Documentation Verification Report

Equalizers

📁 Source: Mathlib/CategoryTheory/Limits/Shapes/Opposites/Equalizers.lean

Statistics

MetricCount
DefinitionsisColimitCoforkPushoutEquivIsColimitForkOpPullback, isColimitCoforkPushoutEquivIsColimitForkUnopPullback, isColimitEquivIsLimitOp, isColimitEquivIsLimitUnop, isColimitOfπEquivIsLimitOp, isColimitOfπEquivIsLimitUnop, ofπOpIsoOfι, ofπUnopIsoOfι, op, opUnopIso, unop, unopOpIso, isLimitEquivIsColimitOp, isLimitEquivIsColimitUnop, isLimitForkPushoutEquivIsColimitForkOpPullback, isLimitForkPushoutEquivIsColimitForkUnopPullback, isLimitOfιEquivIsColimitOp, isLimitOfιEquivIsColimitUnop, ofιOpIsoOfπ, ofιUnopIsoOfπ, op, opUnopIso, unop, unopOpIso, opParallelPairIso, parallelPairOpIso
26
Theoremsop_unop_π, op_ι, op_π_app_one, op_π_app_zero, unop_op_π, unop_ι, unop_π_app_one, unop_π_app_zero, op_pt, op_unop_ι, op_ι_app, op_ι_app_one, op_ι_app_zero, op_π, unop_op_ι, unop_ι_app_one, unop_ι_app_zero, unop_π, hasCoequalizers_opposite, hasEqualizers_opposite, opParallelPairIso_hom_app_one, opParallelPairIso_hom_app_zero, opParallelPairIso_inv_app_one, opParallelPairIso_inv_app_zero, parallelPairOpIso_hom_app_one, parallelPairOpIso_hom_app_zero, parallelPairOpIso_inv_app_one, parallelPairOpIso_inv_app_zero
28
Total54

CategoryTheory.Limits

Definitions

NameCategoryTheorems
opParallelPairIso 📖CompOp
4 mathmath: opParallelPairIso_hom_app_zero, opParallelPairIso_hom_app_one, opParallelPairIso_inv_app_zero, opParallelPairIso_inv_app_one
parallelPairOpIso 📖CompOp
5 mathmath: parallelPairOpIso_inv_app_zero, parallelPairOpIso_inv_app_one, parallelPairOpIso_hom_app_one, Fork.op_ι_app, parallelPairOpIso_hom_app_zero

Theorems

NameKindAssumesProvesValidatesDepends On
hasCoequalizers_opposite 📖mathematicalHasCoequalizers
Opposite
CategoryTheory.Category.opposite
hasColimitsOfShape_op_of_hasLimitsOfShape
hasLimitsOfShape_of_equivalence
hasEqualizers_opposite 📖mathematicalHasEqualizers
Opposite
CategoryTheory.Category.opposite
hasLimitsOfShape_op_of_hasColimitsOfShape
hasColimitsOfShape_of_equivalence
opParallelPairIso_hom_app_one 📖mathematicalCategoryTheory.NatTrans.app
Opposite
WalkingParallelPair
CategoryTheory.Category.opposite
walkingParallelPairHomCategory
CategoryTheory.Functor.op
parallelPair
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.inverse
walkingParallelPairOpEquiv
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
opParallelPairIso
WalkingParallelPair.one
CategoryTheory.CategoryStruct.id
CategoryTheory.CategoryStruct.opposite
CategoryTheory.Functor.obj
CategoryTheory.Iso.refl_trans
CategoryTheory.Iso.trans_assoc
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
opParallelPairIso_hom_app_zero 📖mathematicalCategoryTheory.NatTrans.app
Opposite
WalkingParallelPair
CategoryTheory.Category.opposite
walkingParallelPairHomCategory
CategoryTheory.Functor.op
parallelPair
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.inverse
walkingParallelPairOpEquiv
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
opParallelPairIso
WalkingParallelPair.zero
CategoryTheory.CategoryStruct.id
CategoryTheory.CategoryStruct.opposite
CategoryTheory.Functor.obj
CategoryTheory.Iso.refl_trans
CategoryTheory.Iso.trans_assoc
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
opParallelPairIso_inv_app_one 📖mathematicalCategoryTheory.NatTrans.app
Opposite
WalkingParallelPair
CategoryTheory.Category.opposite
walkingParallelPairHomCategory
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.inverse
walkingParallelPairOpEquiv
parallelPair
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.op
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
opParallelPairIso
WalkingParallelPair.one
CategoryTheory.CategoryStruct.id
CategoryTheory.CategoryStruct.opposite
CategoryTheory.Functor.obj
CategoryTheory.Iso.refl_trans
CategoryTheory.Iso.trans_assoc
CategoryTheory.Category.assoc
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
opParallelPairIso_inv_app_zero 📖mathematicalCategoryTheory.NatTrans.app
Opposite
WalkingParallelPair
CategoryTheory.Category.opposite
walkingParallelPairHomCategory
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.inverse
walkingParallelPairOpEquiv
parallelPair
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.op
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
opParallelPairIso
WalkingParallelPair.zero
CategoryTheory.CategoryStruct.id
CategoryTheory.CategoryStruct.opposite
CategoryTheory.Functor.obj
CategoryTheory.Iso.refl_trans
CategoryTheory.Iso.trans_assoc
CategoryTheory.Category.assoc
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
parallelPairOpIso_hom_app_one 📖mathematicalCategoryTheory.NatTrans.app
WalkingParallelPair
walkingParallelPairHomCategory
Opposite
CategoryTheory.Category.opposite
parallelPair
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.functor
walkingParallelPairOpEquiv
CategoryTheory.Functor.op
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
parallelPairOpIso
WalkingParallelPair.one
CategoryTheory.CategoryStruct.id
CategoryTheory.CategoryStruct.opposite
CategoryTheory.Functor.obj
parallelPairOpIso_hom_app_zero 📖mathematicalCategoryTheory.NatTrans.app
WalkingParallelPair
walkingParallelPairHomCategory
Opposite
CategoryTheory.Category.opposite
parallelPair
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.functor
walkingParallelPairOpEquiv
CategoryTheory.Functor.op
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
parallelPairOpIso
WalkingParallelPair.zero
CategoryTheory.CategoryStruct.id
CategoryTheory.CategoryStruct.opposite
CategoryTheory.Functor.obj
parallelPairOpIso_inv_app_one 📖mathematicalCategoryTheory.NatTrans.app
WalkingParallelPair
walkingParallelPairHomCategory
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.functor
walkingParallelPairOpEquiv
CategoryTheory.Functor.op
parallelPair
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
parallelPairOpIso
WalkingParallelPair.one
CategoryTheory.CategoryStruct.id
CategoryTheory.CategoryStruct.opposite
CategoryTheory.Functor.obj
parallelPairOpIso_inv_app_zero 📖mathematicalCategoryTheory.NatTrans.app
WalkingParallelPair
walkingParallelPairHomCategory
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.functor
walkingParallelPairOpEquiv
CategoryTheory.Functor.op
parallelPair
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
parallelPairOpIso
WalkingParallelPair.zero
CategoryTheory.CategoryStruct.id
CategoryTheory.CategoryStruct.opposite
CategoryTheory.Functor.obj

CategoryTheory.Limits.Cofork

Definitions

NameCategoryTheorems
isColimitCoforkPushoutEquivIsColimitForkOpPullback 📖CompOp
isColimitCoforkPushoutEquivIsColimitForkUnopPullback 📖CompOp
isColimitEquivIsLimitOp 📖CompOp
isColimitEquivIsLimitUnop 📖CompOp
isColimitOfπEquivIsLimitOp 📖CompOp
isColimitOfπEquivIsLimitUnop 📖CompOp
ofπOpIsoOfι 📖CompOp
ofπUnopIsoOfι 📖CompOp
op 📖CompOp
5 mathmath: CategoryTheory.Limits.Fork.unop_op_ι, op_π_app_zero, op_unop_π, op_π_app_one, op_ι
opUnopIso 📖CompOp
unop 📖CompOp
5 mathmath: unop_op_π, unop_π_app_one, unop_π_app_zero, CategoryTheory.Limits.Fork.op_unop_ι, unop_ι
unopOpIso 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
op_unop_π 📖mathematicalπ
Opposite.unop
Opposite.op
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Quiver.Hom.op
CategoryTheory.Limits.Fork.unop
op
CategoryTheory.Limits.Fork.unop_π
op_ι
op_ι 📖mathematicalCategoryTheory.Limits.Fork.ι
Opposite
CategoryTheory.Category.opposite
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
op
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
CategoryTheory.Limits.WalkingParallelPair.one
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
π
CategoryTheory.Category.comp_id
op_π_app_one 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.parallelPair
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
op
CategoryTheory.Limits.Cone.π
CategoryTheory.Limits.WalkingParallelPair.one
CategoryTheory.Limits.WalkingParallelPair.zero
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.Cocone.ι
app_zero_eq_comp_π_left
CategoryTheory.Category.comp_id
op_π_app_zero 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.parallelPair
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
op
CategoryTheory.Limits.Cone.π
CategoryTheory.Limits.WalkingParallelPair.zero
CategoryTheory.Limits.WalkingParallelPair.one
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.Cocone.ι
CategoryTheory.Category.comp_id
unop_op_π 📖mathematicalπ
Opposite
CategoryTheory.Category.opposite
Opposite.op
Opposite.unop
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Quiver.Hom.unop
CategoryTheory.Limits.Fork.op
unop
CategoryTheory.Limits.Fork.op_π
unop_ι
unop_ι 📖mathematicalCategoryTheory.Limits.Fork.ι
Opposite.unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
unop
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.parallelPair
CategoryTheory.Limits.WalkingParallelPair.one
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
π
CategoryTheory.Limits.opParallelPairIso_hom_app_zero
CategoryTheory.Category.id_comp
unop_π_app_one 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.parallelPair
Opposite.unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
unop
CategoryTheory.Limits.Cone.π
CategoryTheory.Limits.WalkingParallelPair.one
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.WalkingParallelPair.zero
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.Cocone.ι
CategoryTheory.Limits.opParallelPairIso_hom_app_one
app_zero_eq_comp_π_left
CategoryTheory.Category.id_comp
unop_π_app_zero 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.parallelPair
Opposite.unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
unop
CategoryTheory.Limits.Cone.π
CategoryTheory.Limits.WalkingParallelPair.zero
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.WalkingParallelPair.one
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.Cocone.ι
CategoryTheory.Limits.opParallelPairIso_hom_app_zero
CategoryTheory.Category.id_comp

CategoryTheory.Limits.Fork

Definitions

NameCategoryTheorems
isLimitEquivIsColimitOp 📖CompOp
isLimitEquivIsColimitUnop 📖CompOp
isLimitForkPushoutEquivIsColimitForkOpPullback 📖CompOp
isLimitForkPushoutEquivIsColimitForkUnopPullback 📖CompOp
isLimitOfιEquivIsColimitOp 📖CompOp
isLimitOfιEquivIsColimitUnop 📖CompOp
ofιOpIsoOfπ 📖CompOp
ofιUnopIsoOfπ 📖CompOp
op 📖CompOp
7 mathmath: CategoryTheory.Limits.Cofork.unop_op_π, op_pt, op_π, op_ι_app, op_ι_app_one, op_ι_app_zero, op_unop_ι
opUnopIso 📖CompOp
unop 📖CompOp
5 mathmath: unop_ι_app_zero, unop_ι_app_one, unop_op_ι, CategoryTheory.Limits.Cofork.op_unop_π, unop_π
unopOpIso 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
op_pt 📖mathematicalCategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.parallelPair
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
op
CategoryTheory.Limits.Cone.pt
op_unop_ι 📖mathematicalι
Opposite.unop
Opposite.op
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Quiver.Hom.op
CategoryTheory.Limits.Cofork.unop
op
CategoryTheory.Limits.Cofork.unop_ι
op_π
op_ι_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.parallelPair
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.functor
CategoryTheory.Limits.walkingParallelPairOpEquiv
CategoryTheory.Functor.op
CategoryTheory.Limits.Cocone.whisker
CategoryTheory.Limits.Cone.op
CategoryTheory.Limits.Cocone.ι
op
CategoryTheory.CategoryStruct.comp
Opposite.unop
CategoryTheory.Limits.walkingParallelPairOp
CategoryTheory.Limits.Cone.pt
CategoryTheory.Iso.hom
CategoryTheory.Limits.parallelPairOpIso
CategoryTheory.Limits.Cone.π
op_ι_app_one 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.parallelPair
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
op
CategoryTheory.Limits.Cocone.ι
CategoryTheory.Limits.WalkingParallelPair.one
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingParallelPair.zero
CategoryTheory.Limits.Cone.π
CategoryTheory.Category.id_comp
op_ι_app_zero 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.parallelPair
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
op
CategoryTheory.Limits.Cocone.ι
CategoryTheory.Limits.WalkingParallelPair.zero
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingParallelPair.one
CategoryTheory.Limits.Cone.π
app_one_eq_ι_comp_left
CategoryTheory.Category.id_comp
op_π 📖mathematicalCategoryTheory.Limits.Cofork.π
Opposite
CategoryTheory.Category.opposite
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
op
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.parallelPair
CategoryTheory.Limits.WalkingParallelPair.zero
ι
CategoryTheory.Category.id_comp
unop_op_ι 📖mathematicalι
Opposite
CategoryTheory.Category.opposite
Opposite.op
Opposite.unop
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Quiver.Hom.unop
CategoryTheory.Limits.Cofork.op
unop
CategoryTheory.Limits.Cofork.op_ι
unop_π
unop_ι_app_one 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
Opposite.unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
unop
CategoryTheory.Limits.Cocone.ι
CategoryTheory.Limits.WalkingParallelPair.one
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingParallelPair.zero
CategoryTheory.Limits.Cone.π
CategoryTheory.Limits.opParallelPairIso_inv_app_one
CategoryTheory.Category.comp_id
unop_ι_app_zero 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
Opposite.unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
unop
CategoryTheory.Limits.Cocone.ι
CategoryTheory.Limits.WalkingParallelPair.zero
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingParallelPair.one
CategoryTheory.Limits.Cone.π
app_one_eq_ι_comp_left
CategoryTheory.Limits.opParallelPairIso_inv_app_zero
CategoryTheory.Category.comp_id
unop_π 📖mathematicalCategoryTheory.Limits.Cofork.π
Opposite.unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
unop
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.parallelPair
CategoryTheory.Limits.WalkingParallelPair.zero
ι
CategoryTheory.Limits.opParallelPairIso_inv_app_one
CategoryTheory.Category.comp_id

---

← Back to Index