Documentation Verification Report

MultiequalizerPullback

📁 Source: Mathlib/CategoryTheory/Limits/Shapes/MultiequalizerPullback.lean

Statistics

MetricCount
Definitionsmulticofork
1
TheoremsisPushout, multicofork_π_eq_inl, multicofork_π_eq_inr
3
Total4

CategoryTheory.Limits.Multicofork.IsColimit

Theorems

NameKindAssumesProvesValidatesDepends On
isPushout 📖mathematicalCategoryTheory.Limits.MultispanShape.R
Set
Set.instInsert
CategoryTheory.Limits.MultispanShape.fst
CategoryTheory.Limits.MultispanShape.L
Unique.instInhabited
Set.instSingletonSet
CategoryTheory.Limits.MultispanShape.snd
Set.univ
CategoryTheory.IsPushout
CategoryTheory.Limits.MultispanIndex.left
CategoryTheory.Limits.MultispanIndex.right
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingMultispan
CategoryTheory.Limits.WalkingMultispan.instSmallCategory
CategoryTheory.Limits.MultispanIndex.multispan
CategoryTheory.Limits.MultispanIndex.fst
CategoryTheory.Limits.MultispanIndex.snd
CategoryTheory.Limits.Multicofork.π
CategoryTheory.Limits.Multicofork.condition
isPushout.multicofork_π_eq_inl
CategoryTheory.Limits.IsColimit.fac
isPushout.multicofork_π_eq_inr
hom_ext
Eq.le
Set.mem_univ

CategoryTheory.Limits.Multicofork.IsColimit.isPushout

Definitions

NameCategoryTheorems
multicofork 📖CompOp
2 mathmath: multicofork_π_eq_inr, multicofork_π_eq_inl

Theorems

NameKindAssumesProvesValidatesDepends On
multicofork_π_eq_inl 📖mathematicalCategoryTheory.Limits.MultispanShape.R
Set
Set.instInsert
CategoryTheory.Limits.MultispanShape.fst
CategoryTheory.Limits.MultispanShape.L
Unique.instInhabited
Set.instSingletonSet
CategoryTheory.Limits.MultispanShape.snd
Set.univ
CategoryTheory.Limits.Multicofork.π
multicofork
CategoryTheory.Limits.PushoutCocone.inl
CategoryTheory.Limits.MultispanIndex.left
CategoryTheory.Limits.MultispanIndex.right
CategoryTheory.Limits.MultispanIndex.fst
CategoryTheory.Limits.MultispanIndex.snd
CategoryTheory.eqToHom_refl
CategoryTheory.Category.id_comp
multicofork_π_eq_inr 📖mathematicalCategoryTheory.Limits.MultispanShape.R
Set
Set.instInsert
CategoryTheory.Limits.MultispanShape.fst
CategoryTheory.Limits.MultispanShape.L
Unique.instInhabited
Set.instSingletonSet
CategoryTheory.Limits.MultispanShape.snd
Set.univ
CategoryTheory.Limits.Multicofork.π
multicofork
CategoryTheory.Limits.PushoutCocone.inr
CategoryTheory.Limits.MultispanIndex.left
CategoryTheory.Limits.MultispanIndex.right
CategoryTheory.Limits.MultispanIndex.fst
CategoryTheory.Limits.MultispanIndex.snd
CategoryTheory.eqToHom_refl
CategoryTheory.Category.id_comp

---

← Back to Index