, ofIso, ofIsoComp, isoKernel, ofCompIso, ofIso, KernelFork, lift', ofId, ofMonoOfIsZero, ofι, ofι', isLimitOfIsLimitOfIff, isLimitOfIsLimitOfIff', mapIsoOfIsLimit, mapOfIsLimit, ofι, coker, π, cokernel, cokernelIso, desc, desc', isColimitCoconeZeroCocone, map, mapIso, ofEpi, ofIsoComp, zeroCokernelCofork, π, cokernelCompIsIso, cokernelComparison, cokernelEpiComp, cokernelImageι, cokernelIsCokernel, cokernelIsoOfEq, cokernelZeroIsoTarget, compNatIso, isCokernelEpiComp, isCokernelOfComp, isColimitAux, isKernelCompMono, isKernelOfComp, isLimitAux, isoOfι, isoOfπ, ker, ι, kernel, isLimitConeZeroCone, isoKernel, lift', map, mapIso, ofCompIso, ofMono, zeroKernelFork, ι, kernelCompMono, kernelComparison, kernelFactorThruImage, kernelIsIsoComp, kernelIsKernel, kernelIsoOfEq, kernelZeroIsoSource, ofιCongr, ofπCongr, zeroCokernelOfZeroCancel, zeroKernelOfCancelZero
84
TheoremsisIso_π, isZero_of_epi, condition, condition_assoc, mapIsoOfIsColimit_hom, mapIsoOfIsColimit_inv, π_eq_zero, π_mapOfIsColimit, π_mapOfIsColimit_assoc, π_ofπ, has_colimit, has_limit, isIso_ι, isZero_of_mono, app_one, condition, condition_assoc, mapIsoOfIsLimit_hom, mapIsoOfIsLimit_inv, mapOfIsLimit_ι, mapOfIsLimit_ι_assoc, ι_ofι, kernel_ι_comp, coequalizer_as_cokernel, condition, condition_assoc, π_app, coker_map, coker_obj, condition, condition_assoc, congr_hom, congr_inv, desc_epi, desc_zero, mapIso_hom, mapIso_inv, map_desc, map_id, map_zero, of_kernel_of_mono, π_desc, π_desc_assoc, π_of_epi, π_of_zero, π_zero_isIso, cokernelCompIsIso_hom, cokernelCompIsIso_inv, cokernelComparison_map_desc, cokernelComparison_map_desc_assoc, cokernelEpiComp_hom, cokernelEpiComp_inv, cokernelImageι_hom, cokernelImageι_inv, cokernelIsoOfEq_hom_comp_desc, cokernelIsoOfEq_hom_comp_desc_assoc, cokernelIsoOfEq_inv_comp_desc, cokernelIsoOfEq_inv_comp_desc_assoc, cokernelIsoOfEq_refl, cokernelIsoOfEq_trans, cokernelZeroIsoTarget_hom, cokernelZeroIsoTarget_inv, cokernel_map_comp_cokernelComparison, cokernel_map_comp_cokernelComparison_assoc, cokernel_not_iso_of_nonzero, cokernel_not_mono_of_nonzero, colimit_ι_zero_cokernel_desc, colimit_ι_zero_cokernel_desc_assoc, eq_zero_of_epi_kernel, eq_zero_of_mono_cokernel, equalizer_as_kernel, hasCokernel_comp_iso, hasCokernel_epi_comp, hasCokernels_of_hasCoequalizers, hasKernel_comp_mono, hasKernel_iso_comp, hasKernels_of_hasEqualizers, instIsIsoMapOfEpi, instIsIsoMapOfMono, isCokernelEpiComp_desc, isKernelCompMono_lift, isZero_cokernel_of_epi, isZero_kernel_of_mono, condition, condition_assoc, ι_app, ker_map, ker_obj, condition, condition_assoc, congr_hom, congr_inv, lift_map, lift_mono, lift_zero, lift_ι, lift_ι_assoc, mapIso_hom, mapIso_inv, map_id, map_zero, of_cokernel_of_epi, ι_of_mono, ι_of_zero, ι_zero_isIso, kernelCompMono_hom, kernelCompMono_inv, kernelComparison_comp_kernel_map, kernelComparison_comp_kernel_map_assoc, kernelComparison_comp_ι, kernelComparison_comp_ι_assoc, kernelFactorThruImage_hom_comp_ι, kernelFactorThruImage_hom_comp_ι_assoc, kernelFactorThruImage_inv_comp_ι, kernelFactorThruImage_inv_comp_ι_assoc, kernelIsIsoComp_hom, kernelIsIsoComp_inv, kernelIsoOfEq_hom_comp_ι, kernelIsoOfEq_hom_comp_ι_assoc, kernelIsoOfEq_inv_comp_ι, kernelIsoOfEq_inv_comp_ι_assoc, kernelIsoOfEq_refl, kernelIsoOfEq_trans, kernelZeroIsoSource_hom, kernelZeroIsoSource_inv, kernel_not_epi_of_nonzero, kernel_not_iso_of_nonzero, lift_comp_kernelIsoOfEq_hom, lift_comp_kernelIsoOfEq_hom_assoc, lift_comp_kernelIsoOfEq_inv, lift_comp_kernelIsoOfEq_inv_assoc, map_lift_kernelComparison, map_lift_kernelComparison_assoc, π_comp_cokernelComparison, π_comp_cokernelComparison_assoc, π_comp_cokernelIsoOfEq_hom, π_comp_cokernelIsoOfEq_hom_assoc, π_comp_cokernelIsoOfEq_inv, π_comp_cokernelIsoOfEq_inv_assoc
139
Total223

CategoryTheory.Limits

Definitions

NameCategoryTheorems
CokernelCofork 📖CompOp
HasCokernel 📖MathDef
11 mathmath: instHasCokernelFromSubtype, HasCokernels.has_colimit, instHasCokernelInr, instHasCokernelι, hasCokernel_comp_iso, CategoryTheory.Preadditive.hasCokernel_of_hasCoequalizer, CategoryTheory.ShortComplex.HasLeftHomology.hasCokernel, instHasCokernelMapOfPreservesColimitWalkingParallelPairParallelPairOfNatHom, CategoryTheory.ShortComplex.HasRightHomology.hasCokernel, hasCokernel_epi_comp, instHasCokernelInl
HasCokernels 📖CompData
7 mathmath: CategoryTheory.NonPreadditiveAbelian.has_cokernels, ModuleCat.hasCokernels_moduleCat, CategoryTheory.AbelianOfAdjunction.hasCokernels, CategoryTheory.Abelian.has_cokernels, SemiNormedGrp.instHasCokernels, SemiNormedGrp₁.instHasCokernels, hasCokernels_of_hasCoequalizers
HasKernel 📖MathDef
12 mathmath: CategoryTheory.Preadditive.hasKernel_of_hasEqualizer, instHasKernelSnd, instHasKernelFst, CategoryTheory.ShortComplex.HasLeftHomology.hasKernel, CategoryTheory.ShortComplex.HasRightHomology.hasKernel, CategoryTheory.Idempotents.isIdempotentComplete_iff_idempotents_have_kernels, HasKernels.has_limit, instHasKernelToSubtype, instHasKernelMapOfPreservesLimitWalkingParallelPairParallelPairOfNatHom, instHasKernelπ, hasKernel_iso_comp, hasKernel_comp_mono
HasKernels 📖CompData
6 mathmath: CategoryTheory.NonPreadditiveAbelian.has_kernels, hasKernels_of_hasEqualizers, CategoryTheory.AbelianOfAdjunction.hasKernels, FDRep.instHasKernels, ModuleCat.hasKernels_moduleCat, CategoryTheory.Abelian.has_kernels
KernelFork 📖CompOp
coker 📖CompOp
5 mathmath: coker.π_app, coker_map, coker.condition_assoc, coker_obj, coker.condition
cokernel 📖CompOp
176 mathmath: cokernelBiproductιIso_hom, CategoryTheory.kernelUnopOp_inv, CategoryTheory.Abelian.FunctorCategory.coimageImageComparison_app', CategoryTheory.ShortComplex.LeftHomologyData.ofHasKernelOfHasCokernel_H, CategoryTheory.ShortComplex.cokernel_π_comp_cokernelToAbelianCoimage_assoc, ModuleCat.cokernel_π_ext, cokernelImageι_inv, cokernel.map_zero, isIso_cokernel_map_of_isPushout, imageToKernel_unop, CategoryTheory.ShortComplex.abelianImageToKernel_comp_kernel_ι_comp_cokernel_π_assoc, cokernelCompIsIso_hom, CategoryTheory.ShortComplex.RightHomologyData.ofAbelian_H, ModuleCat.cokernel_π_cokernelIsoRangeQuotient_hom_apply, CategoryTheory.ShortComplex.abelianImageToKernel_comp_kernel_ι, CategoryTheory.ShortComplex.exact_iff_kernel_ι_comp_cokernel_π_zero, π_comp_cokernelIsoOfEq_hom_assoc, CategoryTheory.kernelCokernelCompSequence.inl_π_assoc, CategoryTheory.cokernelUnopUnop_inv, PreservesCokernel.π_iso_hom_assoc, CategoryTheory.kernelOpUnop_hom, cokernel.desc_epi, PreservesCokernel.iso_inv, CategoryTheory.kernelCokernelCompSequence.snakeInput_v₂₃_τ₃, CategoryTheory.ShortComplex.LeftHomologyData.ofAbelian_H, imageToKernel_op, coker_map, CategoryTheory.Abelian.instEpiFactorThruImage, CategoryTheory.Abelian.tfae_epi, CategoryTheory.cokernelOpOp_hom, cokernel.map_desc, CategoryTheory.kernelCokernelCompSequence.inr_π_assoc, CategoryTheory.Abelian.FunctorCategory.coimageImageComparison_app, cokernel.π_desc_assoc, cokernel.π_zero_isIso, cokernel_not_mono_of_nonzero, CategoryTheory.Abelian.im_map, CategoryTheory.ShortComplex.exact_iff_exact_image_ι, CategoryTheory.Abelian.subobjectIsoSubobjectOp_apply, CategoryTheory.kernelUnopUnop_inv, ModuleCat.cokernel_π_cokernelIsoRangeQuotient_hom, CategoryTheory.ShortComplex.cokernel_π_comp_cokernelToAbelianCoimage, CategoryTheory.Abelian.image_ι_comp_eq_zero, CategoryTheory.kernelOpUnop_inv, ModuleCat.cokernel_π_imageSubobject_ext, cokernel.condition, CategoryTheory.ShortComplex.Exact.mono_cokernelDesc, cokernel.map_id, CategoryTheory.ShortComplex.opcyclesIsoCokernel_inv, CategoryTheory.ShortComplex.exact_cokernel, CategoryTheory.cokernelUnopOp_hom, cokernelBiprodInlIso_inv, CategoryTheory.ShortComplex.RightHomologyData.ofAbelian_Q, CategoryTheory.NonPreadditiveAbelian.instEpiFactorThruImage, CategoryTheory.cokernel.π_unop, CategoryTheory.ShortComplex.instMonoAbelianImageToKernel, CategoryTheory.Abelian.mono_cokernel_map_of_isPullback, cokernel.mapIso_hom, CategoryTheory.Abelian.OfCoimageImageComparisonIsIso.imageMonoFactorisation_m, coker_obj, cokernelBiprodInrIso_inv, cokernelIsoOfEq_refl, CategoryTheory.kernelCokernelCompSequence.snakeInput_v₂₃_τ₂, cokernel.π_of_zero, CategoryTheory.Abelian.imageIsoImage_inv, CategoryTheory.kernelUnopOp_hom, CategoryTheory.cokernel.π_op, π_comp_cokernelIsoOfEq_inv_assoc, CategoryTheory.instIsIsoIndCoimageImageComparison, ModuleCat.range_mkQ_cokernelIsoRangeQuotient_inv, CategoryTheory.NonPreadditiveAbelian.epi_r, CategoryTheory.kernelCokernelCompSequence.inr_π, CategoryTheory.NonPreadditiveAbelian.isIso_r, cokernel.desc_zero, CategoryTheory.cokernelOpUnop_inv, CategoryTheory.Preadditive.epi_iff_isZero_cokernel, cokernelBiprodInrIso_hom, CategoryTheory.kernel.ι_unop, CategoryTheory.ShortComplex.RightHomologyData.ofHasCokernelOfHasKernel_H, CategoryTheory.ShortComplex.opcyclesIsoCokernel_hom, cokernel.condition_assoc, cokernelBiproductιIso_inv, cokernelBiproductFromSubtypeIso_hom, CategoryTheory.kernelCokernelCompSequence.instEpiπ, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₃_X₃, isZero_cokernel_of_epi, CategoryTheory.ObjectProperty.epiModSerre_iff, CategoryTheory.ShortComplex.kernel_ι_comp_cokernel_π_comp_cokernelToAbelianCoimage, instIsIsoCokernelComparison, preserves_cokernel_iso_comp_cokernel_map, π_comp_cokernelComparison_assoc, CategoryTheory.ShortComplex.LeftHomologyData.ofHasCokernel_H, cokernel.π_desc, cokernel_map_comp_cokernelComparison, cokernelComparison_map_desc, CategoryTheory.ShortComplex.RightHomologyData.ofAbelian_ι, CategoryTheory.Abelian.OfCoimageImageComparisonIsIso.imageMonoFactorisation_e', cokernelIsoOfEq_hom_comp_desc, CategoryTheory.ShortComplex.abelianImageToKernel_comp_kernel_ι_assoc, SemiNormedGrp.explicitCokernelIso_hom_π, cokernelEpiComp_inv, CategoryTheory.kernelUnopUnop_hom, CategoryTheory.ShortComplex.LeftHomologyData.ofAbelian_π, CategoryTheory.ShortComplex.HasRightHomology.hasKernel, cokernelIsoOfEq_inv_comp_desc, CategoryTheory.kernelCokernelCompSequence.δ_fac, CategoryTheory.ShortComplex.RightHomologyData.ofHasCokernelOfHasKernel_ι, cokernelIsoOfEq_trans, ModuleCat.range_mkQ_cokernelIsoRangeQuotient_inv_apply, CategoryTheory.ShortComplex.instEpiCokernelToAbelianCoimage, CategoryTheory.ComposableArrows.Exact.cokerIsoKer_hom_fac_assoc, CategoryTheory.ShortComplex.exact_iff_mono_cokernel_desc, kernel.of_cokernel_of_epi, CategoryTheory.Abelian.coimageImageComparisonFunctor_map, cokernelIsoOfEq_hom_comp_desc_assoc, CategoryTheory.cokernelUnopUnop_hom, cokernel.congr_inv, CategoryTheory.Abelian.imageIsoImage_hom_comp_image_ι, π_comp_cokernelComparison, CategoryTheory.cokernelOpUnop_hom, CategoryTheory.kernel.ι_op, CategoryTheory.ShortComplex.RightHomologyData.ofHasCokernelOfHasKernel_Q, CategoryTheory.kernelCokernelCompSequence.φ_π, CategoryTheory.NonPreadditiveAbelian.mono_r, CategoryTheory.ComposableArrows.Exact.cokerIsoKer_hom_fac, CategoryTheory.Abelian.FunctorCategory.coimageObjIso_inv, cokernelBiprodInlIso_hom, CategoryTheory.Abelian.image.ι_comp_eq_zero, CategoryTheory.Abelian.OfCoimageImageComparisonIsIso.imageMonoFactorisation_e, cokernel_map_comp_cokernelComparison_assoc, CategoryTheory.ShortComplex.abelianImageToKernel_comp_kernel_ι_comp_cokernel_π, CategoryTheory.ShortComplex.cokernelSequence_X₃, cokernelIsoOfEq_inv_comp_desc_assoc, CategoryTheory.Abelian.FunctorCategory.imageObjIso_hom, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₃_X₁, CategoryTheory.kernelOpOp_inv, PreservesCokernel.π_iso_hom, CategoryTheory.NonPreadditiveAbelian.diag_σ_assoc, CategoryTheory.Abelian.FunctorCategory.functor_category_isIso_coimageImageComparison, cokernel.π_of_epi, SemiNormedGrp.explicitCokernelIso_hom_desc, cokernel.π_desc_apply, CategoryTheory.kernelCokernelCompSequence.snakeInput_v₂₃_τ₁, CategoryTheory.Abelian.isIso_factorThruImage, cokernelCompIsIso_inv, CategoryTheory.NonPreadditiveAbelian.isIso_factorThruImage, CategoryTheory.cokernelUnopOp_inv, SemiNormedGrp.explicitCokernelIso_inv_π, CategoryTheory.kernelOpOp_hom, CategoryTheory.NonPreadditiveAbelian.lift_σ_assoc, π_comp_cokernelIsoOfEq_inv, preserves_cokernel_iso_comp_cokernel_map_assoc, cokernelZeroIsoTarget_hom, CategoryTheory.kernelCokernelCompSequence.inl_π, cokernelComparison_map_desc_assoc, CategoryTheory.Abelian.instIsIsoCoimageImageComparison, π_comp_cokernelIsoOfEq_hom, cokernelZeroIsoTarget_inv, CategoryTheory.Abelian.FunctorCategory.coimageObjIso_hom, cokernelBiproductFromSubtypeIso_inv, CategoryTheory.ComposableArrows.IsComplex.cokerToKer_fac, cokernelOrderHom_coe, instIsIsoMapOfEpi, CategoryTheory.Abelian.FunctorCategory.imageObjIso_inv, cokernel.mapIso_inv, cokernelEpiComp_hom, CategoryTheory.cokernel_zero_of_nonzero_to_simple, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₃_X₂, CategoryTheory.cokernelOpOp_inv, cokernelImageι_hom, cokernel.congr_hom, cokernel.of_kernel_of_mono, CategoryTheory.ComposableArrows.IsComplex.cokerToKer_fac_assoc, CategoryTheory.kernelCokernelCompSequence.φ_π_assoc, FGModuleCat.instIsIsoCoimageImageComparison, cokernel.condition_apply
cokernelCompIsIso 📖CompOp
2 mathmath: cokernelCompIsIso_hom, cokernelCompIsIso_inv
cokernelComparison 📖CompOp
10 mathmath: PreservesCokernel.iso_inv, instIsIsoCokernelComparison, π_comp_cokernelComparison_assoc, cokernel_map_comp_cokernelComparison, cokernelComparison_map_desc, π_comp_cokernelComparison, CategoryTheory.Abelian.FunctorCategory.coimageObjIso_inv, cokernel_map_comp_cokernelComparison_assoc, cokernelComparison_map_desc_assoc, CategoryTheory.Abelian.FunctorCategory.imageObjIso_inv
cokernelEpiComp 📖CompOp
2 mathmath: cokernelEpiComp_inv, cokernelEpiComp_hom
cokernelImageι 📖CompOp
2 mathmath: cokernelImageι_inv, cokernelImageι_hom
cokernelIsCokernel 📖CompOp
cokernelIsoOfEq 📖CompOp
10 mathmath: π_comp_cokernelIsoOfEq_hom_assoc, cokernelIsoOfEq_refl, π_comp_cokernelIsoOfEq_inv_assoc, cokernelIsoOfEq_hom_comp_desc, cokernelIsoOfEq_inv_comp_desc, cokernelIsoOfEq_trans, cokernelIsoOfEq_hom_comp_desc_assoc, cokernelIsoOfEq_inv_comp_desc_assoc, π_comp_cokernelIsoOfEq_inv, π_comp_cokernelIsoOfEq_hom
cokernelZeroIsoTarget 📖CompOp
2 mathmath: cokernelZeroIsoTarget_hom, cokernelZeroIsoTarget_inv
compNatIso 📖CompOp
isCokernelEpiComp 📖CompOp
1 mathmath: isCokernelEpiComp_desc
isCokernelOfComp 📖CompOp
isColimitAux 📖CompOp
isKernelCompMono 📖CompOp
1 mathmath: isKernelCompMono_lift
isKernelOfComp 📖CompOp
isLimitAux 📖CompOp
isoOfι 📖CompOp
isoOfπ 📖CompOp
ker 📖CompOp
5 mathmath: ker.ι_app, ker_obj, ker.condition, ker.condition_assoc, ker_map
kernel 📖CompOp
204 mathmath: CategoryTheory.kernelCokernelCompSequence.snakeInput_v₀₁_τ₂, CategoryTheory.kernelUnopOp_inv, CategoryTheory.Abelian.FunctorCategory.coimageImageComparison_app', CategoryTheory.kernelCokernelCompSequence.snakeInput_L₀_X₁, kernelIsoOfEq_trans, CategoryTheory.ShortComplex.Exact.epi_kernelLift, CategoryTheory.ShortComplex.LeftHomologyData.ofHasKernelOfHasCokernel_H, CategoryTheory.ShortComplex.cokernel_π_comp_cokernelToAbelianCoimage_assoc, CategoryTheory.ShortComplex.LeftHomologyData.ofAbelian_K, CategoryTheory.IsGrothendieckAbelian.IsPresentable.injectivity₀.F_obj, imageToKernel_unop, CategoryTheory.ShortComplex.abelianImageToKernel_comp_kernel_ι_comp_cokernel_π_assoc, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₀_X₂, kernelBiprodSndIso_hom, CategoryTheory.ShortComplex.RightHomologyData.ofAbelian_H, CategoryTheory.ShortComplex.abelianImageToKernel_comp_kernel_ι, imageToKernel'_kernelSubobjectIso, CategoryTheory.ShortComplex.exact_iff_kernel_ι_comp_cokernel_π_zero, CategoryTheory.ShortComplex.LeftHomologyData.ofHasKernelOfHasCokernel_K, kernelSubobject_arrow'_apply, PresheafOfModules.toFreeYonedaCoproduct_fromFreeYonedaCoproduct, CategoryTheory.ShortComplex.exact_iff_isIso_imageToKernel', PreservesKernel.iso_inv_ι, kernel_not_epi_of_nonzero, CategoryTheory.cokernelUnopUnop_inv, CategoryTheory.kernelOpUnop_hom, isZero_kernel_of_mono, kernel.condition_apply, kernel.congr_inv, CategoryTheory.ShortComplex.LeftHomologyData.ofAbelian_H, imageToKernel_op, kernelBiprodFstIso_hom, kernelFactorThruImage_hom_comp_ι_assoc, CategoryTheory.Abelian.coim_map, CategoryTheory.kernel_zero_of_nonzero_from_simple, CategoryTheory.NonPreadditiveAbelian.isIso_factorThruCoimage, kernelBiproductπIso_hom, kernelCompMono_hom, CategoryTheory.cokernelOpOp_hom, kernel_map_comp_preserves_kernel_iso_inv_assoc, kernelSubobject_arrow_assoc, CategoryTheory.kernelCokernelCompSequence.ι_φ, CategoryTheory.Abelian.LeftResolution.map_chainComplex_d, kernelIsoOfEq_hom_comp_ι, CategoryTheory.Abelian.FunctorCategory.coimageImageComparison_app, kernelComparison_comp_ι, instIsIsoMapOfMono, CategoryTheory.kernelCokernelCompSequence.ι_fst_assoc, lift_comp_kernelIsoOfEq_hom_assoc, kernel.mapIso_hom, kernel.lift_ι_apply, PreservesKernel.iso_inv_ι_assoc, CategoryTheory.kernelUnopUnop_inv, CategoryTheory.ShortComplex.cokernel_π_comp_cokernelToAbelianCoimage, CategoryTheory.kernelCokernelCompSequence.ι_fst, CategoryTheory.kernelOpUnop_inv, kernelBiprodFstIso_inv, kernelBiproductToSubtypeIso_hom, kernelComparison_comp_kernel_map_assoc, CategoryTheory.Abelian.LeftResolution.chainComplexMap_f_1, lift_comp_kernelIsoOfEq_hom, kernelIsIsoComp_hom, CategoryTheory.cokernelUnopOp_hom, ker_obj, CategoryTheory.Abelian.instMonoFactorThruCoimage, kernel.map_zero, kernel.ι_of_mono, kernelIsIsoComp_inv, CategoryTheory.cokernel.π_unop, CategoryTheory.ShortComplex.instMonoAbelianImageToKernel, kernelSubobjectIso_comp_kernel_map, CategoryTheory.Abelian.epi_kernel_map_of_isPushout, CategoryTheory.ShortComplex.cyclesIsoKernel_hom, ModuleCat.kernelIsoKer_inv_kernel_ι_apply, CategoryTheory.ShortComplex.kernelSequence_X₁, kernel.lift_mono, kernel.lift_map, kernel.lift_ι_assoc, kernelComparison_comp_ι_assoc, CategoryTheory.kernelCokernelCompSequence.ι_snd, PresheafOfModules.toFreeYonedaCoproduct_fromFreeYonedaCoproduct_assoc, CategoryTheory.kernelUnopOp_hom, CategoryTheory.kernelCokernelCompSequence.ι_snd_assoc, CategoryTheory.ShortComplex.exact_kernel, CategoryTheory.cokernel.π_op, CategoryTheory.instIsIsoIndCoimageImageComparison, kernel.ι_of_zero, CategoryTheory.cokernelOpUnop_inv, kernelOrderHom_coe, instIsIsoKernelComparison, kernelIsoOfEq_hom_comp_ι_assoc, kernel.condition, CategoryTheory.kernel.ι_unop, CategoryTheory.ShortComplex.RightHomologyData.ofHasCokernelOfHasKernel_H, CategoryTheory.IsGrothendieckAbelian.IsPresentable.injectivity₀.F_map, CategoryTheory.Abelian.factorThruImage_comp_coimageIsoImage'_inv, CategoryTheory.ObjectProperty.monoModSerre_iff, kernelBiproductπIso_inv, CategoryTheory.ShortComplex.kernel_ι_comp_cokernel_π_comp_cokernelToAbelianCoimage, kernelSubobjectIso_comp_kernel_map_assoc, AddCommGrpCat.kernelIsoKer_inv_comp_ι, map_lift_kernelComparison, kernelSubobject_arrow, CategoryTheory.ShortComplex.RightHomologyData.ofAbelian_ι, SheafOfModules.Presentation.map_relations_I, kernelComparison_comp_kernel_map, imageSubobjectIso_imageToKernel', CategoryTheory.Abelian.OfCoimageImageComparisonIsIso.imageMonoFactorisation_e', ModuleCat.kernelIsoKer_hom_ker_subtype, SheafOfModules.Presentation.mapRelations_mapGenerators, CategoryTheory.ShortComplex.abelianImageToKernel_comp_kernel_ι_assoc, kernel.ι_zero_isIso, SheafOfModules.relationsOfIsCokernelFree_I, PreservesKernel.iso_hom, CategoryTheory.kernelUnopUnop_hom, CategoryTheory.ShortComplex.LeftHomologyData.ofAbelian_π, kernel.map_id, kernel_map_comp_preserves_kernel_iso_inv, CategoryTheory.kernelCokernelCompSequence.δ_fac, CategoryTheory.Preadditive.mono_iff_isZero_kernel, CategoryTheory.ShortComplex.instEpiCokernelToAbelianCoimage, ModuleCat.kernelIsoKer_hom_ker_subtype_apply, kernelFactorThruImage_inv_comp_ι, CategoryTheory.IsGrothendieckAbelian.GabrielPopescuAux.kernel_ι_d_comp_d, CategoryTheory.ComposableArrows.Exact.cokerIsoKer_hom_fac_assoc, kernel.of_cokernel_of_epi, kernel_map_comp_kernelSubobjectIso_inv, CategoryTheory.Abelian.coimageImageComparisonFunctor_map, SheafOfModules.Presentation.of_isIso_relations, CategoryTheory.cokernelUnopUnop_hom, SheafOfModules.Presentation.mapRelations_mapGenerators_assoc, CategoryTheory.Abelian.coimage.comp_π_eq_zero, map_lift_kernelComparison_assoc, CategoryTheory.kernelCokernelCompSequence.snakeInput_v₀₁_τ₁, kernelSubobject_arrow'_assoc, CategoryTheory.ShortComplex.HasLeftHomology.hasCokernel, kernelZeroIsoSource_hom, CategoryTheory.Abelian.coimageIsoImage'_hom, CategoryTheory.cokernelOpUnop_hom, MonoFactorisation.kernel_ι_comp, CategoryTheory.kernelCokernelCompSequence.snakeInput_v₀₁_τ₃, CategoryTheory.kernel.ι_op, CategoryTheory.ShortComplex.LeftHomologyData.ofHasKernelOfHasCokernel_π, CategoryTheory.ComposableArrows.Exact.cokerIsoKer_hom_fac, CategoryTheory.Abelian.FunctorCategory.coimageObjIso_inv, kernel.condition_assoc, kernelIsoOfEq_inv_comp_ι, CategoryTheory.ShortComplex.exact_iff_epi_kernel_lift, CategoryTheory.ShortComplex.abelianImageToKernel_comp_kernel_ι_comp_cokernel_π, kernelIsoOfEq_inv_comp_ι_assoc, kernelZeroIsoSource_inv, kernelBiprodSndIso_inv, CategoryTheory.Abelian.FunctorCategory.imageObjIso_hom, SheafOfModules.relationsOfIsCokernelFree_s, AddCommGrpCat.kernelIsoKer_hom_comp_subtype, kernel.lift_ι, CategoryTheory.kernelOpOp_inv, CategoryTheory.ShortComplex.RightHomologyData.ofHasKernel_H, CategoryTheory.Abelian.tfae_mono, CategoryTheory.NonPreadditiveAbelian.instMonoFactorThruCoimage, CategoryTheory.ShortComplex.exact_iff_exact_coimage_π, CategoryTheory.Abelian.LeftResolution.map_chainComplex_d_1_0, CategoryTheory.Abelian.FunctorCategory.functor_category_isIso_coimageImageComparison, kernel_map_comp_kernelSubobjectIso_inv_assoc, kernelSubobject_arrow_apply, SheafOfModules.Presentation.IsFinite.finite_relations, kernelFactorThruImage_hom_comp_ι, CategoryTheory.Abelian.LeftResolution.chainComplexMap_f_succ_succ, CategoryTheory.cokernelUnopOp_inv, kernelIsoOfEq_refl, isIso_kernel_map_of_isPullback, kernelFactorThruImage_inv_comp_ι_assoc, CategoryTheory.kernelOpOp_hom, CategoryTheory.Abelian.LeftResolution.map_chainComplex_d_1_0_assoc, kernel.lift_zero, CategoryTheory.IsGrothendieckAbelian.IsPresentable.injectivity₀.hf, CategoryTheory.ShortComplex.Exact.isIso_imageToKernel', CategoryTheory.kernelCokernelCompSequence.snakeInput_L₀_X₃, CategoryTheory.Abelian.instIsIsoCoimageImageComparison, factorThruKernelSubobject_comp_kernelSubobjectIso, kernel.congr_hom, lift_comp_kernelIsoOfEq_inv, ModuleCat.kernelIsoKer_inv_kernel_ι, kernel.mapIso_inv, CategoryTheory.Abelian.FunctorCategory.coimageObjIso_hom, CategoryTheory.Abelian.subobjectIsoSubobjectOp_symm_apply, CategoryTheory.ComposableArrows.IsComplex.cokerToKer_fac, CategoryTheory.ShortComplex.cyclesIsoKernel_inv, kernelCompMono_inv, CategoryTheory.ShortComplex.exact_iff_epi_imageToKernel', CategoryTheory.Abelian.isIso_factorThruCoimage, lift_comp_kernelIsoOfEq_inv_assoc, CategoryTheory.Abelian.comp_coimage_π_eq_zero, kernelBiproductToSubtypeIso_inv, CategoryTheory.Abelian.FunctorCategory.imageObjIso_inv, kernelSubobject_arrow', CategoryTheory.IsGrothendieckAbelian.IsPresentable.injectivity₀.epi_f, CategoryTheory.kernelCokernelCompSequence.instMonoι, CategoryTheory.cokernelOpOp_inv, CategoryTheory.kernelCokernelCompSequence.ι_φ_assoc, cokernel.of_kernel_of_mono, ker_map, CategoryTheory.ComposableArrows.IsComplex.cokerToKer_fac_assoc, FGModuleCat.instIsIsoCoimageImageComparison
kernelCompMono 📖CompOp
3 mathmath: kernelCompMono_hom, SheafOfModules.Presentation.of_isIso_relations, kernelCompMono_inv
kernelComparison 📖CompOp
10 mathmath: kernelComparison_comp_ι, kernelComparison_comp_kernel_map_assoc, kernelComparison_comp_ι_assoc, instIsIsoKernelComparison, map_lift_kernelComparison, kernelComparison_comp_kernel_map, PreservesKernel.iso_hom, map_lift_kernelComparison_assoc, CategoryTheory.Abelian.FunctorCategory.imageObjIso_hom, CategoryTheory.Abelian.FunctorCategory.coimageObjIso_hom
kernelFactorThruImage 📖CompOp
4 mathmath: kernelFactorThruImage_hom_comp_ι_assoc, kernelFactorThruImage_inv_comp_ι, kernelFactorThruImage_hom_comp_ι, kernelFactorThruImage_inv_comp_ι_assoc
kernelIsIsoComp 📖CompOp
2 mathmath: kernelIsIsoComp_hom, kernelIsIsoComp_inv
kernelIsKernel 📖CompOp
kernelIsoOfEq 📖CompOp
10 mathmath: kernelIsoOfEq_trans, kernelIsoOfEq_hom_comp_ι, lift_comp_kernelIsoOfEq_hom_assoc, lift_comp_kernelIsoOfEq_hom, kernelIsoOfEq_hom_comp_ι_assoc, kernelIsoOfEq_inv_comp_ι, kernelIsoOfEq_inv_comp_ι_assoc, kernelIsoOfEq_refl, lift_comp_kernelIsoOfEq_inv, lift_comp_kernelIsoOfEq_inv_assoc
kernelZeroIsoSource 📖CompOp
2 mathmath: kernelZeroIsoSource_hom, kernelZeroIsoSource_inv
ofιCongr 📖CompOp
ofπCongr 📖CompOp
zeroCokernelOfZeroCancel 📖CompOp
zeroKernelOfCancelZero 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
coequalizer_as_cokernel 📖mathematicalcoequalizer.π
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HasZeroMorphisms.zero
cokernel.π
coker_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
coker
cokernel.desc
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
cokernel
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CommaMorphism.right
cokernel.π
coker_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
coker
cokernel
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
cokernelCompIsIso_hom 📖mathematicalCategoryTheory.Iso.hom
cokernel
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
hasCokernel_comp_iso
cokernelCompIsIso
cokernel.desc
CategoryTheory.inv
cokernel.π
hasCokernel_comp_iso
cokernelCompIsIso_inv 📖mathematicalCategoryTheory.Iso.inv
cokernel
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
hasCokernel_comp_iso
cokernelCompIsIso
cokernel.desc
cokernel.π
hasCokernel_comp_iso
cokernelComparison_map_desc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
HasZeroMorphisms.zero
cokernel
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
cokernelComparison
cokernel.desc
coequalizer.hom_ext
π_comp_cokernelComparison_assoc
CategoryTheory.Functor.map_comp
cokernel.π_desc
cokernelComparison_map_desc_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
HasZeroMorphisms.zero
cokernel
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
cokernelComparison
cokernel.desc
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
cokernelComparison_map_desc
cokernelEpiComp_hom 📖mathematicalCategoryTheory.Iso.hom
cokernel
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
hasCokernel_epi_comp
cokernelEpiComp
cokernel.desc
cokernel.π
hasCokernel_epi_comp
cokernelEpiComp_inv 📖mathematicalCategoryTheory.Iso.inv
cokernel
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
hasCokernel_epi_comp
cokernelEpiComp
cokernel.desc
cokernel.π
hasCokernel_epi_comp
cokernelImageι_hom 📖mathematicalCategoryTheory.Iso.hom
cokernel
image
image.ι
cokernelImageι
cokernel.desc
cokernel.π
cokernelImageι_inv 📖mathematicalCategoryTheory.Iso.inv
cokernel
image
image.ι
cokernelImageι
cokernel.desc
cokernel.π
cokernelIsoOfEq_hom_comp_desc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
HasZeroMorphisms.zero
cokernel
CategoryTheory.Iso.hom
cokernelIsoOfEq
cokernel.desc
cokernelIsoOfEq_refl
CategoryTheory.Category.id_comp
cokernelIsoOfEq_hom_comp_desc_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
HasZeroMorphisms.zero
cokernel
CategoryTheory.Iso.hom
cokernelIsoOfEq
cokernel.desc
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
cokernelIsoOfEq_hom_comp_desc
cokernelIsoOfEq_inv_comp_desc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
HasZeroMorphisms.zero
cokernel
CategoryTheory.Iso.inv
cokernelIsoOfEq
cokernel.desc
cokernelIsoOfEq_refl
CategoryTheory.Category.id_comp
cokernelIsoOfEq_inv_comp_desc_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
HasZeroMorphisms.zero
cokernel
CategoryTheory.Iso.inv
cokernelIsoOfEq
cokernel.desc
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
cokernelIsoOfEq_inv_comp_desc
cokernelIsoOfEq_refl 📖mathematicalcokernelIsoOfEq
CategoryTheory.Iso.refl
cokernel
CategoryTheory.Iso.ext
coequalizer.hom_ext
HasColimit.isoOfNatIso_ι_hom
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
cokernelIsoOfEq_trans 📖mathematicalCategoryTheory.Iso.trans
cokernel
cokernelIsoOfEq
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
cokernelIsoOfEq_refl
CategoryTheory.Iso.refl_trans
cokernelZeroIsoTarget_hom 📖mathematicalCategoryTheory.Iso.hom
cokernel
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HasZeroMorphisms.zero
hasCoequalizer_of_self
cokernelZeroIsoTarget
cokernel.desc
CategoryTheory.CategoryStruct.id
coequalizer.hom_ext
hasCoequalizer_of_self
coequalizer.isoTargetOfSelf_hom
colimit.ι_desc
cokernel.π_desc
cokernelZeroIsoTarget_inv 📖mathematicalCategoryTheory.Iso.inv
cokernel
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HasZeroMorphisms.zero
hasCoequalizer_of_self
cokernelZeroIsoTarget
cokernel.π
hasCoequalizer_of_self
cokernel_map_comp_cokernelComparison 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cokernel
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
cokernel.map
cokernelComparison
cokernel.map_desc
CategoryTheory.Functor.map_comp
cokernel.condition
CategoryTheory.Functor.map_zero
CategoryTheory.Functor.congr_map
cokernel.π_desc
cokernel_map_comp_cokernelComparison_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cokernel
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
cokernel.map
cokernelComparison
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
cokernel_map_comp_cokernelComparison
cokernel_not_iso_of_nonzero 📖cokernel_not_mono_of_nonzero
CategoryTheory.mono_of_strongMono
CategoryTheory.strongMono_of_isIso
cokernel_not_mono_of_nonzero 📖mathematicalCategoryTheory.Mono
cokernel
cokernel.π
eq_zero_of_mono_cokernel
colimit_ι_zero_cokernel_desc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
HasZeroMorphisms.zero
CategoryTheory.Functor.obj
WalkingParallelPair
walkingParallelPairHomCategory
parallelPair
WalkingParallelPair.zero
colimit
colimit.ι
cokernel.desc
colimit.w
cokernel.condition
zero_comp
colimit_ι_zero_cokernel_desc_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
HasZeroMorphisms.zero
CategoryTheory.Functor.obj
WalkingParallelPair
walkingParallelPairHomCategory
parallelPair
WalkingParallelPair.zero
colimit
colimit.ι
cokernel.desc
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
colimit_ι_zero_cokernel_desc
eq_zero_of_epi_kernel 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HasZeroMorphisms.zero
CategoryTheory.cancel_epi
kernel.condition
comp_zero
eq_zero_of_mono_cokernel 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HasZeroMorphisms.zero
CategoryTheory.cancel_mono
cokernel.condition
zero_comp
equalizer_as_kernel 📖mathematicalequalizer.ι
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HasZeroMorphisms.zero
kernel.ι
hasCokernel_comp_iso 📖mathematicalHasCokernel
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Category.assoc
CategoryTheory.IsIso.hom_inv_id_assoc
cokernel.condition
CokernelCofork.condition
cokernel.π_desc
CategoryTheory.IsIso.inv_hom_id_assoc
cokernel.desc.congr_simp
coequalizer.hom_ext
hasCokernel_epi_comp 📖mathematicalHasCokernel
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
hasCokernels_of_hasCoequalizers 📖mathematicalHasCokernelshasColimitOfHasColimitsOfShape
hasKernel_comp_mono 📖mathematicalHasKernel
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
hasKernel_iso_comp 📖mathematicalHasKernel
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Category.assoc
CategoryTheory.IsIso.inv_hom_id_assoc
kernel.condition
KernelFork.condition
kernel.lift_ι_assoc
CategoryTheory.IsIso.hom_inv_id
CategoryTheory.Category.comp_id
kernel.lift.congr_simp
equalizer.hom_ext
CategoryTheory.IsIso.inv_hom_id
kernel.lift_ι
hasKernels_of_hasEqualizers 📖mathematicalHasKernelshasLimitOfHasLimitsOfShape
instIsIsoMapOfEpi 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.IsIso
cokernel
cokernel.map
CategoryTheory.cancel_epi
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.IsIso.hom_inv_id_assoc
cokernel.condition
comp_zero
coequalizer.hom_ext
cokernel.π_desc_assoc
cokernel.π_desc
CategoryTheory.Category.comp_id
CategoryTheory.IsIso.inv_hom_id_assoc
instIsIsoMapOfMono 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.IsIso
kernel
kernel.map
CategoryTheory.Category.assoc
CategoryTheory.cancel_mono
CategoryTheory.IsIso.inv_hom_id_assoc
kernel.condition
zero_comp
equalizer.hom_ext
kernel.lift_ι
kernel.lift_ι_assoc
CategoryTheory.IsIso.hom_inv_id
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.IsIso.inv_hom_id
isCokernelEpiComp_desc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
IsColimit.desc
WalkingParallelPair
walkingParallelPairHomCategory
parallelPair
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
HasZeroMorphisms.zero
CokernelCofork.ofπ
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
Cocone.pt
WalkingParallelPair.one
Cofork.π
isCokernelEpiComp
Cofork.ofπ
isKernelCompMono_lift 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
IsLimit.lift
WalkingParallelPair
walkingParallelPairHomCategory
parallelPair
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
HasZeroMorphisms.zero
KernelFork.ofι
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
Cone.pt
WalkingParallelPair.zero
Fork.ι
isKernelCompMono
Fork.ofι
isZero_cokernel_of_epi 📖mathematicalIsZero
cokernel
CokernelCofork.IsColimit.isZero_of_epi
cokernel.condition
isZero_kernel_of_mono 📖mathematicalIsZero
kernel
KernelFork.IsLimit.isZero_of_mono
kernel.condition
ker_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
ker
kernel.lift
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
kernel
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
kernel.ι
CategoryTheory.CommaMorphism.left
ker_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
ker
kernel
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
kernelCompMono_hom 📖mathematicalCategoryTheory.Iso.hom
kernel
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
hasKernel_comp_mono
kernelCompMono
kernel.lift
kernel.ι
hasKernel_comp_mono
kernelCompMono_inv 📖mathematicalCategoryTheory.Iso.inv
kernel
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
hasKernel_comp_mono
kernelCompMono
kernel.lift
kernel.ι
hasKernel_comp_mono
kernelComparison_comp_kernel_map 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
kernel
CategoryTheory.Functor.map
kernelComparison
kernel.map
kernel.lift_map
CategoryTheory.Functor.map_comp
kernel.condition
CategoryTheory.Functor.map_zero
CategoryTheory.Functor.congr_map
kernel.lift_ι
kernelComparison_comp_kernel_map_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
kernel
CategoryTheory.Functor.map
kernelComparison
kernel.map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
kernelComparison_comp_kernel_map
kernelComparison_comp_ι 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
kernel
CategoryTheory.Functor.map
kernelComparison
kernel.ι
kernel.lift_ι
kernelComparison_comp_ι_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
kernel
CategoryTheory.Functor.map
kernelComparison
kernel.ι
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
kernelComparison_comp_ι
kernelFactorThruImage_hom_comp_ι 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
kernel
image
factorThruImage
CategoryTheory.Iso.hom
kernelFactorThruImage
kernel.ι
hasKernel_comp_mono
instMonoι
CategoryTheory.Category.assoc
kernel.lift_ι
kernelFactorThruImage_hom_comp_ι_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
kernel
image
factorThruImage
CategoryTheory.Iso.hom
kernelFactorThruImage
kernel.ι
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
kernelFactorThruImage_hom_comp_ι
kernelFactorThruImage_inv_comp_ι 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
kernel
image
factorThruImage
CategoryTheory.Iso.inv
kernelFactorThruImage
kernel.ι
hasKernel_comp_mono
instMonoι
CategoryTheory.Category.assoc
kernel.lift_ι
kernelFactorThruImage_inv_comp_ι_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
kernel
image
factorThruImage
CategoryTheory.Iso.inv
kernelFactorThruImage
kernel.ι
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
kernelFactorThruImage_inv_comp_ι
kernelIsIsoComp_hom 📖mathematicalCategoryTheory.Iso.hom
kernel
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
hasKernel_iso_comp
kernelIsIsoComp
kernel.lift
kernel.ι
hasKernel_iso_comp
kernelIsIsoComp_inv 📖mathematicalCategoryTheory.Iso.inv
kernel
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
hasKernel_iso_comp
kernelIsIsoComp
kernel.lift
kernel.ι
CategoryTheory.inv
hasKernel_iso_comp
kernelIsoOfEq_hom_comp_ι 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
kernel
CategoryTheory.Iso.hom
kernelIsoOfEq
kernel.ι
kernelIsoOfEq_refl
CategoryTheory.Category.id_comp
kernelIsoOfEq_hom_comp_ι_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
kernel
CategoryTheory.Iso.hom
kernelIsoOfEq
kernel.ι
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
kernelIsoOfEq_hom_comp_ι
kernelIsoOfEq_inv_comp_ι 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
kernel
CategoryTheory.Iso.inv
kernelIsoOfEq
kernel.ι
kernelIsoOfEq_refl
CategoryTheory.Category.id_comp
kernelIsoOfEq_inv_comp_ι_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
kernel
CategoryTheory.Iso.inv
kernelIsoOfEq
kernel.ι
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
kernelIsoOfEq_inv_comp_ι
kernelIsoOfEq_refl 📖mathematicalkernelIsoOfEq
CategoryTheory.Iso.refl
kernel
CategoryTheory.Iso.ext
equalizer.hom_ext
HasLimit.isoOfNatIso_hom_π
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
kernelIsoOfEq_trans 📖mathematicalCategoryTheory.Iso.trans
kernel
kernelIsoOfEq
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
kernelIsoOfEq_refl
CategoryTheory.Iso.refl_trans
kernelZeroIsoSource_hom 📖mathematicalCategoryTheory.Iso.hom
kernel
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HasZeroMorphisms.zero
hasEqualizer_of_self
kernelZeroIsoSource
kernel.ι
hasEqualizer_of_self
kernelZeroIsoSource_inv 📖mathematicalCategoryTheory.Iso.inv
kernel
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HasZeroMorphisms.zero
hasEqualizer_of_self
kernelZeroIsoSource
kernel.lift
CategoryTheory.CategoryStruct.id
equalizer.hom_ext
hasEqualizer_of_self
equalizer.isoSourceOfSelf_inv
limit.lift_π
kernel.lift_ι
kernel_not_epi_of_nonzero 📖mathematicalCategoryTheory.Epi
kernel
kernel.ι
eq_zero_of_epi_kernel
kernel_not_iso_of_nonzero 📖kernel_not_epi_of_nonzero
CategoryTheory.epi_of_strongEpi
CategoryTheory.strongEpi_of_isIso
lift_comp_kernelIsoOfEq_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
HasZeroMorphisms.zero
kernel
kernel.lift
CategoryTheory.Iso.hom
kernelIsoOfEq
kernelIsoOfEq_refl
CategoryTheory.Category.comp_id
lift_comp_kernelIsoOfEq_hom_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
HasZeroMorphisms.zero
kernel
kernel.lift
CategoryTheory.Iso.hom
kernelIsoOfEq
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift_comp_kernelIsoOfEq_hom
lift_comp_kernelIsoOfEq_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
HasZeroMorphisms.zero
kernel
kernel.lift
CategoryTheory.Iso.inv
kernelIsoOfEq
kernelIsoOfEq_refl
CategoryTheory.Category.comp_id
lift_comp_kernelIsoOfEq_inv_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
HasZeroMorphisms.zero
kernel
kernel.lift
CategoryTheory.Iso.inv
kernelIsoOfEq
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift_comp_kernelIsoOfEq_inv
map_lift_kernelComparison 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
HasZeroMorphisms.zero
CategoryTheory.Functor.obj
kernel
CategoryTheory.Functor.map
kernel.lift
kernelComparison
equalizer.hom_ext
CategoryTheory.Category.assoc
kernelComparison_comp_ι
CategoryTheory.Functor.map_comp
kernel.lift_ι
map_lift_kernelComparison_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
HasZeroMorphisms.zero
CategoryTheory.Functor.obj
kernel
CategoryTheory.Functor.map
kernel.lift
kernelComparison
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_lift_kernelComparison
π_comp_cokernelComparison 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
cokernel
CategoryTheory.Functor.map
cokernel.π
cokernelComparison
cokernel.π_desc
π_comp_cokernelComparison_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
cokernel
CategoryTheory.Functor.map
cokernel.π
cokernelComparison
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
π_comp_cokernelComparison
π_comp_cokernelIsoOfEq_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cokernel
cokernel.π
CategoryTheory.Iso.hom
cokernelIsoOfEq
cokernelIsoOfEq_refl
CategoryTheory.Category.comp_id
π_comp_cokernelIsoOfEq_hom_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cokernel
cokernel.π
CategoryTheory.Iso.hom
cokernelIsoOfEq
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
π_comp_cokernelIsoOfEq_hom
π_comp_cokernelIsoOfEq_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cokernel
cokernel.π
CategoryTheory.Iso.inv
cokernelIsoOfEq
cokernelIsoOfEq_refl
CategoryTheory.Category.comp_id
π_comp_cokernelIsoOfEq_inv_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cokernel
cokernel.π
CategoryTheory.Iso.inv
cokernelIsoOfEq
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
π_comp_cokernelIsoOfEq_inv

CategoryTheory.Limits.CokernelCofork

Definitions

NameCategoryTheorems
isColimitOfIsColimitOfIff 📖CompOp
isColimitOfIsColimitOfIff' 📖CompOp
mapIsoOfIsColimit 📖CompOp
2 mathmath: mapIsoOfIsColimit_inv, mapIsoOfIsColimit_hom
mapOfIsColimit 📖CompOp
4 mathmath: π_mapOfIsColimit, mapIsoOfIsColimit_inv, mapIsoOfIsColimit_hom, π_mapOfIsColimit_assoc
ofπ 📖CompOp
14 mathmath: CategoryTheory.Limits.cokernelBiproductιIso_hom, CategoryTheory.Preadditive.cokernelCoforkOfCofork_ofπ, CategoryTheory.ShortComplex.RightHomologyData.wι_assoc, CategoryTheory.ShortComplex.HomologyData.ofEpiMonoFactorisation.g'_eq, CategoryTheory.ShortComplex.exact_and_epi_g_iff_g_is_cokernel, HomologicalComplex.extend.rightHomologyData.d_comp_desc_eq_zero_iff, CategoryTheory.Limits.cokernelBiproductιIso_inv, CategoryTheory.Limits.cokernelBiproductFromSubtypeIso_hom, CategoryTheory.ShortComplex.RightHomologyData.wι, SheafOfModules.Presentation.map_relations_I, π_ofπ, CategoryTheory.Limits.cokernelCoforkBiproductFromSubtype_cocone, CategoryTheory.Limits.cokernelBiproductFromSubtypeIso_inv, CategoryTheory.Limits.isCokernelEpiComp_desc

Theorems

NameKindAssumesProvesValidatesDepends On
condition 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.parallelPair
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.WalkingParallelPair.one
CategoryTheory.Limits.Cofork.π
CategoryTheory.Limits.Cofork.condition
CategoryTheory.Limits.zero_comp
condition_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.parallelPair
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.WalkingParallelPair.one
CategoryTheory.Limits.Cofork.π
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
condition
mapIsoOfIsColimit_hom 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
mapIsoOfIsColimit
mapOfIsColimit
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
mapIsoOfIsColimit_inv 📖mathematicalCategoryTheory.Iso.inv
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
mapIsoOfIsColimit
mapOfIsColimit
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
π_eq_zero 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.Cocone.ι
CategoryTheory.Limits.WalkingParallelPair.zero
CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_left
condition
π_mapOfIsColimit 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.WalkingParallelPair.one
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.Cofork.π
mapOfIsColimit
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.CommaMorphism.right
CategoryTheory.Limits.IsColimit.fac
π_mapOfIsColimit_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.WalkingParallelPair.one
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.Cofork.π
mapOfIsColimit
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.CommaMorphism.right
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
π_mapOfIsColimit
π_ofπ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.Cofork.π
ofπ

CategoryTheory.Limits.CokernelCofork.IsColimit

Definitions

NameCategoryTheorems
desc' 📖CompOp
ofEpiOfIsZero 📖CompOp
ofId 📖CompOp
ofπ 📖CompOp
2 mathmath: CategoryTheory.Limits.cokernelCoforkBiproductFromSubtype_isColimit, CategoryTheory.Limits.cokernelBiproductFromSubtypeIso_inv
ofπ' 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
isIso_π 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
CategoryTheory.Limits.WalkingParallelPair.one
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.Cofork.π
CategoryTheory.Limits.isIso_colimit_cocone_parallelPair_of_eq
isZero_of_epi 📖mathematicalCategoryTheory.Limits.IsZero
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.Cofork.IsColimit.epi
CategoryTheory.Limits.IsZero.iff_id_eq_zero
CategoryTheory.cancel_epi
CategoryTheory.Limits.CokernelCofork.condition_assoc
CategoryTheory.Limits.comp_zero
CategoryTheory.Limits.zero_comp

CategoryTheory.Limits.HasCokernels

Theorems

NameKindAssumesProvesValidatesDepends On
has_colimit 📖mathematicalCategoryTheory.Limits.HasCokernel

CategoryTheory.Limits.HasKernels

Theorems

NameKindAssumesProvesValidatesDepends On
has_limit 📖mathematicalCategoryTheory.Limits.HasKernel

CategoryTheory.Limits.IsCokernel

Definitions

NameCategoryTheorems
cokernelIso 📖CompOp
ofIso 📖CompOp
ofIsoComp 📖CompOp

CategoryTheory.Limits.IsKernel

Definitions

NameCategoryTheorems
isoKernel 📖CompOp
ofCompIso 📖CompOp
ofIso 📖CompOp

CategoryTheory.Limits.KernelFork

Definitions

NameCategoryTheorems
isLimitOfIsLimitOfIff 📖CompOp
isLimitOfIsLimitOfIff' 📖CompOp
mapIsoOfIsLimit 📖CompOp
2 mathmath: mapIsoOfIsLimit_inv, mapIsoOfIsLimit_hom
mapOfIsLimit 📖CompOp
4 mathmath: mapOfIsLimit_ι_assoc, mapIsoOfIsLimit_inv, mapIsoOfIsLimit_hom, mapOfIsLimit_ι
ofι 📖CompOp
13 mathmath: CategoryTheory.Limits.kernelForkBiproductToSubtype_cone, CategoryTheory.Limits.kernelBiproductπIso_hom, ι_ofι, CategoryTheory.Limits.kernelBiproductToSubtypeIso_hom, CategoryTheory.Preadditive.kernelForkOfFork_ofι, CategoryTheory.ShortComplex.LeftHomologyData.wπ_assoc, CategoryTheory.Limits.kernelBiproductπIso_inv, CategoryTheory.ShortComplex.LeftHomologyData.wπ, CategoryTheory.Limits.isKernelCompMono_lift, CategoryTheory.ShortComplex.exact_and_mono_f_iff_f_is_kernel, CategoryTheory.ShortComplex.HomologyData.ofEpiMonoFactorisation.f'_eq, HomologicalComplex.extend.leftHomologyData.lift_d_comp_eq_zero_iff, CategoryTheory.Limits.kernelBiproductToSubtypeIso_inv

Theorems

NameKindAssumesProvesValidatesDepends On
app_one 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.parallelPair
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.Cone.π
CategoryTheory.Limits.WalkingParallelPair.one
CategoryTheory.Limits.Fork.app_one_eq_ι_comp_left
condition
condition 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.parallelPair
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.WalkingParallelPair.zero
CategoryTheory.Limits.Fork.ι
CategoryTheory.Limits.Fork.condition
CategoryTheory.Limits.HasZeroMorphisms.comp_zero
condition_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.parallelPair
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.WalkingParallelPair.zero
CategoryTheory.Limits.Fork.ι
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
condition
mapIsoOfIsLimit_hom 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
mapIsoOfIsLimit
mapOfIsLimit
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
mapIsoOfIsLimit_inv 📖mathematicalCategoryTheory.Iso.inv
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
mapIsoOfIsLimit
mapOfIsLimit
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
mapOfIsLimit_ι 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingParallelPair.zero
mapOfIsLimit
CategoryTheory.Limits.Fork.ι
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.CommaMorphism.left
CategoryTheory.Limits.IsLimit.fac
mapOfIsLimit_ι_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
mapOfIsLimit
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingParallelPair.zero
CategoryTheory.Limits.Fork.ι
CategoryTheory.CommaMorphism.left
CategoryTheory.Functor.id
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mapOfIsLimit_ι
ι_ofι 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.Fork.ι
ofι

CategoryTheory.Limits.KernelFork.IsLimit

Definitions

NameCategoryTheorems
lift' 📖CompOp
ofId 📖CompOp
ofMonoOfIsZero 📖CompOp
ofι 📖CompOp
2 mathmath: CategoryTheory.Limits.kernelBiproductToSubtypeIso_hom, CategoryTheory.Limits.kernelForkBiproductToSubtype_isLimit
ofι' 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
isIso_ι 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.parallelPair
CategoryTheory.Limits.WalkingParallelPair.zero
CategoryTheory.Limits.Fork.ι
CategoryTheory.Limits.isIso_limit_cone_parallelPair_of_eq
isZero_of_mono 📖mathematicalCategoryTheory.Limits.IsZero
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.Fork.IsLimit.mono
CategoryTheory.Limits.IsZero.iff_id_eq_zero
CategoryTheory.cancel_mono
CategoryTheory.Category.assoc
CategoryTheory.Limits.KernelFork.condition
CategoryTheory.Limits.comp_zero
CategoryTheory.Limits.zero_comp

CategoryTheory.Limits.MonoFactorisation

Theorems

NameKindAssumesProvesValidatesDepends On
kernel_ι_comp 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.kernel
I
CategoryTheory.Limits.kernel.ι
e
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.cancel_mono
m_mono
CategoryTheory.Limits.zero_comp
CategoryTheory.Category.assoc
fac
CategoryTheory.Limits.kernel.condition

CategoryTheory.Limits.coker

Definitions

NameCategoryTheorems
π 📖CompOp
3 mathmath: π_app, condition_assoc, condition

Theorems

NameKindAssumesProvesValidatesDepends On
condition 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Arrow.leftFunc
CategoryTheory.Arrow.rightFunc
CategoryTheory.Limits.coker
CategoryTheory.Arrow.leftToRight
π
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.instHasZeroMorphismsFunctor
CategoryTheory.NatTrans.ext'
CategoryTheory.Limits.cokernel.condition
condition_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Arrow.leftFunc
CategoryTheory.Arrow.rightFunc
CategoryTheory.Arrow.leftToRight
CategoryTheory.Limits.coker
π
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.instHasZeroMorphismsFunctor
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
condition
π_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Arrow.rightFunc
CategoryTheory.Limits.coker
π
CategoryTheory.Limits.cokernel.π
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.hom

CategoryTheory.Limits.cokernel

Definitions

NameCategoryTheorems
cokernelIso 📖CompOp
desc 📖CompOp
43 mathmath: CategoryTheory.kernelUnopOp_inv, CategoryTheory.Limits.cokernelImageι_inv, imageToKernel_unop, CategoryTheory.Limits.colimit_ι_zero_cokernel_desc_assoc, CategoryTheory.Limits.cokernelCompIsIso_hom, desc_epi, imageToKernel_op, CategoryTheory.Limits.coker_map, CategoryTheory.Abelian.coim_map, CategoryTheory.cokernelOpOp_hom, map_desc, π_desc_assoc, CategoryTheory.kernelOpUnop_inv, CategoryTheory.ShortComplex.Exact.mono_cokernelDesc, CategoryTheory.ShortComplex.opcyclesIsoCokernel_inv, desc_zero, CategoryTheory.cokernelOpUnop_inv, CategoryTheory.ShortComplex.RightHomologyData.ofHasCokernelOfHasKernel_H, π_desc, CategoryTheory.Limits.cokernelComparison_map_desc, CategoryTheory.Limits.cokernelIsoOfEq_hom_comp_desc, CategoryTheory.Limits.cokernelEpiComp_inv, CategoryTheory.kernelUnopUnop_hom, CategoryTheory.ShortComplex.HasRightHomology.hasKernel, CategoryTheory.Limits.cokernelIsoOfEq_inv_comp_desc, CategoryTheory.ShortComplex.RightHomologyData.ofHasCokernelOfHasKernel_ι, CategoryTheory.ShortComplex.exact_iff_mono_cokernel_desc, CategoryTheory.Limits.cokernelIsoOfEq_hom_comp_desc_assoc, CategoryTheory.cokernelUnopUnop_hom, congr_inv, CategoryTheory.Limits.colimit_ι_zero_cokernel_desc, CategoryTheory.Abelian.coimageIsoImage'_hom, CategoryTheory.Limits.cokernelIsoOfEq_inv_comp_desc_assoc, SemiNormedGrp.explicitCokernelIso_hom_desc, π_desc_apply, CategoryTheory.Limits.cokernelCompIsIso_inv, CategoryTheory.cokernelUnopOp_inv, CategoryTheory.kernelOpOp_hom, CategoryTheory.Limits.cokernelZeroIsoTarget_hom, CategoryTheory.Limits.cokernelComparison_map_desc_assoc, CategoryTheory.Limits.cokernelEpiComp_hom, CategoryTheory.Limits.cokernelImageι_hom, congr_hom
desc' 📖CompOp
isColimitCoconeZeroCocone 📖CompOp
map 📖CompOp
20 mathmath: map_zero, CategoryTheory.Limits.isIso_cokernel_map_of_isPushout, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₃_g, CategoryTheory.kernelCokernelCompSequence.snakeInput_v₂₃_τ₃, map_desc, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₃_f, map_id, CategoryTheory.Abelian.mono_cokernel_map_of_isPullback, mapIso_hom, CategoryTheory.kernelCokernelCompSequence.snakeInput_v₂₃_τ₂, CategoryTheory.Limits.preserves_cokernel_iso_comp_cokernel_map, CategoryTheory.Limits.cokernel_map_comp_cokernelComparison, CategoryTheory.Abelian.coimageImageComparisonFunctor_map, CategoryTheory.Abelian.FunctorCategory.coimageObjIso_inv, CategoryTheory.Limits.cokernel_map_comp_cokernelComparison_assoc, CategoryTheory.kernelCokernelCompSequence.snakeInput_v₂₃_τ₁, CategoryTheory.Limits.preserves_cokernel_iso_comp_cokernel_map_assoc, CategoryTheory.Abelian.FunctorCategory.coimageObjIso_hom, CategoryTheory.Limits.instIsIsoMapOfEpi, mapIso_inv
mapIso 📖CompOp
2 mathmath: mapIso_hom, mapIso_inv
ofEpi 📖CompOp
ofIsoComp 📖CompOp
zeroCokernelCofork 📖CompOp
π 📖CompOp
112 mathmath: CategoryTheory.ShortComplex.RightHomologyData.ofHasCokernelOfHasKernel_p, CategoryTheory.Limits.coker.π_app, CategoryTheory.Abelian.FunctorCategory.coimageImageComparison_app', CategoryTheory.ShortComplex.cokernel_π_comp_cokernelToAbelianCoimage_assoc, ModuleCat.cokernel_π_ext, CategoryTheory.Limits.cokernelImageι_inv, CategoryTheory.ShortComplex.abelianImageToKernel_comp_kernel_ι_comp_cokernel_π_assoc, CategoryTheory.Limits.cokernelCompIsIso_hom, CategoryTheory.ShortComplex.RightHomologyData.ofAbelian_H, ModuleCat.cokernel_π_cokernelIsoRangeQuotient_hom_apply, CategoryTheory.ShortComplex.abelianImageToKernel_comp_kernel_ι, CategoryTheory.ShortComplex.exact_iff_kernel_ι_comp_cokernel_π_zero, CategoryTheory.Limits.π_comp_cokernelIsoOfEq_hom_assoc, CategoryTheory.kernelCokernelCompSequence.inl_π_assoc, CategoryTheory.cokernelUnopUnop_inv, CategoryTheory.Limits.PreservesCokernel.π_iso_hom_assoc, CategoryTheory.kernelOpUnop_hom, CategoryTheory.kernelCokernelCompSequence.snakeInput_v₂₃_τ₃, CategoryTheory.ShortComplex.LeftHomologyData.ofAbelian_H, CategoryTheory.ShortComplex.LeftHomologyData.ofHasCokernel_π, CategoryTheory.Limits.coker_map, CategoryTheory.Abelian.instEpiFactorThruImage, CategoryTheory.Abelian.tfae_epi, CategoryTheory.kernelCokernelCompSequence.inr_π_assoc, CategoryTheory.Abelian.FunctorCategory.coimageImageComparison_app, π_desc_assoc, π_zero_isIso, CategoryTheory.Limits.cokernel_not_mono_of_nonzero, CategoryTheory.Abelian.im_map, CategoryTheory.Limits.coequalizer_as_cokernel, CategoryTheory.ShortComplex.exact_iff_exact_image_ι, CategoryTheory.Abelian.subobjectIsoSubobjectOp_apply, CategoryTheory.kernelUnopUnop_inv, ModuleCat.cokernel_π_cokernelIsoRangeQuotient_hom, CategoryTheory.ShortComplex.cokernel_π_comp_cokernelToAbelianCoimage, CategoryTheory.Abelian.image_ι_comp_eq_zero, CategoryTheory.ShortComplex.cokernelSequence_g, ModuleCat.cokernel_π_imageSubobject_ext, condition, CategoryTheory.ShortComplex.exact_cokernel, CategoryTheory.cokernelUnopOp_hom, CategoryTheory.NonPreadditiveAbelian.instEpiFactorThruImage, CategoryTheory.cokernel.π_unop, CategoryTheory.ShortComplex.instMonoAbelianImageToKernel, CategoryTheory.Abelian.OfCoimageImageComparisonIsIso.imageMonoFactorisation_m, π_of_zero, CategoryTheory.Abelian.imageIsoImage_inv, CategoryTheory.kernelUnopOp_hom, CategoryTheory.cokernel.π_op, CategoryTheory.Limits.π_comp_cokernelIsoOfEq_inv_assoc, CategoryTheory.instIsIsoIndCoimageImageComparison, ModuleCat.range_mkQ_cokernelIsoRangeQuotient_inv, CategoryTheory.kernelCokernelCompSequence.inr_π, CategoryTheory.kernel.ι_unop, CategoryTheory.ShortComplex.opcyclesIsoCokernel_hom, condition_assoc, CategoryTheory.Abelian.factorThruImage_comp_coimageIsoImage'_inv, CategoryTheory.ShortComplex.kernel_ι_comp_cokernel_π_comp_cokernelToAbelianCoimage, CategoryTheory.Limits.π_comp_cokernelComparison_assoc, CategoryTheory.ShortComplex.RightHomologyData.ofAbelian_p, π_desc, CategoryTheory.ShortComplex.RightHomologyData.ofAbelian_ι, CategoryTheory.Abelian.OfCoimageImageComparisonIsIso.imageMonoFactorisation_e', CategoryTheory.ShortComplex.abelianImageToKernel_comp_kernel_ι_assoc, SemiNormedGrp.explicitCokernelIso_hom_π, CategoryTheory.Limits.cokernelEpiComp_inv, CategoryTheory.ShortComplex.LeftHomologyData.ofAbelian_π, CategoryTheory.kernelCokernelCompSequence.δ_fac, ModuleCat.range_mkQ_cokernelIsoRangeQuotient_inv_apply, CategoryTheory.ComposableArrows.Exact.cokerIsoKer_hom_fac_assoc, CategoryTheory.Limits.kernel.of_cokernel_of_epi, CategoryTheory.Abelian.coimageImageComparisonFunctor_map, congr_inv, CategoryTheory.Abelian.imageIsoImage_hom_comp_image_ι, CategoryTheory.Limits.π_comp_cokernelComparison, CategoryTheory.cokernelOpUnop_hom, CategoryTheory.kernel.ι_op, CategoryTheory.ShortComplex.LeftHomologyData.ofHasKernelOfHasCokernel_π, CategoryTheory.ComposableArrows.Exact.cokerIsoKer_hom_fac, CategoryTheory.Abelian.image.ι_comp_eq_zero, CategoryTheory.Abelian.OfCoimageImageComparisonIsIso.imageMonoFactorisation_e, CategoryTheory.ShortComplex.abelianImageToKernel_comp_kernel_ι_comp_cokernel_π, CategoryTheory.Abelian.FunctorCategory.imageObjIso_hom, CategoryTheory.kernelOpOp_inv, CategoryTheory.Limits.PreservesCokernel.π_iso_hom, CategoryTheory.NonPreadditiveAbelian.diag_σ_assoc, CategoryTheory.Abelian.FunctorCategory.functor_category_isIso_coimageImageComparison, π_of_epi, π_desc_apply, CategoryTheory.kernelCokernelCompSequence.snakeInput_v₂₃_τ₁, CategoryTheory.Abelian.isIso_factorThruImage, CategoryTheory.Limits.cokernelCompIsIso_inv, CategoryTheory.NonPreadditiveAbelian.isIso_factorThruImage, SemiNormedGrp.explicitCokernelIso_inv_π, CategoryTheory.NonPreadditiveAbelian.lift_σ_assoc, CategoryTheory.Limits.π_comp_cokernelIsoOfEq_inv, CategoryTheory.kernelCokernelCompSequence.inl_π, CategoryTheory.Abelian.instIsIsoCoimageImageComparison, CategoryTheory.Limits.π_comp_cokernelIsoOfEq_hom, CategoryTheory.Limits.cokernelZeroIsoTarget_inv, CategoryTheory.ComposableArrows.IsComplex.cokerToKer_fac, CategoryTheory.Limits.cokernelOrderHom_coe, CategoryTheory.Abelian.FunctorCategory.imageObjIso_inv, CategoryTheory.Limits.cokernelEpiComp_hom, CategoryTheory.cokernel_zero_of_nonzero_to_simple, CategoryTheory.cokernelOpOp_inv, CategoryTheory.Limits.cokernelImageι_hom, congr_hom, of_kernel_of_mono, CategoryTheory.ComposableArrows.IsComplex.cokerToKer_fac_assoc, FGModuleCat.instIsIsoCoimageImageComparison, condition_apply

Theorems

NameKindAssumesProvesValidatesDepends On
condition 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.cokernel
π
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.CokernelCofork.condition
condition_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.cokernel
π
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
condition
congr_hom 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.Limits.cokernel
congr
desc
π
congr_inv 📖mathematicalCategoryTheory.Iso.inv
CategoryTheory.Limits.cokernel
congr
desc
π
desc_epi 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Epi
CategoryTheory.Limits.cokernel
desc
CategoryTheory.whisker_eq
CategoryTheory.cancel_epi
π_desc_assoc
desc_zero 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
desc
CategoryTheory.Limits.cokernel
CategoryTheory.Limits.coequalizer.hom_ext
π_desc
CategoryTheory.Limits.comp_zero
mapIso_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.Limits.cokernel
mapIso
map
mapIso_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.Iso.inv
CategoryTheory.Limits.cokernel
mapIso
map
map_desc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.cokernel
map
desc
CategoryTheory.Limits.coequalizer.hom_ext
π_desc_assoc
CategoryTheory.Category.assoc
π_desc
map_id 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.id
map
CategoryTheory.Limits.cokernel
CategoryTheory.Limits.coequalizer.hom_ext
π_desc
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
map_zero 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
map
CategoryTheory.Limits.cokernel
CategoryTheory.Limits.coequalizer.hom_ext
π_desc
CategoryTheory.Limits.zero_comp
CategoryTheory.Limits.comp_zero
of_kernel_of_mono 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Limits.cokernel
CategoryTheory.Limits.kernel
CategoryTheory.Limits.kernel.ι
π
CategoryTheory.Limits.coequalizer.π_of_eq
CategoryTheory.Limits.kernel.ι_of_mono
π_desc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.cokernel
π
desc
CategoryTheory.Limits.IsColimit.fac
condition
CategoryTheory.Limits.zero_comp
π_desc_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.cokernel
π
desc
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
π_desc
π_of_epi 📖mathematicalπ
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.cokernel
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.zero_of_target_iso_zero
π_of_zero 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Limits.cokernel
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.hasCoequalizer_of_self
π
CategoryTheory.Limits.coequalizer.π_of_self
π_zero_isIso 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Limits.cokernel
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.hasCoequalizer_of_self
π
CategoryTheory.Limits.coequalizer.π_of_self

CategoryTheory.Limits.ker

Definitions

NameCategoryTheorems
ι 📖CompOp
3 mathmath: ι_app, condition, condition_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
condition 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Limits.ker
CategoryTheory.Arrow.leftFunc
CategoryTheory.Arrow.rightFunc
ι
CategoryTheory.Arrow.leftToRight
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.instHasZeroMorphismsFunctor
CategoryTheory.NatTrans.ext'
CategoryTheory.Limits.kernel.condition
condition_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Limits.ker
CategoryTheory.Arrow.leftFunc
ι
CategoryTheory.Arrow.rightFunc
CategoryTheory.Arrow.leftToRight
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.instHasZeroMorphismsFunctor
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
condition
ι_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Limits.ker
CategoryTheory.Arrow.leftFunc
ι
CategoryTheory.Limits.kernel.ι
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom

CategoryTheory.Limits.kernel

Definitions

NameCategoryTheorems
isLimitConeZeroCone 📖CompOp
isoKernel 📖CompOp
lift' 📖CompOp
map 📖CompOp
26 mathmath: CategoryTheory.kernelCokernelCompSequence.snakeInput_v₀₁_τ₂, CategoryTheory.Limits.kernel_map_comp_preserves_kernel_iso_inv_assoc, CategoryTheory.Limits.instIsIsoMapOfMono, mapIso_hom, CategoryTheory.Limits.kernelComparison_comp_kernel_map_assoc, CategoryTheory.Abelian.LeftResolution.chainComplexMap_f_1, map_zero, CategoryTheory.Limits.kernelSubobjectIso_comp_kernel_map, CategoryTheory.Abelian.epi_kernel_map_of_isPushout, lift_map, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₀_g, CategoryTheory.Limits.kernelSubobjectIso_comp_kernel_map_assoc, CategoryTheory.Limits.kernelComparison_comp_kernel_map, map_id, CategoryTheory.Limits.kernel_map_comp_preserves_kernel_iso_inv, CategoryTheory.Limits.kernel_map_comp_kernelSubobjectIso_inv, CategoryTheory.Abelian.coimageImageComparisonFunctor_map, CategoryTheory.kernelCokernelCompSequence.snakeInput_v₀₁_τ₁, CategoryTheory.kernelCokernelCompSequence.snakeInput_v₀₁_τ₃, CategoryTheory.Abelian.FunctorCategory.imageObjIso_hom, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₀_f, CategoryTheory.Limits.kernel_map_comp_kernelSubobjectIso_inv_assoc, CategoryTheory.Abelian.LeftResolution.chainComplexMap_f_succ_succ, CategoryTheory.Limits.isIso_kernel_map_of_isPullback, mapIso_inv, CategoryTheory.Abelian.FunctorCategory.imageObjIso_inv
mapIso 📖CompOp
2 mathmath: mapIso_hom, mapIso_inv
ofCompIso 📖CompOp
ofMono 📖CompOp
zeroKernelFork 📖CompOp
ι 📖CompOp
124 mathmath: CategoryTheory.kernelUnopOp_inv, CategoryTheory.Abelian.FunctorCategory.coimageImageComparison_app', CategoryTheory.ShortComplex.cokernel_π_comp_cokernelToAbelianCoimage_assoc, CategoryTheory.IsGrothendieckAbelian.IsPresentable.injectivity₀.F_obj, CategoryTheory.ShortComplex.abelianImageToKernel_comp_kernel_ι_comp_cokernel_π_assoc, CategoryTheory.ShortComplex.RightHomologyData.ofAbelian_H, CategoryTheory.ShortComplex.abelianImageToKernel_comp_kernel_ι, CategoryTheory.ShortComplex.exact_iff_kernel_ι_comp_cokernel_π_zero, CategoryTheory.Limits.kernelSubobject_arrow'_apply, CategoryTheory.Limits.PreservesKernel.iso_inv_ι, CategoryTheory.Limits.kernel_not_epi_of_nonzero, condition_apply, CategoryTheory.Limits.equalizer_as_kernel, congr_inv, CategoryTheory.ShortComplex.LeftHomologyData.ofAbelian_H, CategoryTheory.Limits.kernelFactorThruImage_hom_comp_ι_assoc, CategoryTheory.Abelian.coim_map, CategoryTheory.kernel_zero_of_nonzero_from_simple, CategoryTheory.NonPreadditiveAbelian.isIso_factorThruCoimage, CategoryTheory.Limits.kernelCompMono_hom, CategoryTheory.cokernelOpOp_hom, CategoryTheory.Limits.kernelSubobject_arrow_assoc, CategoryTheory.Abelian.LeftResolution.map_chainComplex_d, CategoryTheory.Limits.kernelIsoOfEq_hom_comp_ι, CategoryTheory.Abelian.FunctorCategory.coimageImageComparison_app, CategoryTheory.Limits.kernelComparison_comp_ι, CategoryTheory.kernelCokernelCompSequence.ι_fst_assoc, CategoryTheory.ShortComplex.LeftHomologyData.ofHasKernelOfHasCokernel_i, lift_ι_apply, CategoryTheory.Limits.PreservesKernel.iso_inv_ι_assoc, CategoryTheory.ShortComplex.cokernel_π_comp_cokernelToAbelianCoimage, CategoryTheory.ShortComplex.LeftHomologyData.ofAbelian_i, CategoryTheory.kernelCokernelCompSequence.ι_fst, CategoryTheory.kernelOpUnop_inv, CategoryTheory.Limits.ker.ι_app, CategoryTheory.Limits.kernelIsIsoComp_hom, CategoryTheory.Abelian.instMonoFactorThruCoimage, ι_of_mono, CategoryTheory.Limits.kernelIsIsoComp_inv, CategoryTheory.cokernel.π_unop, CategoryTheory.Abelian.OfCoimageImageComparisonIsIso.imageMonoFactorisation_m, ModuleCat.kernelIsoKer_inv_kernel_ι_apply, lift_ι_assoc, CategoryTheory.Limits.kernelComparison_comp_ι_assoc, CategoryTheory.kernelCokernelCompSequence.ι_snd, CategoryTheory.kernelCokernelCompSequence.ι_snd_assoc, CategoryTheory.ShortComplex.exact_kernel, CategoryTheory.cokernel.π_op, CategoryTheory.instIsIsoIndCoimageImageComparison, ι_of_zero, CategoryTheory.cokernelOpUnop_inv, CategoryTheory.ShortComplex.kernelSequence_f, CategoryTheory.Limits.kernelOrderHom_coe, CategoryTheory.Limits.kernelIsoOfEq_hom_comp_ι_assoc, condition, CategoryTheory.kernel.ι_unop, CategoryTheory.IsGrothendieckAbelian.IsPresentable.injectivity₀.F_map, CategoryTheory.Abelian.factorThruImage_comp_coimageIsoImage'_inv, CategoryTheory.ShortComplex.kernel_ι_comp_cokernel_π_comp_cokernelToAbelianCoimage, AddCommGrpCat.kernelIsoKer_inv_comp_ι, CategoryTheory.Limits.kernelSubobject_arrow, CategoryTheory.ShortComplex.RightHomologyData.ofAbelian_ι, SheafOfModules.Presentation.map_relations_I, CategoryTheory.Abelian.OfCoimageImageComparisonIsIso.imageMonoFactorisation_e', ModuleCat.kernelIsoKer_hom_ker_subtype, CategoryTheory.ShortComplex.abelianImageToKernel_comp_kernel_ι_assoc, ι_zero_isIso, CategoryTheory.kernelUnopUnop_hom, CategoryTheory.ShortComplex.LeftHomologyData.ofAbelian_π, CategoryTheory.kernelCokernelCompSequence.δ_fac, CategoryTheory.ShortComplex.RightHomologyData.ofHasCokernelOfHasKernel_ι, CategoryTheory.ShortComplex.instEpiCokernelToAbelianCoimage, ModuleCat.kernelIsoKer_hom_ker_subtype_apply, CategoryTheory.Limits.kernelFactorThruImage_inv_comp_ι, CategoryTheory.IsGrothendieckAbelian.GabrielPopescuAux.kernel_ι_d_comp_d, CategoryTheory.ComposableArrows.Exact.cokerIsoKer_hom_fac_assoc, of_cokernel_of_epi, CategoryTheory.Abelian.coimageImageComparisonFunctor_map, CategoryTheory.cokernelUnopUnop_hom, CategoryTheory.Abelian.imageIsoImage_hom_comp_image_ι, CategoryTheory.Abelian.coimage.comp_π_eq_zero, CategoryTheory.kernelCokernelCompSequence.snakeInput_v₀₁_τ₁, CategoryTheory.Limits.kernelSubobject_arrow'_assoc, CategoryTheory.Limits.kernelZeroIsoSource_hom, CategoryTheory.Abelian.coimageIsoImage'_hom, CategoryTheory.ShortComplex.RightHomologyData.ofHasKernel_ι, CategoryTheory.Limits.MonoFactorisation.kernel_ι_comp, CategoryTheory.kernelCokernelCompSequence.snakeInput_v₀₁_τ₃, CategoryTheory.kernel.ι_op, CategoryTheory.ComposableArrows.Exact.cokerIsoKer_hom_fac, CategoryTheory.Abelian.FunctorCategory.coimageObjIso_inv, condition_assoc, CategoryTheory.Limits.kernelIsoOfEq_inv_comp_ι, CategoryTheory.ShortComplex.abelianImageToKernel_comp_kernel_ι_comp_cokernel_π, CategoryTheory.Limits.kernelIsoOfEq_inv_comp_ι_assoc, AddCommGrpCat.kernelIsoKer_hom_comp_subtype, lift_ι, CategoryTheory.Abelian.tfae_mono, CategoryTheory.NonPreadditiveAbelian.instMonoFactorThruCoimage, CategoryTheory.ShortComplex.exact_iff_exact_coimage_π, CategoryTheory.Abelian.LeftResolution.map_chainComplex_d_1_0, CategoryTheory.Abelian.FunctorCategory.functor_category_isIso_coimageImageComparison, CategoryTheory.Limits.kernelSubobject_arrow_apply, CategoryTheory.Limits.kernelFactorThruImage_hom_comp_ι, CategoryTheory.cokernelUnopOp_inv, CategoryTheory.Limits.kernelFactorThruImage_inv_comp_ι_assoc, CategoryTheory.kernelOpOp_hom, CategoryTheory.Abelian.LeftResolution.map_chainComplex_d_1_0_assoc, CategoryTheory.IsGrothendieckAbelian.IsPresentable.injectivity₀.hf, CategoryTheory.Abelian.instIsIsoCoimageImageComparison, congr_hom, ModuleCat.kernelIsoKer_inv_kernel_ι, CategoryTheory.Abelian.FunctorCategory.coimageObjIso_hom, CategoryTheory.Abelian.subobjectIsoSubobjectOp_symm_apply, CategoryTheory.ComposableArrows.IsComplex.cokerToKer_fac, CategoryTheory.ShortComplex.cyclesIsoKernel_inv, CategoryTheory.Limits.kernelCompMono_inv, CategoryTheory.Abelian.isIso_factorThruCoimage, CategoryTheory.Abelian.comp_coimage_π_eq_zero, CategoryTheory.Limits.kernelSubobject_arrow', CategoryTheory.Limits.cokernel.of_kernel_of_mono, CategoryTheory.Limits.ker_map, CategoryTheory.ComposableArrows.IsComplex.cokerToKer_fac_assoc, FGModuleCat.instIsIsoCoimageImageComparison

Theorems

NameKindAssumesProvesValidatesDepends On
condition 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.kernel
ι
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.KernelFork.condition
condition_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.kernel
ι
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
condition
congr_hom 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.Limits.kernel
congr
lift
ι
congr_inv 📖mathematicalCategoryTheory.Iso.inv
CategoryTheory.Limits.kernel
congr
lift
ι
lift_map 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.kernel
lift
map
CategoryTheory.Limits.equalizer.hom_ext
CategoryTheory.Category.assoc
lift_ι
lift_ι_assoc
lift_mono 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Mono
CategoryTheory.Limits.kernel
lift
CategoryTheory.eq_whisker
CategoryTheory.cancel_mono
CategoryTheory.Category.assoc
lift_ι
lift_zero 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
lift
CategoryTheory.Limits.kernel
CategoryTheory.Limits.equalizer.hom_ext
lift_ι
CategoryTheory.Limits.zero_comp
lift_ι 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.kernel
lift
ι
CategoryTheory.Limits.IsLimit.fac
condition
CategoryTheory.Limits.comp_zero
lift_ι_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.kernel
lift
ι
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift_ι
mapIso_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.Limits.kernel
mapIso
map
mapIso_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.Iso.inv
CategoryTheory.Limits.kernel
mapIso
map
map_id 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.id
map
CategoryTheory.Limits.kernel
CategoryTheory.Limits.equalizer.hom_ext
lift_ι
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
map_zero 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
map
CategoryTheory.Limits.kernel
CategoryTheory.Limits.equalizer.hom_ext
lift_ι
CategoryTheory.Limits.comp_zero
CategoryTheory.Limits.zero_comp
of_cokernel_of_epi 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Limits.kernel
CategoryTheory.Limits.cokernel
CategoryTheory.Limits.cokernel.π
ι
CategoryTheory.Limits.equalizer.ι_of_eq
CategoryTheory.Limits.cokernel.π_of_epi
ι_of_mono 📖mathematicalι
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.kernel
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.zero_of_source_iso_zero
ι_of_zero 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Limits.kernel
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.hasEqualizer_of_self
ι
CategoryTheory.Limits.equalizer.ι_of_self
ι_zero_isIso 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Limits.kernel
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.hasEqualizer_of_self
ι
CategoryTheory.Limits.equalizer.ι_of_self

---

← Back to Index