Documentation Verification Report

Pullbacks

📁 Source: Mathlib/CategoryTheory/Limits/Shapes/Opposites/Pullbacks.lean

Statistics

MetricCount
DefinitionscoconeOp, coconeUnop, coneOp, coneUnop, isLimitEquivIsColimitOp, isLimitEquivIsColimitUnop, op, opUnopIso, unop, unopOpIso, isColimitEquivIsLimitOp, isColimitEquivIsLimitUnop, op, opUnopIso, unop, unopOpIso, cospanOp, opCospan, opSpan, pullbackIsoOpPushout, pullbackIsoUnopPushout, pushoutIsoOpPullback, pushoutIsoUnopPullback, spanOp
24
Theoremsop_inl, op_inr, op_pt, op_ι_app, unop_inl, unop_inr, unop_pt, unop_ι_app, op_fst, op_pt, op_snd, op_π_app, unop_fst, unop_pt, unop_snd, unop_π_app, cospanOp_hom_app, cospanOp_inv_app, hasPullbacks_opposite, hasPushouts_opposite, opCospan_hom_app, opCospan_inv_app, opSpan_hom_app, opSpan_inv_app, pullbackIsoOpPushout_hom_inl, pullbackIsoOpPushout_hom_inl_assoc, pullbackIsoOpPushout_hom_inr, pullbackIsoOpPushout_hom_inr_assoc, pullbackIsoOpPushout_inv_fst, pullbackIsoOpPushout_inv_fst_assoc, pullbackIsoOpPushout_inv_snd, pullbackIsoOpPushout_inv_snd_assoc, pullbackIsoUnopPushout_hom_inl, pullbackIsoUnopPushout_hom_inl_assoc, pullbackIsoUnopPushout_hom_inr, pullbackIsoUnopPushout_hom_inr_assoc, pullbackIsoUnopPushout_inv_fst, pullbackIsoUnopPushout_inv_fst_assoc, pullbackIsoUnopPushout_inv_snd, pullbackIsoUnopPushout_inv_snd_assoc, pushoutIsoOpPullback_inl_hom, pushoutIsoOpPullback_inl_hom_assoc, pushoutIsoOpPullback_inr_hom, pushoutIsoOpPullback_inr_hom_assoc, pushoutIsoOpPullback_inv_fst, pushoutIsoOpPullback_inv_snd, pushoutIsoUnopPullback_inl_hom, pushoutIsoUnopPullback_inl_hom_assoc, pushoutIsoUnopPullback_inr_hom, pushoutIsoUnopPullback_inr_hom_assoc, pushoutIsoUnopPullback_inv_fst, pushoutIsoUnopPullback_inv_snd, spanOp_hom_app, spanOp_inv_app
54
Total78

CategoryTheory.CommSq

Definitions

NameCategoryTheorems
coconeOp 📖CompOp
coconeUnop 📖CompOp
coneOp 📖CompOp
coneUnop 📖CompOp

CategoryTheory.Limits

Definitions

NameCategoryTheorems
cospanOp 📖CompOp
2 mathmath: cospanOp_hom_app, cospanOp_inv_app
opCospan 📖CompOp
3 mathmath: PushoutCocone.unop_π_app, opCospan_hom_app, opCospan_inv_app
opSpan 📖CompOp
3 mathmath: opSpan_hom_app, PullbackCone.unop_ι_app, opSpan_inv_app
pullbackIsoOpPushout 📖CompOp
8 mathmath: pullbackIsoOpPushout_hom_inr_assoc, pullbackIsoOpPushout_inv_fst_assoc, pullbackIsoOpPushout_inv_fst, pullbackIsoOpPushout_inv_snd, pullbackIsoOpPushout_hom_inl, pullbackIsoOpPushout_hom_inr, pullbackIsoOpPushout_inv_snd_assoc, pullbackIsoOpPushout_hom_inl_assoc
pullbackIsoUnopPushout 📖CompOp
8 mathmath: pullbackIsoUnopPushout_inv_snd, pullbackIsoUnopPushout_hom_inr_assoc, pullbackIsoUnopPushout_hom_inl, pullbackIsoUnopPushout_inv_fst, pullbackIsoUnopPushout_hom_inl_assoc, pullbackIsoUnopPushout_inv_fst_assoc, pullbackIsoUnopPushout_inv_snd_assoc, pullbackIsoUnopPushout_hom_inr
pushoutIsoOpPullback 📖CompOp
6 mathmath: pushoutIsoOpPullback_inr_hom_assoc, pushoutIsoOpPullback_inl_hom, pushoutIsoOpPullback_inv_fst, pushoutIsoOpPullback_inr_hom, pushoutIsoOpPullback_inl_hom_assoc, pushoutIsoOpPullback_inv_snd
pushoutIsoUnopPullback 📖CompOp
6 mathmath: pushoutIsoUnopPullback_inr_hom, pushoutIsoUnopPullback_inl_hom_assoc, pushoutIsoUnopPullback_inr_hom_assoc, pushoutIsoUnopPullback_inv_snd, pushoutIsoUnopPullback_inv_fst, pushoutIsoUnopPullback_inl_hom
spanOp 📖CompOp
2 mathmath: spanOp_hom_app, spanOp_inv_app

Theorems

NameKindAssumesProvesValidatesDepends On
cospanOp_hom_app 📖mathematicalCategoryTheory.NatTrans.app
WalkingCospan
WidePullbackShape.category
WalkingPair
Opposite
CategoryTheory.Category.opposite
cospan
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.comp
WalkingSpan
WidePushoutShape.category
CategoryTheory.Equivalence.inverse
walkingSpanOpEquiv
CategoryTheory.Functor.op
span
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
cospanOp
CategoryTheory.Functor.obj
CategoryTheory.Iso
CategoryTheory.Iso.refl
cospanOp_inv_app 📖mathematicalCategoryTheory.NatTrans.app
WalkingCospan
WidePullbackShape.category
WalkingPair
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.comp
WalkingSpan
WidePushoutShape.category
CategoryTheory.Equivalence.inverse
walkingSpanOpEquiv
CategoryTheory.Functor.op
span
cospan
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
cospanOp
CategoryTheory.Functor.obj
CategoryTheory.Iso
CategoryTheory.Iso.refl
hasPullbacks_opposite 📖mathematicalHasPullbacks
Opposite
CategoryTheory.Category.opposite
hasLimitsOfShape_op_of_hasColimitsOfShape
hasColimitsOfShape_of_equivalence
hasPushouts_opposite 📖mathematicalHasPushouts
Opposite
CategoryTheory.Category.opposite
hasColimitsOfShape_op_of_hasLimitsOfShape
hasLimitsOfShape_of_equivalence
opCospan_hom_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
WalkingCospan
CategoryTheory.Category.opposite
WidePullbackShape.category
WalkingPair
CategoryTheory.Functor.op
cospan
CategoryTheory.Functor.comp
WalkingSpan
WidePushoutShape.category
CategoryTheory.Equivalence.functor
walkingCospanOpEquiv
span
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
opCospan
CategoryTheory.Iso.inv
CategoryTheory.Functor.obj
Opposite.unop
WidePushoutShape
CategoryTheory.Iso
CategoryTheory.Iso.refl
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
opCospan_inv_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
WalkingCospan
CategoryTheory.Category.opposite
WidePullbackShape.category
WalkingPair
CategoryTheory.Functor.comp
WalkingSpan
WidePushoutShape.category
CategoryTheory.Equivalence.functor
walkingCospanOpEquiv
span
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.op
cospan
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
opCospan
CategoryTheory.Iso.hom
CategoryTheory.Functor.obj
Opposite.unop
WidePushoutShape
CategoryTheory.Iso
CategoryTheory.Iso.refl
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
opSpan_hom_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
WalkingSpan
CategoryTheory.Category.opposite
WidePushoutShape.category
WalkingPair
CategoryTheory.Functor.op
span
CategoryTheory.Functor.comp
WalkingCospan
WidePullbackShape.category
CategoryTheory.Equivalence.functor
walkingSpanOpEquiv
cospan
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
opSpan
CategoryTheory.Iso.inv
CategoryTheory.Functor.obj
Opposite.unop
WidePullbackShape
CategoryTheory.Iso
CategoryTheory.Iso.refl
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
opSpan_inv_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
WalkingSpan
CategoryTheory.Category.opposite
WidePushoutShape.category
WalkingPair
CategoryTheory.Functor.comp
WalkingCospan
WidePullbackShape.category
CategoryTheory.Equivalence.functor
walkingSpanOpEquiv
cospan
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.op
span
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
opSpan
CategoryTheory.Iso.hom
CategoryTheory.Functor.obj
Opposite.unop
WidePullbackShape
CategoryTheory.Iso
CategoryTheory.Iso.refl
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
pullbackIsoOpPushout_hom_inl 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Opposite.unop
pushout
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
pullback
Opposite
CategoryTheory.Category.opposite
pushout.inl
Opposite.op
CategoryTheory.Iso.hom
pullbackIsoOpPushout
pullback.fst
CategoryTheory.Iso.hom_inv_id_assoc
pullbackIsoOpPushout_hom_inl_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Opposite.unop
pushout
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
pushout.inl
pullback
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Iso.hom
pullbackIsoOpPushout
pullback.fst
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pullbackIsoOpPushout_hom_inl
pullbackIsoOpPushout_hom_inr 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Opposite.unop
pushout
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
pullback
Opposite
CategoryTheory.Category.opposite
pushout.inr
Opposite.op
CategoryTheory.Iso.hom
pullbackIsoOpPushout
pullback.snd
CategoryTheory.Iso.hom_inv_id_assoc
pullbackIsoOpPushout_hom_inr_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Opposite.unop
pushout
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
pushout.inr
pullback
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Iso.hom
pullbackIsoOpPushout
pullback.snd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pullbackIsoOpPushout_hom_inr
pullbackIsoOpPushout_inv_fst 📖mathematicalCategoryTheory.CategoryStruct.comp
Opposite
CategoryTheory.CategoryStruct.opposite
CategoryTheory.Category.toCategoryStruct
Opposite.op
pushout
Opposite.unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
pullback
CategoryTheory.Category.opposite
CategoryTheory.Iso.inv
pullbackIsoOpPushout
pullback.fst
Quiver.Hom.op
pushout.inl
IsLimit.conePointUniqueUpToIso_inv_comp
CategoryTheory.Category.comp_id
pullbackIsoOpPushout_inv_fst_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
Opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Category.opposite
Opposite.op
pushout
Opposite.unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
pullback
CategoryTheory.Iso.inv
pullbackIsoOpPushout
pullback.fst
Quiver.Hom.op
pushout.inl
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pullbackIsoOpPushout_inv_fst
pullbackIsoOpPushout_inv_snd 📖mathematicalCategoryTheory.CategoryStruct.comp
Opposite
CategoryTheory.CategoryStruct.opposite
CategoryTheory.Category.toCategoryStruct
Opposite.op
pushout
Opposite.unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
pullback
CategoryTheory.Category.opposite
CategoryTheory.Iso.inv
pullbackIsoOpPushout
pullback.snd
Quiver.Hom.op
pushout.inr
IsLimit.conePointUniqueUpToIso_inv_comp
CategoryTheory.Category.comp_id
pullbackIsoOpPushout_inv_snd_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
Opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Category.opposite
Opposite.op
pushout
Opposite.unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
pullback
CategoryTheory.Iso.inv
pullbackIsoOpPushout
pullback.snd
Quiver.Hom.op
pushout.inr
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pullbackIsoOpPushout_inv_snd
pullbackIsoUnopPushout_hom_inl 📖mathematicalCategoryTheory.CategoryStruct.comp
Opposite
CategoryTheory.CategoryStruct.opposite
CategoryTheory.Category.toCategoryStruct
Opposite.op
pushout
CategoryTheory.Category.opposite
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
pullback
pushout.inl
Opposite.unop
CategoryTheory.Iso.hom
pullbackIsoUnopPushout
pullback.fst
CategoryTheory.Iso.hom_inv_id_assoc
pullbackIsoUnopPushout_hom_inl_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
Opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Category.opposite
Opposite.op
pushout
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
pushout.inl
pullback
Opposite.unop
CategoryTheory.Iso.hom
pullbackIsoUnopPushout
pullback.fst
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pullbackIsoUnopPushout_hom_inl
pullbackIsoUnopPushout_hom_inr 📖mathematicalCategoryTheory.CategoryStruct.comp
Opposite
CategoryTheory.CategoryStruct.opposite
CategoryTheory.Category.toCategoryStruct
Opposite.op
pushout
CategoryTheory.Category.opposite
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
pullback
pushout.inr
Opposite.unop
CategoryTheory.Iso.hom
pullbackIsoUnopPushout
pullback.snd
CategoryTheory.Iso.hom_inv_id_assoc
pullbackIsoUnopPushout_hom_inr_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
Opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Category.opposite
Opposite.op
pushout
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
pushout.inr
pullback
Opposite.unop
CategoryTheory.Iso.hom
pullbackIsoUnopPushout
pullback.snd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pullbackIsoUnopPushout_hom_inr
pullbackIsoUnopPushout_inv_fst 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Opposite.unop
pushout
Opposite
CategoryTheory.Category.opposite
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
pullback
CategoryTheory.Iso.inv
pullbackIsoUnopPushout
pullback.fst
Quiver.Hom.unop
pushout.inl
IsLimit.conePointUniqueUpToIso_inv_comp
PushoutCocone.unop_π_app
CategoryTheory.Category.comp_id
pullbackIsoUnopPushout_inv_fst_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Opposite.unop
pushout
Opposite
CategoryTheory.Category.opposite
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
pullback
CategoryTheory.Iso.inv
pullbackIsoUnopPushout
pullback.fst
Quiver.Hom.unop
pushout.inl
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pullbackIsoUnopPushout_inv_fst
pullbackIsoUnopPushout_inv_snd 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Opposite.unop
pushout
Opposite
CategoryTheory.Category.opposite
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
pullback
CategoryTheory.Iso.inv
pullbackIsoUnopPushout
pullback.snd
Quiver.Hom.unop
pushout.inr
IsLimit.conePointUniqueUpToIso_inv_comp
PushoutCocone.unop_π_app
CategoryTheory.Category.comp_id
pullbackIsoUnopPushout_inv_snd_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Opposite.unop
pushout
Opposite
CategoryTheory.Category.opposite
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
pullback
CategoryTheory.Iso.inv
pullbackIsoUnopPushout
pullback.snd
Quiver.Hom.unop
pushout.inr
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pullbackIsoUnopPushout_inv_snd
pushoutIsoOpPullback_inl_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
Opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Category.opposite
pushout
Opposite.op
pullback
Opposite.unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
pushout.inl
CategoryTheory.Iso.hom
pushoutIsoOpPullback
Quiver.Hom.op
pullback.fst
IsColimit.comp_coconePointUniqueUpToIso_hom
CategoryTheory.Category.id_comp
pushoutIsoOpPullback_inl_hom_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
Opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Category.opposite
pushout
pushout.inl
Opposite.op
pullback
Opposite.unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Iso.hom
pushoutIsoOpPullback
Quiver.Hom.op
pullback.fst
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pushoutIsoOpPullback_inl_hom
pushoutIsoOpPullback_inr_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
Opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Category.opposite
pushout
Opposite.op
pullback
Opposite.unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
pushout.inr
CategoryTheory.Iso.hom
pushoutIsoOpPullback
Quiver.Hom.op
pullback.snd
IsColimit.comp_coconePointUniqueUpToIso_hom
CategoryTheory.Category.id_comp
pushoutIsoOpPullback_inr_hom_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
Opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Category.opposite
pushout
pushout.inr
Opposite.op
pullback
Opposite.unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Iso.hom
pushoutIsoOpPullback
Quiver.Hom.op
pullback.snd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pushoutIsoOpPullback_inr_hom
pushoutIsoOpPullback_inv_fst 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Opposite.unop
pushout
Opposite
CategoryTheory.Category.opposite
Opposite.op
pullback
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Iso.inv
pushoutIsoOpPullback
pullback.fst
pushout.inl
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
pushoutIsoOpPullback_inv_snd 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Opposite.unop
pushout
Opposite
CategoryTheory.Category.opposite
Opposite.op
pullback
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Iso.inv
pushoutIsoOpPullback
pullback.snd
pushout.inr
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
pushoutIsoUnopPullback_inl_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
pushout
Opposite.unop
pullback
Opposite
CategoryTheory.Category.opposite
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
pushout.inl
CategoryTheory.Iso.hom
pushoutIsoUnopPullback
Quiver.Hom.unop
pullback.fst
IsColimit.comp_coconePointUniqueUpToIso_hom
PullbackCone.unop_ι_app
CategoryTheory.Category.id_comp
pushoutIsoUnopPullback_inl_hom_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
pushout
pushout.inl
Opposite.unop
pullback
Opposite
CategoryTheory.Category.opposite
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Iso.hom
pushoutIsoUnopPullback
Quiver.Hom.unop
pullback.fst
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pushoutIsoUnopPullback_inl_hom
pushoutIsoUnopPullback_inr_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
pushout
Opposite.unop
pullback
Opposite
CategoryTheory.Category.opposite
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
pushout.inr
CategoryTheory.Iso.hom
pushoutIsoUnopPullback
Quiver.Hom.unop
pullback.snd
IsColimit.comp_coconePointUniqueUpToIso_hom
PullbackCone.unop_ι_app
CategoryTheory.Category.id_comp
pushoutIsoUnopPullback_inr_hom_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
pushout
pushout.inr
Opposite.unop
pullback
Opposite
CategoryTheory.Category.opposite
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Iso.hom
pushoutIsoUnopPullback
Quiver.Hom.unop
pullback.snd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pushoutIsoUnopPullback_inr_hom
pushoutIsoUnopPullback_inv_fst 📖mathematicalCategoryTheory.CategoryStruct.comp
Opposite
CategoryTheory.CategoryStruct.opposite
CategoryTheory.Category.toCategoryStruct
Opposite.op
pushout
Opposite.unop
pullback
CategoryTheory.Category.opposite
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Iso.inv
pushoutIsoUnopPullback
pullback.fst
pushout.inl
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
pushoutIsoUnopPullback_inv_snd 📖mathematicalCategoryTheory.CategoryStruct.comp
Opposite
CategoryTheory.CategoryStruct.opposite
CategoryTheory.Category.toCategoryStruct
Opposite.op
pushout
Opposite.unop
pullback
CategoryTheory.Category.opposite
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Iso.inv
pushoutIsoUnopPullback
pullback.snd
pushout.inr
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
spanOp_hom_app 📖mathematicalCategoryTheory.NatTrans.app
WalkingSpan
WidePushoutShape.category
WalkingPair
Opposite
CategoryTheory.Category.opposite
span
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.comp
WalkingCospan
WidePullbackShape.category
CategoryTheory.Equivalence.inverse
walkingCospanOpEquiv
CategoryTheory.Functor.op
cospan
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
spanOp
CategoryTheory.Functor.obj
CategoryTheory.Iso
CategoryTheory.Iso.refl
spanOp_inv_app 📖mathematicalCategoryTheory.NatTrans.app
WalkingSpan
WidePushoutShape.category
WalkingPair
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.comp
WalkingCospan
WidePullbackShape.category
CategoryTheory.Equivalence.inverse
walkingCospanOpEquiv
CategoryTheory.Functor.op
cospan
span
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
spanOp
CategoryTheory.Functor.obj
CategoryTheory.Iso
CategoryTheory.Iso.refl

CategoryTheory.Limits.PullbackCone

Definitions

NameCategoryTheorems
isLimitEquivIsColimitOp 📖CompOp
isLimitEquivIsColimitUnop 📖CompOp
op 📖CompOp
4 mathmath: op_pt, op_inr, op_ι_app, op_inl
opUnopIso 📖CompOp
unop 📖CompOp
4 mathmath: unop_inl, unop_inr, unop_ι_app, unop_pt
unopOpIso 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
op_inl 📖mathematicalCategoryTheory.Limits.PushoutCocone.inl
Opposite
CategoryTheory.Category.opposite
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
op
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
fst
CategoryTheory.Category.id_comp
op_inr 📖mathematicalCategoryTheory.Limits.PushoutCocone.inr
Opposite
CategoryTheory.Category.opposite
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
op
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
snd
CategoryTheory.Category.id_comp
op_pt 📖mathematicalCategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.span
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
op
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.cospan
op_ι_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.span
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Functor.comp
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Equivalence.inverse
CategoryTheory.Limits.walkingCospanOpEquiv
CategoryTheory.Functor.op
CategoryTheory.Limits.cospan
CategoryTheory.Limits.Cocone.whisker
CategoryTheory.Limits.Cone.op
CategoryTheory.Limits.Cocone.ι
op
CategoryTheory.CategoryStruct.comp
CategoryTheory.Limits.Cone.pt
CategoryTheory.Iso.hom
CategoryTheory.Iso
CategoryTheory.Iso.refl
CategoryTheory.Limits.Cone.π
unop_inl 📖mathematicalCategoryTheory.Limits.PushoutCocone.inl
Opposite.unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
unop
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.cospan
fst
unop_ι_app
CategoryTheory.Category.id_comp
unop_inr 📖mathematicalCategoryTheory.Limits.PushoutCocone.inr
Opposite.unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
unop
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.cospan
snd
unop_ι_app
CategoryTheory.Category.id_comp
unop_pt 📖mathematicalCategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.span
Opposite.unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
unop
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.cospan
unop_ι_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.span
Opposite.unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
CategoryTheory.Limits.Cone
CategoryTheory.Functor.comp
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Equivalence.functor
CategoryTheory.Limits.walkingSpanOpEquiv
CategoryTheory.Limits.cospan
Opposite.op
Quiver.Hom.op
CategoryTheory.Limits.Cone.category
CategoryTheory.Limits.Cones.postcompose
CategoryTheory.Iso.hom
CategoryTheory.Iso.symm
CategoryTheory.Limits.opSpan
CategoryTheory.Limits.Cone.whisker
CategoryTheory.Limits.Cocone.ι
unop
CategoryTheory.CategoryStruct.comp
CategoryTheory.Iso
CategoryTheory.Iso.refl
CategoryTheory.Limits.Cone.π
CategoryTheory.Limits.opSpan_inv_app

CategoryTheory.Limits.PushoutCocone

Definitions

NameCategoryTheorems
isColimitEquivIsLimitOp 📖CompOp
isColimitEquivIsLimitUnop 📖CompOp
op 📖CompOp
4 mathmath: op_snd, op_π_app, op_pt, op_fst
opUnopIso 📖CompOp
unop 📖CompOp
4 mathmath: unop_π_app, unop_pt, unop_snd, unop_fst
unopOpIso 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
op_fst 📖mathematicalCategoryTheory.Limits.PullbackCone.fst
Opposite
CategoryTheory.Category.opposite
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
op
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.span
inl
CategoryTheory.Category.comp_id
op_pt 📖mathematicalCategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.cospan
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
op
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.span
op_snd 📖mathematicalCategoryTheory.Limits.PullbackCone.snd
Opposite
CategoryTheory.Category.opposite
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
op
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.span
inr
CategoryTheory.Category.comp_id
op_π_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.Functor.comp
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Equivalence.inverse
CategoryTheory.Limits.walkingSpanOpEquiv
CategoryTheory.Functor.op
CategoryTheory.Limits.span
CategoryTheory.Limits.Cone.whisker
CategoryTheory.Limits.Cocone.op
CategoryTheory.Limits.cospan
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.π
op
CategoryTheory.CategoryStruct.comp
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.Cocone.ι
CategoryTheory.Iso.inv
CategoryTheory.Iso
CategoryTheory.Iso.refl
unop_fst 📖mathematicalCategoryTheory.Limits.PullbackCone.fst
Opposite.unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
unop
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.span
inl
unop_π_app
CategoryTheory.Category.comp_id
unop_pt 📖mathematicalCategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
Opposite.unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
unop
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.span
unop_snd 📖mathematicalCategoryTheory.Limits.PullbackCone.snd
Opposite.unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
unop
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.span
inr
unop_π_app
CategoryTheory.Category.comp_id
unop_π_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
Opposite.unop
CategoryTheory.Limits.Cocone.pt
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
CategoryTheory.Limits.cospan
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cocone
CategoryTheory.Functor.comp
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Equivalence.functor
CategoryTheory.Limits.walkingCospanOpEquiv
CategoryTheory.Limits.span
Opposite.op
Quiver.Hom.op
CategoryTheory.Limits.Cocone.category
CategoryTheory.Limits.Cocones.precompose
CategoryTheory.Iso.hom
CategoryTheory.Limits.opCospan
CategoryTheory.Limits.Cocone.whisker
CategoryTheory.Limits.Cone.π
unop
CategoryTheory.CategoryStruct.comp
CategoryTheory.Limits.Cocone.ι
CategoryTheory.Iso.inv
CategoryTheory.Iso
CategoryTheory.Iso.refl
CategoryTheory.Limits.opCospan_hom_app

---

← Back to Index