Documentation Verification Report

Cospan

📁 Source: Mathlib/CategoryTheory/Limits/Shapes/Pullback/Cospan.lean

Statistics

MetricCount
DefinitionsWalkingCospan, id, inl, inr, ext, left, one, right, WalkingSpan, fst, id, snd, ext, left, right, zero, cospan, cospanCompIso, cospanExt, cospanHomMk, cospanIsoMk, diagramIsoCospan, diagramIsoSpan, span, spanCompIso, spanExt, spanHomMk, spanIsoMk
28
TheoremsinstSubsingletonHom, instSubsingletonHom, cospanCompIso_app_left, cospanCompIso_app_one, cospanCompIso_app_right, cospanCompIso_hom_app_left, cospanCompIso_hom_app_one, cospanCompIso_hom_app_right, cospanCompIso_inv_app_left, cospanCompIso_inv_app_one, cospanCompIso_inv_app_right, cospanExt_app_left, cospanExt_app_one, cospanExt_app_right, cospanExt_hom_app_left, cospanExt_hom_app_one, cospanExt_hom_app_right, cospanExt_inv_app_left, cospanExt_inv_app_one, cospanExt_inv_app_right, cospanHomMk_app, cospanIsoMk_hom_app, cospanIsoMk_inv_app, cospan_left, cospan_map_id, cospan_map_inl, cospan_map_inr, cospan_one, cospan_right, diagramIsoCospan_hom_app, diagramIsoCospan_inv_app, diagramIsoSpan_hom_app, diagramIsoSpan_inv_app, spanCompIso_app_left, spanCompIso_app_right, spanCompIso_app_zero, spanCompIso_hom_app_left, spanCompIso_hom_app_right, spanCompIso_hom_app_zero, spanCompIso_inv_app_left, spanCompIso_inv_app_right, spanCompIso_inv_app_zero, spanExt_app_left, spanExt_app_one, spanExt_app_right, spanExt_hom_app_left, spanExt_hom_app_right, spanExt_hom_app_zero, spanExt_inv_app_left, spanExt_inv_app_right, spanExt_inv_app_zero, spanHomMk_app, spanIsoMk_hom_app, spanIsoMk_inv_app, span_left, span_map_fst, span_map_id, span_map_snd, span_right, span_zero
60
Total88

CategoryTheory.Limits

Definitions

NameCategoryTheorems
WalkingCospan 📖CompOp
366 mathmath: AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_snd, TopCat.isInducing_pullback_to_prod, CategoryTheory.StructuredArrow.projectSubobject_mk, CategoryTheory.Over.μ_pullback_left_snd', AlgebraicGeometry.SheafedSpace.IsOpenImmersion.hasLimit_cospan_forget_of_right', TopCat.pullbackIsoProdSubtype_hom_fst, CategoryTheory.PreservesPullbacksOfInclusions.preservesPullbackInl', CategoryTheory.regularTopology.EqualizerCondition.bijective_mapToEqualizer_pullback', AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_snd_assoc, diagramIsoCospan_inv_app, diagonalObjPullbackFstIso_inv_snd_snd_assoc, walkingSpanOpEquiv_inverse_map, CategoryTheory.PreservesPullbacksOfInclusions.preservesPullbackInr, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.forgetToPresheafedSpace_preservesPullback_of_right, AlgebraicGeometry.IsOpenImmersion.hasLimit_cospan_forget_of_right', pullbackDiagonalMapIso.hom_fst, diagonalObjPullbackFstIso_inv_fst_snd_assoc, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift_snd, pullbackFstFstIso_hom, prodIsoPullback_inv_fst, pullbackConeOfLeftIso_π_app_left, CategoryTheory.Abelian.epi_pullback_of_epi_f, CategoryTheory.IsGrothendieckAbelian.IsPresentable.surjectivity.hf, CategoryTheory.Abelian.epi_fst_of_factor_thru_epi_mono_factorization, FormalCoproduct.homPullbackEquiv_symm_apply_φ, CategoryTheory.Functor.preservesLimit_cospan_of_mem_presieve, Types.range_pullbackFst, cospanExt_app_one, CategoryTheory.Over.monObjMkPullbackSnd_mul, diagonalObjPullbackFstIso_inv_fst_fst, TopCat.snd_isOpenEmbedding_of_left, PullbackCone.π_app_right, PushoutCocone.unop_π_app, CategoryTheory.Over.grpObjMkPullbackSnd_one, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.hasLimit_cospan_forget_of_left', CategoryTheory.Over.grpObjMkPullbackSnd_mul, FormalCoproduct.pullbackCone_fst_φ, PullbackCone.condition, Types.pullbackIsoPullback_hom_fst, CategoryTheory.IsPullback.isLimit', pullbackDiagonalMapIso.inv_fst_assoc, pullback_diagonal_map_snd_snd_fst_assoc, diagonalObjPullbackFstIso_hom_snd, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.sheafedSpace_pullback_to_base_isOpenImmersion, CompHausLike.pullback.isLimit_lift, PullbackCone.unop_inl, CategoryTheory.Over.isCommMonObj_mk_pullbackSnd, TopCat.pullback_topology, PullbackCone.mk_π_app, AlgebraicGeometry.Scheme.Pullback.gluedLift_p1, PullbackCone.IsLimit.lift_fst, prodIsoPullback_inv_fst_assoc, PullbackCone.op_pt, equalizerPullbackMapIso_inv_ι_snd, pullbackConeOfLeftIso_π_app_right, diagonalObjPullbackFstIso_inv_snd_fst, pullbackObjIso_inv_comp_fst_assoc, PullbackCone.IsLimit.equivPullbackObj_apply_fst, equalizerPullbackMapIso_inv_ι_fst, pullbackConeOfLeftIso_snd, walkingCospanOpEquiv_counitIso_hom_app, diagonalObjPullbackFstIso_hom_fst_fst_assoc, CategoryTheory.Over.postAdjunctionLeft_unit_app_left, PullbackCone.condition_assoc, CategoryTheory.Over.preservesTerminalIso_pullback, PullbackCone.unop_inr, spanOp_hom_app, AlgebraicGeometry.IsOpenImmersion.hasLimit_cospan_forget_of_left, TopCat.fst_iso_of_right_embedding_range_subset, PullbackCone.combine_π_app, CategoryTheory.Abelian.Pseudoelement.pseudo_pullback, CategoryTheory.PreGaloisCategory.FiberFunctor.preservesPullbacks, equalizerPullbackMapIso_hom_fst_assoc, pullback.comp_diagonal_assoc, TopCat.pullbackIsoProdSubtype_inv_fst_assoc, pullbackConeEquivBinaryFan_functor_map_hom, PullbackCone.op_inr, prodIsoPullback_hom_fst_assoc, walkingCospanOpEquiv_counitIso_inv_app, AlgebraicGeometry.IsOpenImmersion.instπWalkingCospanSchemeCospanOne, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.forgetToPresheafedSpace_reflectsPullback_of_right, PullbackCone.op_ι_app, pullbackConeEquivBinaryFan_counitIso, pullback_diagonal_map_snd_fst_fst, diagramIsoCospan_hom_app, diagonalObjPullbackFstIso_inv_snd_snd, IsLimit.pullbackConeEquivBinaryFanFunctor_lift_left, AlgebraicGeometry.Scheme.Pullback.gluedLift_p2, cospan_left, walkingCospanOpEquiv_inverse_obj, AlgebraicGeometry.IsOpenImmersion.instPreservesLimitSchemeLocallyRingedSpaceWalkingCospanCospanForgetToLocallyRingedSpace, walkingSpanOpEquiv_inverse_obj, CategoryTheory.FinitaryPreExtensive.isIso_sigmaDesc_map, cospanExt_app_right, TopCat.range_pullback_map, CategoryTheory.Subobject.pullback_obj, pullback_lift_diagonal_isPullback, walkingCospanOpEquiv_unitIso_inv_app, PullbackCone.mono_fst_of_is_pullback_of_mono, CategoryTheory.Equalizer.Presieve.isSheafFor_singleton_iff, cospan_map_inr, cospanCompIso_inv_app_left, CategoryTheory.Over.starPullbackIsoStar_hom_app_left, CategoryTheory.ShortComplex.SnakeInput.lift_φ₂, CategoryTheory.IsGrothendieckAbelian.IsPresentable.surjectivity.isIso_f, Cone.ofPullbackCone_pt, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.pullbackToBaseIsOpenImmersion, spanOp_inv_app, cospan_map_inl, CategoryTheory.Over.tensorHom_left_snd_assoc, PullbackCone.isIso_fst_of_mono_of_isLimit, Types.pullbackLimitCone_cone, Cone.ofPullbackCone_π, pullbackConeOfRightIso_π_app_right, AlgebraicGeometry.IsOpenImmersion.instPreservesLimitSchemeTopCatWalkingCospanCospanForgetToTop_1, AlgebraicGeometry.IsOpenImmersion.hasLimit_cospan_forget_of_right, PullbackCone.snd_limit_cone, PullbackCone.mk_π_app_right, opSpan_hom_app, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_snd', pullbackDiagonalMapIso.hom_snd_assoc, CategoryTheory.Over.μ_pullback_left_fst_snd', pullbackConeOfRightIso_fst, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.sheafedSpace_forgetPreserves_of_right, pullbackConeOfRightIso_x, PullbackCone.mk_π_app_one, TopCat.Sheaf.interUnionPullbackConeLift_right, preservesPullback_symmetry, hasLimit_cospan_of_hasLimit_pair_of_hasLimit_parallelPair, CategoryTheory.IsPullback.of_isLimit, TopCat.fst_isEmbedding_of_right, isPullback_map_snd_snd, pullbackConeEquivBinaryFan_inverse_obj, pullbackConeEquivBinaryFan_functor_obj, walkingSpanOpEquiv_counitIso_hom_app, CategoryTheory.Abelian.epi_snd_of_isLimit, TopCat.isOpenEmbedding_of_pullback, opCospan_hom_app, PullbackCone.IsLimit.equivPullbackObj_apply_snd, Types.pullbackIsoPullback_inv_snd, PullbackCone.π_app_left, CategoryTheory.regularTopology.parallelPair_pullback_initial, CategoryTheory.Square.isPullback_iff, TopCat.pullbackIsoProdSubtype_inv_snd_apply, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_fst_fst, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.sheafedSpace_forgetPreserves_of_left, TopCat.pullbackIsoProdSubtype_inv_fst, cospanCompIso_inv_app_right, FormalCoproduct.homPullbackEquiv_symm_apply_f_coe, PullbackCone.eta_inv_hom, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift_fst, diagonalObjPullbackFstIso_inv_snd_fst_assoc, PushoutCocone.op_π_app, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.forgetToTop_preservesPullback_of_left, CategoryTheory.Over.closedUnderLimitsOfShape_pullback, walkingSpanOpEquiv_unitIso_inv_app, CategoryTheory.PreservesPullbacksOfInclusions.preservesPullbackInl, opCospan_inv_app, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.forgetToPresheafedSpace_preservesPullback_of_left, CategoryTheory.IsUniversalColimit.nonempty_isColimit_of_pullbackCone_left, TopCat.pullbackIsoProdSubtype_hom_snd, cospanExt_inv_app_one, PullbackCone.unop_ι_app, Types.pullbackIsoPullback_hom_snd, CategoryTheory.IsUniversalColimit.nonempty_isColimit_prod_of_pullbackCone, pullbackDiagonalMapIso.hom_snd, pullbackConeOfLeftIso_π_app_none, CategoryTheory.Over.μ_pullback_left_fst_fst', TopCat.snd_iso_of_left_embedding_range_subset, pullbackObjIso_hom_comp_fst, cospanOp_hom_app, CategoryTheory.Over.μ_pullback_left_fst_snd, CategoryTheory.Over.monObjMkPullbackSnd_one, TopCat.pullbackIsoProdSubtype_inv_snd, CategoryTheory.ShortComplex.SnakeInput.lift_φ₂_assoc, PullbackCone.isoMk_inv_hom, pullback_diagonal_map_snd_fst_fst_assoc, PreservesPullback.of_iso_comparison, pullbackDiagonalMapIso.inv_snd_fst, prodIsoPullback_hom_snd, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.hasLimit_cospan_forget_of_right, CategoryTheory.Regular.instHasCoequalizerFstSnd, cospan_right, cospanExt_app_left, TopCat.range_pullback_to_prod, TopCat.Sheaf.interUnionPullbackConeLift_left, PullbackCone.IsLimit.equivPullbackObj_symm_apply_fst, TopCat.pullback_fst_image_snd_preimage, CompHausLike.instPreservesLimitTopCatWalkingCospanCospanCompHausLikeToTop, CompleteLattice.pullback_eq_inf, CategoryTheory.Abelian.epi_pullback_of_epi_g, prodIsoPullback_hom_snd_assoc, pullbackConeOfRightIso_π_app_left, pullbackConeOfLeftIso_x, walkingCospanOpEquiv_functor_map, CompHausLike.pullback.cone_π, TopCat.pullbackIsoProdSubtype_inv_fst_apply, pullbackObjIso_hom_comp_fst_assoc, CategoryTheory.Over.tensorHom_left_fst, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.pullbackConeSndIsOpenImmersion, pullbackDiagonalMapIso.inv_fst, AlgebraicGeometry.Scheme.Pullback.openCoverOfBase'_f, CategoryTheory.PreGaloisCategory.fiberPullbackEquiv_symm_fst_apply, equalizerPullbackMapIso_hom_snd_assoc, CategoryTheory.instPreservesLimitWalkingCospanCospanOfIsIso, pullback.comp_diagonal, cospanExt_hom_app_one, cospan_map_id, walkingCospanOpEquiv_functor_obj, CategoryTheory.Over.tensorHom_left_fst_assoc, prodIsoPullback_hom_fst, walkingSpanOpEquiv_functor_map, PullbackCone.eta_hom_hom, CategoryTheory.PreservesPullbacksOfInclusions.preservesPullbackInr', AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_fst_assoc, CategoryTheory.Over.η_pullback_left, PullbackCone.mk_pt, cospanCompIso_inv_app_one, CategoryTheory.PreGaloisCategory.fiberPullbackEquiv_symm_snd_apply, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.hasLimit_cospan_forget_of_left, PullbackCone.ofCone_π, AlgebraicGeometry.IsOpenImmersion.instPreservesLimitSchemeWalkingCospanCospanForget_1, pullbackObjIso_inv_comp_fst, PullbackCone.op_inl, PullbackCone.IsLimit.lift_snd, equalizerPullbackMapIso_hom_snd, diagonalObjPullbackFstIso_hom_fst_snd, PullbackCone.flip_pt, Types.pullbackIsoPullback_inv_fst, Types.pullbackIsoPullback_inv_fst_apply, cospanCompIso_hom_app_left, equalizerPullbackMapIso_hom_fst, TopCat.isEmbedding_pullback_to_prod, CategoryTheory.MonoOver.pullback_obj_left, TopCat.pullbackIsoProdSubtype_hom_apply, CoproductDisjoint.nonempty_isInitial_of_ne, pullbackDiagonalMapIso.inv_snd_fst_assoc, equalizerPullbackMapIso_inv_ι_snd_assoc, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.pullback_cone_of_left_condition, FormalCoproduct.pullbackCone_fst_f, pullback.diagonal_comp, CategoryTheory.Over.prodComparisonIso_pullback_Spec_inv_left_fst_fst', pullbackObjIso_hom_comp_snd_assoc, CategoryTheory.MorphismProperty.diagonal_iff, Types.range_pullbackSnd, CompHausLike.instHasLimitWalkingCospanCospan, TopCat.fst_isOpenEmbedding_of_right, cospanCompIso_hom_app_one, pullback_diagonal_map_snd_snd_fst, prodIsoPullback_inv_snd, PullbackCone.combine_pt_map, AlgebraicGeometry.IsOpenImmersion.instPreservesLimitSchemeTopCatWalkingCospanCospanForgetToTop, CategoryTheory.NormalMonoCategory.pullback_of_mono, PullbackCone.unop_pt, TopCat.pullbackIsoProdSubtype_inv_snd_assoc, diagonalObjPullbackFstIso_inv_fst_fst_assoc, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.forget_preservesLimitsOfRight, PullbackCone.combine_pt_obj, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.forget_preservesLimitsOfLeft, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.forgetToPresheafedSpace_reflectsPullback_of_left, PushoutCocone.op_pt, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.forget_reflectsPullback_of_left, FormalCoproduct.pullbackCone_condition, CategoryTheory.regularTopology.equalizerCondition_w, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.pullback_to_base_isOpenImmersion, pullbackConeOfRightIso_π_app_none, TopCat.pullback_map_isOpenEmbedding, CategoryTheory.Over.μ_pullback_left_snd, Types.pullbackLimitCone_isLimit, CategoryTheory.IsUniversalColimit.nonempty_isColimit_of_pullbackCone_right, diagonalObjPullbackFstIso_hom_fst_snd_assoc, cospanExt_inv_app_left, PullbackCone.condition_one, CategoryTheory.Functor.PreservesPairwisePullbacks.preservesLimit, pullbackObjIso_inv_comp_snd_assoc, pullbackDiagonalMapIso.inv_snd_snd_assoc, TopCat.pullback_map_isEmbedding, diagonalObjPullbackFstIso_hom_snd_assoc, CategoryTheory.Over.μ_pullback_left_fst_fst, CategoryTheory.Over.starPullbackIsoStar_inv_app_left, cospanOp_inv_app, cospanCompIso_hom_app_right, diagonalObjPullbackFstIso_hom_fst_fst, pullbackDiagonalMapIso.hom_fst_assoc, PullbackCone.isIso_snd_of_mono_of_isLimit, cospanCompIso_app_one, walkingSpanOpEquiv_functor_obj, CategoryTheory.Abelian.epi_fst_of_isLimit, CategoryTheory.MorphismProperty.faithful_overPullback_of_isomorphisms_descendAlong, CompHausLike.instPreservesLimitWalkingCospanCospanToCompHausLike, CategoryTheory.instPreservesLimitWalkingCospanCospanOfIsIso_1, PullbackCone.IsLimit.lift_fst_assoc, cospanCompIso_app_left, CategoryTheory.Over.tensorHom_left_snd, PushoutCocone.unop_pt, CategoryTheory.Presieve.uncurry_pullbackArrows, prodIsoPullback_inv_snd_assoc, walkingSpanOpEquiv_unitIso_hom_app, CategoryTheory.Over.lift_left, PullbackCone.IsLimit.lift_snd_assoc, AlgebraicGeometry.IsOpenImmersion.instPreservesLimitSchemeWalkingCospanCospanForget, PullbackCone.isoMk_hom_hom, pullback_map_eq_pullbackFstFstIso_inv, WalkingCospan.instSubsingletonHom, walkingSpanOpEquiv_counitIso_inv_app, CategoryTheory.mono_iff_isIso_fst, AlgebraicGeometry.Scheme.Pullback.forget_comparison_surjective, PullbackCone.ofCone_pt, PullbackCone.mk_π_app_left, diagonalObjPullbackFstIso_inv_fst_snd, FormalCoproduct.homPullbackEquiv_apply_coe, pullbackConeEquivBinaryFan_unitIso, CategoryTheory.Over.isMonHom_pullbackFst_id_right, TopCat.Sheaf.interUnionPullbackCone_pt, CategoryTheory.Over.tensorObj_left, CategoryTheory.mono_iff_isIso_snd, equalizerPullbackMapIso_inv_ι_fst_assoc, Types.pullbackIsoPullback_inv_snd_apply, PullbackCone.IsLimit.equivPullbackObj_symm_apply_snd, walkingCospanOpEquiv_unitIso_hom_app, PullbackCone.mono_snd_of_is_pullback_of_mono, TopCat.pullback_snd_range, opSpan_inv_app, CategoryTheory.IsPullback.of_isLimit_cone, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_fst_snd', TopCat.snd_isEmbedding_of_left, pullbackObjIso_inv_comp_snd, CategoryTheory.FinitaryPreExtensive.isPullback_sigmaDesc, cospanExt_inv_app_right, CategoryTheory.Over.ε_pullback_left, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.forget_reflectsPullback_of_right, pullback_fst_map_snd_isPullback, AlgebraicGeometry.Scheme.pullbackComparison_forget_surjective, CategoryTheory.Functor.relativelyRepresentable.toPullbackTerminal, AlgebraicGeometry.IsOpenImmersion.instPreservesLimitSchemeLocallyRingedSpaceWalkingCospanCospanForgetToLocallyRingedSpace_1, cospanExt_hom_app_right, AlgebraicGeometry.IsOpenImmersion.hasLimit_cospan_forget_of_left', pullbackDiagonalMapIso.inv_snd_snd, pullbackFstFstIso_inv, SSet.instFinitePullback, TopCat.pullback_fst_range, cospanExt_hom_app_left, FormalCoproduct.pullbackCone_snd_f, cospan_one, diagonal_pullback_fst, AlgebraicGeometry.LocallyRingedSpace.GlueData.instPreservesLimitSheafedSpaceCommRingCatWalkingCospanCospanFForgetToSheafedSpace, TopCat.pullback_snd_image_fst_preimage, pullback_lift_map_isPullback, CategoryTheory.IsGrothendieckAbelian.IsPresentable.surjectivity.epi_f, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.instSndPullbackConeOfLeft, FormalCoproduct.pullbackCone_snd_φ, walkingCospanOpEquiv_inverse_map, CategoryTheory.Over.tensorObj_hom, CategoryTheory.Over.postAdjunctionLeft_counit_app_left, FormalCoproduct.isPullback, cospanCompIso_app_right, pullbackConeEquivBinaryFan_inverse_map_hom, CompHausLike.pullback.cone_pt, PullbackCone.fst_limit_cone, pullbackObjIso_hom_comp_snd, TopCat.isEmbedding_of_pullback, AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_fst, pullback_equalizer, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.forget_preservesPullbackOfLeft, CategoryTheory.Regular.instMonoDesc, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.forget_preservesPullback_of_right
WalkingSpan 📖CompOp
180 mathmath: spanCompIso_app_left, pushoutCoconeOfLeftIso_ι_app_right, PushoutCocone.flip_pt, walkingSpanOpEquiv_inverse_map, CommRingCat.pushoutCocone_pt, spanCompIso_inv_app_zero, PushoutCocone.mk_ι_app_zero, PushoutCocone.inl_colimit_cocone, inl_coprodIsoPushout_hom, PushoutCocone.unop_π_app, inl_comp_pushoutObjIso_hom, pushoutCoconeEquivBinaryCofan_inverse_obj, pushoutCoconeEquivBinaryCofan_functor_obj, pushoutCoconeEquivBinaryCofan_unitIso, AlgebraicGeometry.instIsOpenImmersionLeftSchemeDiscretePUnitMapWalkingSpanOverTopMorphismPropertySpan, PushoutCocone.condition_assoc, span_map_id, PushoutCocone.op_snd, PushoutCocone.isoMk_inv_hom, PullbackCone.op_pt, span_right, inr_comp_pushoutObjIso_hom_assoc, PushoutCocone.epi_inl_of_is_pushout_of_epi, CategoryTheory.IsPushout.isColimit', pushoutCoconeEquivBinaryCofan_inverse_map_hom, walkingCospanOpEquiv_counitIso_hom_app, CommRingCat.Under.preservesFiniteLimits_of_flat, hasColimit_span_of_hasColimit_pair_of_hasColimit_parallelPair, CommRingCat.pushout_inr_tensorProdObjIsoPushoutObj_inv_right_assoc, spanCompIso_hom_app_zero, PushoutCocone.condition, spanOp_hom_app, CategoryTheory.Under.postAdjunctionRight_unit_app_right, spanExt_hom_app_right, spanCompIso_inv_app_left, Types.instMonoPushoutInl, walkingCospanOpEquiv_counitIso_inv_app, PullbackCone.op_ι_app, span_map_snd, walkingCospanOpEquiv_inverse_obj, walkingSpanOpEquiv_inverse_obj, walkingCospanOpEquiv_unitIso_inv_app, spanCompIso_app_zero, PushoutCocone.ofCocone_ι, spanExt_hom_app_zero, CommRingCat.HomTopology.isEmbedding_pushout, spanOp_inv_app, PushoutCocone.eta_inv_hom, inr_coprodIsoPushout_hom_assoc, opSpan_hom_app, AlgebraicGeometry.isIso_pushoutSection_of_isCompact_of_flat_right_of_ringHomFlat, spanCompIso_app_right, pushoutCoconeOfRightIso_x, CommRingCat.Under.instPreservesFiniteProductsUnderPushout, PushoutCocone.condition_zero, PushoutCocone.ι_app_left, pushoutCoconeOfLeftIso_ι_app_left, PushoutCocone.ofCocone_pt, walkingSpanOpEquiv_counitIso_hom_app, spanExt_app_one, opCospan_hom_app, PushoutCocone.isIso_inl_of_epi_of_isColimit, CategoryTheory.SmallObject.ιFunctorObj_eq, CommRingCat.inr_injective_of_flat, spanCompIso_inv_app_right, PushoutCocone.mk_ι_app, PushoutCocone.ι_app_right, CategoryTheory.Abelian.mono_pushout_of_mono_g, spanExt_inv_app_zero, CommRingCat.pushout_inl_tensorProdObjIsoPushoutObj_inv_right_assoc, spanExt_app_left, CategoryTheory.BicartesianSq.isColimit', pushoutCoconeEquivBinaryCofan_functor_map_hom, PushoutCocone.IsColimit.inl_desc_assoc, PushoutCocone.inr_colimit_cocone, PushoutCocone.op_π_app, CompleteLattice.pushout_eq_sup, walkingSpanOpEquiv_unitIso_inv_app, opCospan_inv_app, PullbackCone.unop_ι_app, AlgebraicGeometry.mono_pushoutSection_of_isCompact_of_flat_left_of_ringHomFlat, cospanOp_hom_app, AlgebraicGeometry.instMonoObjWalkingSpanCompSchemeSpanForgetNoneWalkingPairSomeMapInitOfIsOpenImmersion, CommRingCat.pushout_inl_tensorProdObjIsoPushoutObj_inv_right, pushoutCoconeOfRightIso_ι_app_left, spanCompIso_hom_app_right, AlgebraicGeometry.isPullback_Spec_map_pushout, walkingCospanOpEquiv_functor_map, Types.pushoutCocone_inr_mono_of_isColimit, AlgebraicGeometry.instIsOpenImmersionMapWalkingSpanSchemeSpan, walkingCospanOpEquiv_functor_obj, walkingSpanOpEquiv_functor_map, PushoutCocone.mk_pt, PushoutCocone.IsColimit.inr_desc_assoc, CommRingCat.inl_injective_of_flat, pushoutCoconeOfLeftIso_ι_app_none, PushoutCocone.IsColimit.inr_desc, spanCompIso_hom_app_left, CategoryTheory.SmallObject.πFunctorObj_eq, inl_comp_pushoutObjIso_inv, PushoutCocone.epi_inr_of_is_pushout_of_epi, inr_comp_pushoutObjIso_inv, spanExt_hom_app_left, CommRingCat.tensorProdIsoPushout_app, CategoryTheory.Square.isPushout_iff, Cocone.ofPushoutCocone_ι, AlgebraicGeometry.mono_pushoutSection_of_isCompact_of_flat_right, inl_comp_pushoutObjIso_inv_assoc, IsColimit.pushoutCoconeEquivBinaryCofanFunctor_desc_right, CategoryTheory.MorphismProperty.ind_underObj_pushout, inr_coprodIsoPushout_hom, PushoutCocone.IsColimit.inl_desc, AlgebraicGeometry.mono_pushoutSection_of_isCompact_of_flat_right_of_ringHomFlat, CategoryTheory.Abelian.mono_inl_of_isColimit, PullbackCone.unop_pt, span_map_fst, pushoutCoconeOfLeftIso_x, PushoutCocone.op_pt, PushoutCocone.mk_ι_app_right, span_left, inl_comp_pushoutObjIso_hom_assoc, AlgebraicGeometry.isPullback_SpecMap_pushout, AlgebraicGeometry.isIso_pushoutSection_of_isQuasiSeparated_of_flat_left, inl_coprodIsoPushout_inv, AlgebraicGeometry.isIso_pushoutSection_iff, PreservesPushout.of_iso_comparison, PushoutCocone.isoMk_hom_hom, cospanOp_inv_app, pushoutCoconeOfRightIso_ι_app_none, PushoutCocone.mk_ι_app_left, walkingSpanOpEquiv_functor_obj, CategoryTheory.Abelian.mono_pushout_of_mono_f, Types.Pushout.cocone_ι_app, CategoryTheory.epi_iff_isIso_inl, AlgebraicGeometry.mono_pushoutSection_of_isCompact_of_flat_left, inr_coprodIsoPushout_inv, PushoutCocone.unop_pt, PushoutCocone.eta_hom_hom, spanExt_app_right, walkingSpanOpEquiv_unitIso_hom_app, inl_coprodIsoPushout_hom_assoc, CategoryTheory.Under.postAdjunctionRight_counit_app_right, pushoutCoconeEquivBinaryCofan_counitIso, inr_comp_pushoutObjIso_inv_assoc, Types.instMonoPushoutInr, inr_comp_pushoutObjIso_hom, CategoryTheory.Abelian.mono_inl_of_factor_thru_epi_mono_factorization, CategoryTheory.Abelian.mono_inr_of_isColimit, diagramIsoSpan_inv_app, AlgebraicGeometry.instMonoObjWalkingSpanCompOverSchemeTopMorphismPropertySpanOverForgetForgetForgetNoneWalkingPairSomeMapInitOfIsOpenImmersionLeftDiscretePUnit, CategoryTheory.IsPushout.of_isColimit, span_zero, walkingSpanOpEquiv_counitIso_inv_app, preservesPushout_symmetry, AlgebraicGeometry.isIso_pushoutSection_of_isQuasiSeparated_of_flat_right, Cocone.ofPushoutCocone_pt, WalkingSpan.instSubsingletonHom, inl_coprodIsoPushout_inv_assoc, walkingCospanOpEquiv_unitIso_hom_app, opSpan_inv_app, PushoutCocone.isIso_inr_of_epi_of_isColimit, pushoutCoconeOfRightIso_ι_app_right, CategoryTheory.NormalEpiCategory.pushout_of_epi, inr_coprodIsoPushout_inv_assoc, PushoutCocone.unop_snd, CategoryTheory.epi_iff_isIso_inr, diagramIsoSpan_hom_app, CategoryTheory.CostructuredArrow.projectQuotient_mk, PushoutCocone.unop_fst, CategoryTheory.IsPushout.of_isColimit_cocone, PushoutCocone.op_fst, Types.pushoutCocone_inr_injective_of_isColimit, spanExt_inv_app_right, AlgebraicGeometry.isIso_pushoutSection_of_isAffineOpen, RingHom.IsStableUnderBaseChange.pushout_inl, walkingCospanOpEquiv_inverse_map, spanExt_inv_app_left, Types.Pushout.cocone_pt, CategoryTheory.IsPushout.isVanKampen_iff, CommRingCat.pushout_inr_tensorProdObjIsoPushoutObj_inv_right
cospan 📖CompOp
345 mathmath: AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_snd, TopCat.isInducing_pullback_to_prod, CategoryTheory.Over.μ_pullback_left_snd', AlgebraicGeometry.SheafedSpace.IsOpenImmersion.hasLimit_cospan_forget_of_right', TopCat.pullbackIsoProdSubtype_hom_fst, CategoryTheory.PreservesPullbacksOfInclusions.preservesPullbackInl', CategoryTheory.regularTopology.EqualizerCondition.bijective_mapToEqualizer_pullback', AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_snd_assoc, diagramIsoCospan_inv_app, diagonalObjPullbackFstIso_inv_snd_snd_assoc, CategoryTheory.PreservesPullbacksOfInclusions.preservesPullbackInr, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.forgetToPresheafedSpace_preservesPullback_of_right, AlgebraicGeometry.IsOpenImmersion.hasLimit_cospan_forget_of_right', pullbackDiagonalMapIso.hom_fst, diagonalObjPullbackFstIso_inv_fst_snd_assoc, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift_snd, pullbackFstFstIso_hom, prodIsoPullback_inv_fst, pullbackConeOfLeftIso_π_app_left, CategoryTheory.Abelian.epi_pullback_of_epi_f, CategoryTheory.IsGrothendieckAbelian.IsPresentable.surjectivity.hf, CategoryTheory.Abelian.epi_fst_of_factor_thru_epi_mono_factorization, FormalCoproduct.homPullbackEquiv_symm_apply_φ, CategoryTheory.Functor.preservesLimit_cospan_of_mem_presieve, Types.range_pullbackFst, cospanExt_app_one, CategoryTheory.Over.monObjMkPullbackSnd_mul, diagonalObjPullbackFstIso_inv_fst_fst, TopCat.snd_isOpenEmbedding_of_left, PullbackCone.π_app_right, PushoutCocone.unop_π_app, CategoryTheory.Over.grpObjMkPullbackSnd_one, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.hasLimit_cospan_forget_of_left', CategoryTheory.Over.grpObjMkPullbackSnd_mul, FormalCoproduct.pullbackCone_fst_φ, PullbackCone.condition, Types.pullbackIsoPullback_hom_fst, CategoryTheory.IsPullback.isLimit', pullbackDiagonalMapIso.inv_fst_assoc, pullback_diagonal_map_snd_snd_fst_assoc, diagonalObjPullbackFstIso_hom_snd, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.sheafedSpace_pullback_to_base_isOpenImmersion, CompHausLike.pullback.isLimit_lift, PullbackCone.unop_inl, CategoryTheory.Over.isCommMonObj_mk_pullbackSnd, TopCat.pullback_topology, PullbackCone.mk_π_app, AlgebraicGeometry.Scheme.Pullback.gluedLift_p1, PullbackCone.IsLimit.lift_fst, prodIsoPullback_inv_fst_assoc, PullbackCone.op_pt, equalizerPullbackMapIso_inv_ι_snd, pullbackConeOfLeftIso_π_app_right, diagonalObjPullbackFstIso_inv_snd_fst, pullbackObjIso_inv_comp_fst_assoc, PullbackCone.IsLimit.equivPullbackObj_apply_fst, equalizerPullbackMapIso_inv_ι_fst, pullbackConeOfLeftIso_snd, diagonalObjPullbackFstIso_hom_fst_fst_assoc, CategoryTheory.Over.postAdjunctionLeft_unit_app_left, PullbackCone.condition_assoc, CategoryTheory.Over.preservesTerminalIso_pullback, PullbackCone.unop_inr, spanOp_hom_app, AlgebraicGeometry.IsOpenImmersion.hasLimit_cospan_forget_of_left, TopCat.fst_iso_of_right_embedding_range_subset, PullbackCone.combine_π_app, CategoryTheory.Abelian.Pseudoelement.pseudo_pullback, equalizerPullbackMapIso_hom_fst_assoc, pullback.comp_diagonal_assoc, TopCat.pullbackIsoProdSubtype_inv_fst_assoc, pullbackConeEquivBinaryFan_functor_map_hom, PullbackCone.op_inr, prodIsoPullback_hom_fst_assoc, AlgebraicGeometry.IsOpenImmersion.instπWalkingCospanSchemeCospanOne, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.forgetToPresheafedSpace_reflectsPullback_of_right, PullbackCone.op_ι_app, pullbackConeEquivBinaryFan_counitIso, pullback_diagonal_map_snd_fst_fst, diagramIsoCospan_hom_app, diagonalObjPullbackFstIso_inv_snd_snd, IsLimit.pullbackConeEquivBinaryFanFunctor_lift_left, AlgebraicGeometry.Scheme.Pullback.gluedLift_p2, cospan_left, AlgebraicGeometry.IsOpenImmersion.instPreservesLimitSchemeLocallyRingedSpaceWalkingCospanCospanForgetToLocallyRingedSpace, CategoryTheory.FinitaryPreExtensive.isIso_sigmaDesc_map, cospanExt_app_right, TopCat.range_pullback_map, CategoryTheory.Subobject.pullback_obj, pullback_lift_diagonal_isPullback, PullbackCone.mono_fst_of_is_pullback_of_mono, CategoryTheory.Equalizer.Presieve.isSheafFor_singleton_iff, cospan_map_inr, cospanCompIso_inv_app_left, CategoryTheory.Over.starPullbackIsoStar_hom_app_left, CategoryTheory.ShortComplex.SnakeInput.lift_φ₂, CategoryTheory.IsGrothendieckAbelian.IsPresentable.surjectivity.isIso_f, Cone.ofPullbackCone_pt, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.pullbackToBaseIsOpenImmersion, spanOp_inv_app, cospan_map_inl, CategoryTheory.Over.tensorHom_left_snd_assoc, PullbackCone.isIso_fst_of_mono_of_isLimit, Types.pullbackLimitCone_cone, Cone.ofPullbackCone_π, pullbackConeOfRightIso_π_app_right, AlgebraicGeometry.IsOpenImmersion.instPreservesLimitSchemeTopCatWalkingCospanCospanForgetToTop_1, AlgebraicGeometry.IsOpenImmersion.hasLimit_cospan_forget_of_right, PullbackCone.snd_limit_cone, PullbackCone.mk_π_app_right, opSpan_hom_app, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_snd', pullbackDiagonalMapIso.hom_snd_assoc, CategoryTheory.Over.μ_pullback_left_fst_snd', pullbackConeOfRightIso_fst, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.sheafedSpace_forgetPreserves_of_right, pullbackConeOfRightIso_x, PullbackCone.mk_π_app_one, TopCat.Sheaf.interUnionPullbackConeLift_right, preservesPullback_symmetry, hasLimit_cospan_of_hasLimit_pair_of_hasLimit_parallelPair, CategoryTheory.IsPullback.of_isLimit, TopCat.fst_isEmbedding_of_right, isPullback_map_snd_snd, pullbackConeEquivBinaryFan_inverse_obj, pullbackConeEquivBinaryFan_functor_obj, CategoryTheory.Abelian.epi_snd_of_isLimit, TopCat.isOpenEmbedding_of_pullback, opCospan_hom_app, PullbackCone.IsLimit.equivPullbackObj_apply_snd, Types.pullbackIsoPullback_inv_snd, PullbackCone.π_app_left, CategoryTheory.regularTopology.parallelPair_pullback_initial, CategoryTheory.Square.isPullback_iff, TopCat.pullbackIsoProdSubtype_inv_snd_apply, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_fst_fst, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.sheafedSpace_forgetPreserves_of_left, TopCat.pullbackIsoProdSubtype_inv_fst, cospanCompIso_inv_app_right, FormalCoproduct.homPullbackEquiv_symm_apply_f_coe, PullbackCone.eta_inv_hom, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift_fst, diagonalObjPullbackFstIso_inv_snd_fst_assoc, PushoutCocone.op_π_app, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.forgetToTop_preservesPullback_of_left, CategoryTheory.PreservesPullbacksOfInclusions.preservesPullbackInl, opCospan_inv_app, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.forgetToPresheafedSpace_preservesPullback_of_left, CategoryTheory.IsUniversalColimit.nonempty_isColimit_of_pullbackCone_left, TopCat.pullbackIsoProdSubtype_hom_snd, cospanExt_inv_app_one, PullbackCone.unop_ι_app, Types.pullbackIsoPullback_hom_snd, CategoryTheory.IsUniversalColimit.nonempty_isColimit_prod_of_pullbackCone, pullbackDiagonalMapIso.hom_snd, pullbackConeOfLeftIso_π_app_none, CategoryTheory.Over.μ_pullback_left_fst_fst', TopCat.snd_iso_of_left_embedding_range_subset, pullbackObjIso_hom_comp_fst, cospanOp_hom_app, CategoryTheory.Over.μ_pullback_left_fst_snd, CategoryTheory.Over.monObjMkPullbackSnd_one, TopCat.pullbackIsoProdSubtype_inv_snd, CategoryTheory.ShortComplex.SnakeInput.lift_φ₂_assoc, PullbackCone.isoMk_inv_hom, pullback_diagonal_map_snd_fst_fst_assoc, PreservesPullback.of_iso_comparison, pullbackDiagonalMapIso.inv_snd_fst, prodIsoPullback_hom_snd, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.hasLimit_cospan_forget_of_right, CategoryTheory.Regular.instHasCoequalizerFstSnd, cospan_right, cospanExt_app_left, TopCat.range_pullback_to_prod, TopCat.Sheaf.interUnionPullbackConeLift_left, PullbackCone.IsLimit.equivPullbackObj_symm_apply_fst, TopCat.pullback_fst_image_snd_preimage, CompHausLike.instPreservesLimitTopCatWalkingCospanCospanCompHausLikeToTop, CompleteLattice.pullback_eq_inf, CategoryTheory.Abelian.epi_pullback_of_epi_g, prodIsoPullback_hom_snd_assoc, pullbackConeOfRightIso_π_app_left, pullbackConeOfLeftIso_x, CompHausLike.pullback.cone_π, TopCat.pullbackIsoProdSubtype_inv_fst_apply, pullbackObjIso_hom_comp_fst_assoc, CategoryTheory.Over.tensorHom_left_fst, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.pullbackConeSndIsOpenImmersion, pullbackDiagonalMapIso.inv_fst, AlgebraicGeometry.Scheme.Pullback.openCoverOfBase'_f, CategoryTheory.PreGaloisCategory.fiberPullbackEquiv_symm_fst_apply, equalizerPullbackMapIso_hom_snd_assoc, CategoryTheory.instPreservesLimitWalkingCospanCospanOfIsIso, pullback.comp_diagonal, cospanExt_hom_app_one, cospan_map_id, CategoryTheory.Over.tensorHom_left_fst_assoc, prodIsoPullback_hom_fst, PullbackCone.eta_hom_hom, CategoryTheory.PreservesPullbacksOfInclusions.preservesPullbackInr', AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_fst_assoc, CategoryTheory.Over.η_pullback_left, PullbackCone.mk_pt, cospanCompIso_inv_app_one, CategoryTheory.PreGaloisCategory.fiberPullbackEquiv_symm_snd_apply, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.hasLimit_cospan_forget_of_left, PullbackCone.ofCone_π, AlgebraicGeometry.IsOpenImmersion.instPreservesLimitSchemeWalkingCospanCospanForget_1, pullbackObjIso_inv_comp_fst, PullbackCone.op_inl, PullbackCone.IsLimit.lift_snd, equalizerPullbackMapIso_hom_snd, diagonalObjPullbackFstIso_hom_fst_snd, PullbackCone.flip_pt, Types.pullbackIsoPullback_inv_fst, Types.pullbackIsoPullback_inv_fst_apply, cospanCompIso_hom_app_left, equalizerPullbackMapIso_hom_fst, TopCat.isEmbedding_pullback_to_prod, CategoryTheory.MonoOver.pullback_obj_left, TopCat.pullbackIsoProdSubtype_hom_apply, CoproductDisjoint.nonempty_isInitial_of_ne, pullbackDiagonalMapIso.inv_snd_fst_assoc, equalizerPullbackMapIso_inv_ι_snd_assoc, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.pullback_cone_of_left_condition, FormalCoproduct.pullbackCone_fst_f, pullback.diagonal_comp, CategoryTheory.Over.prodComparisonIso_pullback_Spec_inv_left_fst_fst', pullbackObjIso_hom_comp_snd_assoc, CategoryTheory.MorphismProperty.diagonal_iff, Types.range_pullbackSnd, CompHausLike.instHasLimitWalkingCospanCospan, TopCat.fst_isOpenEmbedding_of_right, cospanCompIso_hom_app_one, pullback_diagonal_map_snd_snd_fst, prodIsoPullback_inv_snd, PullbackCone.combine_pt_map, AlgebraicGeometry.IsOpenImmersion.instPreservesLimitSchemeTopCatWalkingCospanCospanForgetToTop, CategoryTheory.NormalMonoCategory.pullback_of_mono, PullbackCone.unop_pt, TopCat.pullbackIsoProdSubtype_inv_snd_assoc, diagonalObjPullbackFstIso_inv_fst_fst_assoc, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.forget_preservesLimitsOfRight, PullbackCone.combine_pt_obj, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.forget_preservesLimitsOfLeft, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.forgetToPresheafedSpace_reflectsPullback_of_left, PushoutCocone.op_pt, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.forget_reflectsPullback_of_left, FormalCoproduct.pullbackCone_condition, CategoryTheory.regularTopology.equalizerCondition_w, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.pullback_to_base_isOpenImmersion, pullbackConeOfRightIso_π_app_none, TopCat.pullback_map_isOpenEmbedding, CategoryTheory.Over.μ_pullback_left_snd, Types.pullbackLimitCone_isLimit, CategoryTheory.IsUniversalColimit.nonempty_isColimit_of_pullbackCone_right, diagonalObjPullbackFstIso_hom_fst_snd_assoc, cospanExt_inv_app_left, PullbackCone.condition_one, CategoryTheory.Functor.PreservesPairwisePullbacks.preservesLimit, pullbackObjIso_inv_comp_snd_assoc, pullbackDiagonalMapIso.inv_snd_snd_assoc, TopCat.pullback_map_isEmbedding, diagonalObjPullbackFstIso_hom_snd_assoc, CategoryTheory.Over.μ_pullback_left_fst_fst, CategoryTheory.Over.starPullbackIsoStar_inv_app_left, cospanOp_inv_app, cospanCompIso_hom_app_right, diagonalObjPullbackFstIso_hom_fst_fst, pullbackDiagonalMapIso.hom_fst_assoc, PullbackCone.isIso_snd_of_mono_of_isLimit, cospanCompIso_app_one, CategoryTheory.Abelian.epi_fst_of_isLimit, CategoryTheory.MorphismProperty.faithful_overPullback_of_isomorphisms_descendAlong, CompHausLike.instPreservesLimitWalkingCospanCospanToCompHausLike, CategoryTheory.instPreservesLimitWalkingCospanCospanOfIsIso_1, PullbackCone.IsLimit.lift_fst_assoc, cospanCompIso_app_left, CategoryTheory.Over.tensorHom_left_snd, PushoutCocone.unop_pt, CategoryTheory.Presieve.uncurry_pullbackArrows, prodIsoPullback_inv_snd_assoc, CategoryTheory.Over.lift_left, PullbackCone.IsLimit.lift_snd_assoc, AlgebraicGeometry.IsOpenImmersion.instPreservesLimitSchemeWalkingCospanCospanForget, PullbackCone.isoMk_hom_hom, pullback_map_eq_pullbackFstFstIso_inv, CategoryTheory.mono_iff_isIso_fst, AlgebraicGeometry.Scheme.Pullback.forget_comparison_surjective, PullbackCone.ofCone_pt, PullbackCone.mk_π_app_left, diagonalObjPullbackFstIso_inv_fst_snd, FormalCoproduct.homPullbackEquiv_apply_coe, pullbackConeEquivBinaryFan_unitIso, CategoryTheory.Over.isMonHom_pullbackFst_id_right, TopCat.Sheaf.interUnionPullbackCone_pt, CategoryTheory.Over.tensorObj_left, CategoryTheory.mono_iff_isIso_snd, equalizerPullbackMapIso_inv_ι_fst_assoc, Types.pullbackIsoPullback_inv_snd_apply, PullbackCone.IsLimit.equivPullbackObj_symm_apply_snd, PullbackCone.mono_snd_of_is_pullback_of_mono, TopCat.pullback_snd_range, opSpan_inv_app, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_fst_snd', TopCat.snd_isEmbedding_of_left, pullbackObjIso_inv_comp_snd, CategoryTheory.FinitaryPreExtensive.isPullback_sigmaDesc, cospanExt_inv_app_right, CategoryTheory.Over.ε_pullback_left, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.forget_reflectsPullback_of_right, pullback_fst_map_snd_isPullback, AlgebraicGeometry.Scheme.pullbackComparison_forget_surjective, CategoryTheory.Functor.relativelyRepresentable.toPullbackTerminal, AlgebraicGeometry.IsOpenImmersion.instPreservesLimitSchemeLocallyRingedSpaceWalkingCospanCospanForgetToLocallyRingedSpace_1, cospanExt_hom_app_right, AlgebraicGeometry.IsOpenImmersion.hasLimit_cospan_forget_of_left', pullbackDiagonalMapIso.inv_snd_snd, pullbackFstFstIso_inv, SSet.instFinitePullback, TopCat.pullback_fst_range, cospanExt_hom_app_left, FormalCoproduct.pullbackCone_snd_f, cospan_one, diagonal_pullback_fst, AlgebraicGeometry.LocallyRingedSpace.GlueData.instPreservesLimitSheafedSpaceCommRingCatWalkingCospanCospanFForgetToSheafedSpace, TopCat.pullback_snd_image_fst_preimage, pullback_lift_map_isPullback, CategoryTheory.IsGrothendieckAbelian.IsPresentable.surjectivity.epi_f, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.instSndPullbackConeOfLeft, FormalCoproduct.pullbackCone_snd_φ, CategoryTheory.Over.tensorObj_hom, CategoryTheory.Over.postAdjunctionLeft_counit_app_left, FormalCoproduct.isPullback, cospanCompIso_app_right, pullbackConeEquivBinaryFan_inverse_map_hom, CompHausLike.pullback.cone_pt, PullbackCone.fst_limit_cone, pullbackObjIso_hom_comp_snd, TopCat.isEmbedding_of_pullback, AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_fst, pullback_equalizer, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.forget_preservesPullbackOfLeft, CategoryTheory.Regular.instMonoDesc, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.forget_preservesPullback_of_right
cospanCompIso 📖CompOp
9 mathmath: cospanCompIso_inv_app_left, cospanCompIso_inv_app_right, cospanCompIso_inv_app_one, cospanCompIso_hom_app_left, cospanCompIso_hom_app_one, cospanCompIso_hom_app_right, cospanCompIso_app_one, cospanCompIso_app_left, cospanCompIso_app_right
cospanExt 📖CompOp
9 mathmath: cospanExt_app_one, cospanExt_app_right, cospanExt_inv_app_one, cospanExt_app_left, cospanExt_hom_app_one, cospanExt_inv_app_left, cospanExt_inv_app_right, cospanExt_hom_app_right, cospanExt_hom_app_left
cospanHomMk 📖CompOp
3 mathmath: PullbackCone.combine_π_app, PullbackCone.combine_pt_map, cospanHomMk_app
cospanIsoMk 📖CompOp
2 mathmath: cospanIsoMk_inv_app, cospanIsoMk_hom_app
diagramIsoCospan 📖CompOp
6 mathmath: diagramIsoCospan_inv_app, diagramIsoCospan_hom_app, Cone.ofPullbackCone_π, PullbackCone.isoMk_inv_hom, PullbackCone.ofCone_π, PullbackCone.isoMk_hom_hom
diagramIsoSpan 📖CompOp
6 mathmath: PushoutCocone.isoMk_inv_hom, PushoutCocone.ofCocone_ι, Cocone.ofPushoutCocone_ι, PushoutCocone.isoMk_hom_hom, diagramIsoSpan_inv_app, diagramIsoSpan_hom_app
span 📖CompOp
161 mathmath: spanCompIso_app_left, pushoutCoconeOfLeftIso_ι_app_right, PushoutCocone.flip_pt, CommRingCat.pushoutCocone_pt, spanCompIso_inv_app_zero, PushoutCocone.mk_ι_app_zero, PushoutCocone.inl_colimit_cocone, inl_coprodIsoPushout_hom, PushoutCocone.unop_π_app, inl_comp_pushoutObjIso_hom, pushoutCoconeEquivBinaryCofan_inverse_obj, pushoutCoconeEquivBinaryCofan_functor_obj, pushoutCoconeEquivBinaryCofan_unitIso, AlgebraicGeometry.instIsOpenImmersionLeftSchemeDiscretePUnitMapWalkingSpanOverTopMorphismPropertySpan, PushoutCocone.condition_assoc, span_map_id, PushoutCocone.op_snd, PushoutCocone.isoMk_inv_hom, PullbackCone.op_pt, span_right, inr_comp_pushoutObjIso_hom_assoc, PushoutCocone.epi_inl_of_is_pushout_of_epi, CategoryTheory.IsPushout.isColimit', pushoutCoconeEquivBinaryCofan_inverse_map_hom, CommRingCat.Under.preservesFiniteLimits_of_flat, hasColimit_span_of_hasColimit_pair_of_hasColimit_parallelPair, CommRingCat.pushout_inr_tensorProdObjIsoPushoutObj_inv_right_assoc, spanCompIso_hom_app_zero, PushoutCocone.condition, spanOp_hom_app, CategoryTheory.Under.postAdjunctionRight_unit_app_right, spanExt_hom_app_right, spanCompIso_inv_app_left, Types.instMonoPushoutInl, PullbackCone.op_ι_app, span_map_snd, spanCompIso_app_zero, PushoutCocone.ofCocone_ι, spanExt_hom_app_zero, CommRingCat.HomTopology.isEmbedding_pushout, spanOp_inv_app, PushoutCocone.eta_inv_hom, inr_coprodIsoPushout_hom_assoc, opSpan_hom_app, AlgebraicGeometry.isIso_pushoutSection_of_isCompact_of_flat_right_of_ringHomFlat, spanCompIso_app_right, pushoutCoconeOfRightIso_x, CommRingCat.Under.instPreservesFiniteProductsUnderPushout, PushoutCocone.condition_zero, PushoutCocone.ι_app_left, pushoutCoconeOfLeftIso_ι_app_left, PushoutCocone.ofCocone_pt, spanExt_app_one, opCospan_hom_app, PushoutCocone.isIso_inl_of_epi_of_isColimit, CategoryTheory.SmallObject.ιFunctorObj_eq, CommRingCat.inr_injective_of_flat, spanCompIso_inv_app_right, PushoutCocone.mk_ι_app, PushoutCocone.ι_app_right, CategoryTheory.Abelian.mono_pushout_of_mono_g, spanExt_inv_app_zero, CommRingCat.pushout_inl_tensorProdObjIsoPushoutObj_inv_right_assoc, spanExt_app_left, CategoryTheory.BicartesianSq.isColimit', pushoutCoconeEquivBinaryCofan_functor_map_hom, PushoutCocone.IsColimit.inl_desc_assoc, PushoutCocone.inr_colimit_cocone, PushoutCocone.op_π_app, CompleteLattice.pushout_eq_sup, opCospan_inv_app, PullbackCone.unop_ι_app, AlgebraicGeometry.mono_pushoutSection_of_isCompact_of_flat_left_of_ringHomFlat, cospanOp_hom_app, AlgebraicGeometry.instMonoObjWalkingSpanCompSchemeSpanForgetNoneWalkingPairSomeMapInitOfIsOpenImmersion, CommRingCat.pushout_inl_tensorProdObjIsoPushoutObj_inv_right, pushoutCoconeOfRightIso_ι_app_left, spanCompIso_hom_app_right, AlgebraicGeometry.isPullback_Spec_map_pushout, Types.pushoutCocone_inr_mono_of_isColimit, AlgebraicGeometry.instIsOpenImmersionMapWalkingSpanSchemeSpan, PushoutCocone.mk_pt, PushoutCocone.IsColimit.inr_desc_assoc, CommRingCat.inl_injective_of_flat, pushoutCoconeOfLeftIso_ι_app_none, PushoutCocone.IsColimit.inr_desc, spanCompIso_hom_app_left, CategoryTheory.SmallObject.πFunctorObj_eq, inl_comp_pushoutObjIso_inv, PushoutCocone.epi_inr_of_is_pushout_of_epi, inr_comp_pushoutObjIso_inv, spanExt_hom_app_left, CommRingCat.tensorProdIsoPushout_app, CategoryTheory.Square.isPushout_iff, Cocone.ofPushoutCocone_ι, AlgebraicGeometry.mono_pushoutSection_of_isCompact_of_flat_right, inl_comp_pushoutObjIso_inv_assoc, IsColimit.pushoutCoconeEquivBinaryCofanFunctor_desc_right, CategoryTheory.MorphismProperty.ind_underObj_pushout, inr_coprodIsoPushout_hom, PushoutCocone.IsColimit.inl_desc, AlgebraicGeometry.mono_pushoutSection_of_isCompact_of_flat_right_of_ringHomFlat, CategoryTheory.Abelian.mono_inl_of_isColimit, PullbackCone.unop_pt, span_map_fst, pushoutCoconeOfLeftIso_x, PushoutCocone.op_pt, PushoutCocone.mk_ι_app_right, span_left, inl_comp_pushoutObjIso_hom_assoc, AlgebraicGeometry.isPullback_SpecMap_pushout, AlgebraicGeometry.isIso_pushoutSection_of_isQuasiSeparated_of_flat_left, inl_coprodIsoPushout_inv, AlgebraicGeometry.isIso_pushoutSection_iff, PreservesPushout.of_iso_comparison, PushoutCocone.isoMk_hom_hom, cospanOp_inv_app, pushoutCoconeOfRightIso_ι_app_none, PushoutCocone.mk_ι_app_left, CategoryTheory.Abelian.mono_pushout_of_mono_f, Types.Pushout.cocone_ι_app, CategoryTheory.epi_iff_isIso_inl, AlgebraicGeometry.mono_pushoutSection_of_isCompact_of_flat_left, inr_coprodIsoPushout_inv, PushoutCocone.unop_pt, PushoutCocone.eta_hom_hom, spanExt_app_right, inl_coprodIsoPushout_hom_assoc, CategoryTheory.Under.postAdjunctionRight_counit_app_right, pushoutCoconeEquivBinaryCofan_counitIso, inr_comp_pushoutObjIso_inv_assoc, Types.instMonoPushoutInr, inr_comp_pushoutObjIso_hom, CategoryTheory.Abelian.mono_inl_of_factor_thru_epi_mono_factorization, CategoryTheory.Abelian.mono_inr_of_isColimit, diagramIsoSpan_inv_app, AlgebraicGeometry.instMonoObjWalkingSpanCompOverSchemeTopMorphismPropertySpanOverForgetForgetForgetNoneWalkingPairSomeMapInitOfIsOpenImmersionLeftDiscretePUnit, CategoryTheory.IsPushout.of_isColimit, span_zero, preservesPushout_symmetry, AlgebraicGeometry.isIso_pushoutSection_of_isQuasiSeparated_of_flat_right, Cocone.ofPushoutCocone_pt, inl_coprodIsoPushout_inv_assoc, opSpan_inv_app, PushoutCocone.isIso_inr_of_epi_of_isColimit, pushoutCoconeOfRightIso_ι_app_right, CategoryTheory.NormalEpiCategory.pushout_of_epi, inr_coprodIsoPushout_inv_assoc, PushoutCocone.unop_snd, CategoryTheory.epi_iff_isIso_inr, diagramIsoSpan_hom_app, PushoutCocone.unop_fst, PushoutCocone.op_fst, Types.pushoutCocone_inr_injective_of_isColimit, spanExt_inv_app_right, AlgebraicGeometry.isIso_pushoutSection_of_isAffineOpen, RingHom.IsStableUnderBaseChange.pushout_inl, spanExt_inv_app_left, Types.Pushout.cocone_pt, CategoryTheory.IsPushout.isVanKampen_iff, CommRingCat.pushout_inr_tensorProdObjIsoPushoutObj_inv_right
spanCompIso 📖CompOp
9 mathmath: spanCompIso_app_left, spanCompIso_inv_app_zero, spanCompIso_hom_app_zero, spanCompIso_inv_app_left, spanCompIso_app_zero, spanCompIso_app_right, spanCompIso_inv_app_right, spanCompIso_hom_app_right, spanCompIso_hom_app_left
spanExt 📖CompOp
9 mathmath: spanExt_hom_app_right, spanExt_hom_app_zero, spanExt_app_one, spanExt_inv_app_zero, spanExt_app_left, spanExt_hom_app_left, spanExt_app_right, spanExt_inv_app_right, spanExt_inv_app_left
spanHomMk 📖CompOp
1 mathmath: spanHomMk_app
spanIsoMk 📖CompOp
2 mathmath: spanIsoMk_hom_app, spanIsoMk_inv_app

Theorems

NameKindAssumesProvesValidatesDepends On
cospanCompIso_app_left 📖mathematicalCategoryTheory.Iso.app
WalkingCospan
WidePullbackShape.category
WalkingPair
CategoryTheory.Functor.comp
cospan
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
cospanCompIso
WalkingCospan.left
CategoryTheory.Iso.refl
cospanCompIso_app_one 📖mathematicalCategoryTheory.Iso.app
WalkingCospan
WidePullbackShape.category
WalkingPair
CategoryTheory.Functor.comp
cospan
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
cospanCompIso
WalkingCospan.one
CategoryTheory.Iso.refl
cospanCompIso_app_right 📖mathematicalCategoryTheory.Iso.app
WalkingCospan
WidePullbackShape.category
WalkingPair
CategoryTheory.Functor.comp
cospan
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
cospanCompIso
WalkingCospan.right
CategoryTheory.Iso.refl
cospanCompIso_hom_app_left 📖mathematicalCategoryTheory.NatTrans.app
WalkingCospan
WidePullbackShape.category
WalkingPair
CategoryTheory.Functor.comp
cospan
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
cospanCompIso
WalkingCospan.left
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
cospanCompIso_hom_app_one 📖mathematicalCategoryTheory.NatTrans.app
WalkingCospan
WidePullbackShape.category
WalkingPair
CategoryTheory.Functor.comp
cospan
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
cospanCompIso
WalkingCospan.one
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
cospanCompIso_hom_app_right 📖mathematicalCategoryTheory.NatTrans.app
WalkingCospan
WidePullbackShape.category
WalkingPair
CategoryTheory.Functor.comp
cospan
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
cospanCompIso
WalkingCospan.right
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
cospanCompIso_inv_app_left 📖mathematicalCategoryTheory.NatTrans.app
WalkingCospan
WidePullbackShape.category
WalkingPair
cospan
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.comp
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
cospanCompIso
WalkingCospan.left
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
cospanCompIso_inv_app_one 📖mathematicalCategoryTheory.NatTrans.app
WalkingCospan
WidePullbackShape.category
WalkingPair
cospan
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.comp
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
cospanCompIso
WalkingCospan.one
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
cospanCompIso_inv_app_right 📖mathematicalCategoryTheory.NatTrans.app
WalkingCospan
WidePullbackShape.category
WalkingPair
cospan
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.comp
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
cospanCompIso
WalkingCospan.right
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
cospanExt_app_left 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.Iso.app
WalkingCospan
WidePullbackShape.category
WalkingPair
cospan
cospanExt
WalkingCospan.left
cospanExt_app_one 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.Iso.app
WalkingCospan
WidePullbackShape.category
WalkingPair
cospan
cospanExt
WalkingCospan.one
cospanExt_app_right 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.Iso.app
WalkingCospan
WidePullbackShape.category
WalkingPair
cospan
cospanExt
WalkingCospan.right
cospanExt_hom_app_left 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.NatTrans.app
WalkingCospan
WidePullbackShape.category
WalkingPair
cospan
CategoryTheory.Functor
CategoryTheory.Functor.category
cospanExt
WalkingCospan.left
cospanExt_hom_app_one 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.NatTrans.app
WalkingCospan
WidePullbackShape.category
WalkingPair
cospan
CategoryTheory.Functor
CategoryTheory.Functor.category
cospanExt
WalkingCospan.one
cospanExt_hom_app_right 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.NatTrans.app
WalkingCospan
WidePullbackShape.category
WalkingPair
cospan
CategoryTheory.Functor
CategoryTheory.Functor.category
cospanExt
WalkingCospan.right
cospanExt_inv_app_left 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.NatTrans.app
WalkingCospan
WidePullbackShape.category
WalkingPair
cospan
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
cospanExt
WalkingCospan.left
cospanExt_inv_app_one 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.NatTrans.app
WalkingCospan
WidePullbackShape.category
WalkingPair
cospan
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
cospanExt
WalkingCospan.one
cospanExt_inv_app_right 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.NatTrans.app
WalkingCospan
WidePullbackShape.category
WalkingPair
cospan
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
cospanExt
WalkingCospan.right
cospanHomMk_app 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
WalkingCospan
WidePullbackShape.category
WalkingPair
WalkingCospan.left
WalkingCospan.one
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
WalkingCospan.Hom.inl
WalkingCospan.right
WalkingCospan.Hom.inr
CategoryTheory.NatTrans.app
cospanHomMk
cospanIsoMk_hom_app 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
WalkingCospan
WidePullbackShape.category
WalkingPair
WalkingCospan.left
WalkingCospan.one
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
WalkingCospan.Hom.inl
CategoryTheory.Iso.hom
WalkingCospan.right
WalkingCospan.Hom.inr
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
cospanIsoMk
CategoryTheory.Iso
cospanIsoMk_inv_app 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
WalkingCospan
WidePullbackShape.category
WalkingPair
WalkingCospan.left
WalkingCospan.one
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
WalkingCospan.Hom.inl
CategoryTheory.Iso.hom
WalkingCospan.right
WalkingCospan.Hom.inr
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
cospanIsoMk
CategoryTheory.Iso
cospan_left 📖mathematicalCategoryTheory.Functor.obj
WalkingCospan
WidePullbackShape.category
WalkingPair
cospan
WalkingCospan.left
cospan_map_id 📖mathematicalCategoryTheory.Functor.map
WalkingCospan
WidePullbackShape.category
WalkingPair
cospan
WalkingCospan.Hom.id
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
cospan_map_inl 📖mathematicalCategoryTheory.Functor.map
WalkingCospan
WidePullbackShape.category
WalkingPair
cospan
WalkingCospan.left
WalkingCospan.one
WalkingCospan.Hom.inl
cospan_map_inr 📖mathematicalCategoryTheory.Functor.map
WalkingCospan
WidePullbackShape.category
WalkingPair
cospan
WalkingCospan.right
WalkingCospan.one
WalkingCospan.Hom.inr
cospan_one 📖mathematicalCategoryTheory.Functor.obj
WalkingCospan
WidePullbackShape.category
WalkingPair
cospan
WalkingCospan.one
cospan_right 📖mathematicalCategoryTheory.Functor.obj
WalkingCospan
WidePullbackShape.category
WalkingPair
cospan
WalkingCospan.right
diagramIsoCospan_hom_app 📖mathematicalCategoryTheory.NatTrans.app
WalkingCospan
WidePullbackShape.category
WalkingPair
cospan
CategoryTheory.Functor.obj
WalkingCospan.left
WalkingCospan.right
WalkingCospan.one
CategoryTheory.Functor.map
WalkingCospan.Hom.inl
WalkingCospan.Hom.inr
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
diagramIsoCospan
diagramIsoCospan_inv_app 📖mathematicalCategoryTheory.NatTrans.app
WalkingCospan
WidePullbackShape.category
WalkingPair
cospan
CategoryTheory.Functor.obj
WalkingCospan.left
WalkingCospan.right
WalkingCospan.one
CategoryTheory.Functor.map
WalkingCospan.Hom.inl
WalkingCospan.Hom.inr
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
diagramIsoCospan
diagramIsoSpan_hom_app 📖mathematicalCategoryTheory.NatTrans.app
WalkingSpan
WidePushoutShape.category
WalkingPair
span
CategoryTheory.Functor.obj
WalkingSpan.zero
WalkingSpan.left
WalkingSpan.right
CategoryTheory.Functor.map
WalkingSpan.Hom.fst
WalkingSpan.Hom.snd
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
diagramIsoSpan
diagramIsoSpan_inv_app 📖mathematicalCategoryTheory.NatTrans.app
WalkingSpan
WidePushoutShape.category
WalkingPair
span
CategoryTheory.Functor.obj
WalkingSpan.zero
WalkingSpan.left
WalkingSpan.right
CategoryTheory.Functor.map
WalkingSpan.Hom.fst
WalkingSpan.Hom.snd
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
diagramIsoSpan
spanCompIso_app_left 📖mathematicalCategoryTheory.Iso.app
WalkingSpan
WidePushoutShape.category
WalkingPair
CategoryTheory.Functor.comp
span
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
spanCompIso
WalkingSpan.left
CategoryTheory.Iso.refl
spanCompIso_app_right 📖mathematicalCategoryTheory.Iso.app
WalkingSpan
WidePushoutShape.category
WalkingPair
CategoryTheory.Functor.comp
span
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
spanCompIso
WalkingSpan.right
CategoryTheory.Iso.refl
spanCompIso_app_zero 📖mathematicalCategoryTheory.Iso.app
WalkingSpan
WidePushoutShape.category
WalkingPair
CategoryTheory.Functor.comp
span
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
spanCompIso
WalkingSpan.zero
CategoryTheory.Iso.refl
spanCompIso_hom_app_left 📖mathematicalCategoryTheory.NatTrans.app
WalkingSpan
WidePushoutShape.category
WalkingPair
CategoryTheory.Functor.comp
span
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
spanCompIso
WalkingSpan.left
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
spanCompIso_hom_app_right 📖mathematicalCategoryTheory.NatTrans.app
WalkingSpan
WidePushoutShape.category
WalkingPair
CategoryTheory.Functor.comp
span
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
spanCompIso
WalkingSpan.right
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
spanCompIso_hom_app_zero 📖mathematicalCategoryTheory.NatTrans.app
WalkingSpan
WidePushoutShape.category
WalkingPair
CategoryTheory.Functor.comp
span
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
spanCompIso
WalkingSpan.zero
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
spanCompIso_inv_app_left 📖mathematicalCategoryTheory.NatTrans.app
WalkingSpan
WidePushoutShape.category
WalkingPair
span
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.comp
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
spanCompIso
WalkingSpan.left
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
spanCompIso_inv_app_right 📖mathematicalCategoryTheory.NatTrans.app
WalkingSpan
WidePushoutShape.category
WalkingPair
span
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.comp
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
spanCompIso
WalkingSpan.right
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
spanCompIso_inv_app_zero 📖mathematicalCategoryTheory.NatTrans.app
WalkingSpan
WidePushoutShape.category
WalkingPair
span
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.comp
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
spanCompIso
WalkingSpan.zero
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
spanExt_app_left 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.Iso.app
WalkingSpan
WidePushoutShape.category
WalkingPair
span
spanExt
WalkingSpan.left
spanExt_app_one 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.Iso.app
WalkingSpan
WidePushoutShape.category
WalkingPair
span
spanExt
WalkingSpan.zero
spanExt_app_right 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.Iso.app
WalkingSpan
WidePushoutShape.category
WalkingPair
span
spanExt
WalkingSpan.right
spanExt_hom_app_left 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.NatTrans.app
WalkingSpan
WidePushoutShape.category
WalkingPair
span
CategoryTheory.Functor
CategoryTheory.Functor.category
spanExt
WalkingSpan.left
spanExt_hom_app_right 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.NatTrans.app
WalkingSpan
WidePushoutShape.category
WalkingPair
span
CategoryTheory.Functor
CategoryTheory.Functor.category
spanExt
WalkingSpan.right
spanExt_hom_app_zero 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.NatTrans.app
WalkingSpan
WidePushoutShape.category
WalkingPair
span
CategoryTheory.Functor
CategoryTheory.Functor.category
spanExt
WalkingSpan.zero
spanExt_inv_app_left 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.NatTrans.app
WalkingSpan
WidePushoutShape.category
WalkingPair
span
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
spanExt
WalkingSpan.left
spanExt_inv_app_right 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.NatTrans.app
WalkingSpan
WidePushoutShape.category
WalkingPair
span
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
spanExt
WalkingSpan.right
spanExt_inv_app_zero 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.NatTrans.app
WalkingSpan
WidePushoutShape.category
WalkingPair
span
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
spanExt
WalkingSpan.zero
spanHomMk_app 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
WalkingSpan
WidePushoutShape.category
WalkingPair
WalkingSpan.zero
WalkingSpan.left
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
WalkingSpan.Hom.fst
WalkingSpan.right
WalkingSpan.Hom.snd
CategoryTheory.NatTrans.app
spanHomMk
spanIsoMk_hom_app 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
WalkingSpan
WidePushoutShape.category
WalkingPair
WalkingSpan.zero
WalkingSpan.left
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
WalkingSpan.Hom.fst
CategoryTheory.Iso.hom
WalkingSpan.right
WalkingSpan.Hom.snd
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
spanIsoMk
CategoryTheory.Iso
spanIsoMk_inv_app 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
WalkingSpan
WidePushoutShape.category
WalkingPair
WalkingSpan.zero
WalkingSpan.left
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
WalkingSpan.Hom.fst
CategoryTheory.Iso.hom
WalkingSpan.right
WalkingSpan.Hom.snd
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
spanIsoMk
CategoryTheory.Iso
span_left 📖mathematicalCategoryTheory.Functor.obj
WalkingSpan
WidePushoutShape.category
WalkingPair
span
WalkingSpan.left
span_map_fst 📖mathematicalCategoryTheory.Functor.map
WalkingSpan
WidePushoutShape.category
WalkingPair
span
WalkingSpan.zero
WalkingSpan.left
WalkingSpan.Hom.fst
span_map_id 📖mathematicalCategoryTheory.Functor.map
WalkingSpan
WidePushoutShape.category
WalkingPair
span
WalkingSpan.Hom.id
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
span_map_snd 📖mathematicalCategoryTheory.Functor.map
WalkingSpan
WidePushoutShape.category
WalkingPair
span
WalkingSpan.zero
WalkingSpan.right
WalkingSpan.Hom.snd
span_right 📖mathematicalCategoryTheory.Functor.obj
WalkingSpan
WidePushoutShape.category
WalkingPair
span
WalkingSpan.right
span_zero 📖mathematicalCategoryTheory.Functor.obj
WalkingSpan
WidePushoutShape.category
WalkingPair
span
WalkingSpan.zero

CategoryTheory.Limits.WalkingCospan

Definitions

NameCategoryTheorems
ext 📖CompOp
left 📖CompOp
25 mathmath: AlgebraicGeometry.SheafedSpace.IsOpenImmersion.hasLimit_cospan_forget_of_right', CategoryTheory.Limits.diagramIsoCospan_inv_app, AlgebraicGeometry.IsOpenImmersion.hasLimit_cospan_forget_of_right', CategoryTheory.Limits.pullbackConeOfLeftIso_π_app_left, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.hasLimit_cospan_forget_of_left', CategoryTheory.Limits.diagramIsoCospan_hom_app, CategoryTheory.Limits.cospan_left, CategoryTheory.Limits.cospanCompIso_inv_app_left, CategoryTheory.Limits.Cone.ofPullbackCone_pt, CategoryTheory.Limits.cospan_map_inl, CategoryTheory.Limits.Cone.ofPullbackCone_π, CategoryTheory.Limits.PullbackCone.π_app_left, CategoryTheory.Limits.PullbackCone.isoMk_inv_hom, CategoryTheory.Limits.cospanExt_app_left, CategoryTheory.Limits.pullbackConeOfRightIso_π_app_left, CategoryTheory.Limits.PullbackCone.ofCone_π, CategoryTheory.Limits.cospanCompIso_hom_app_left, CategoryTheory.Limits.cospanExt_inv_app_left, CategoryTheory.Limits.cospanCompIso_app_left, CategoryTheory.Limits.PullbackCone.isoMk_hom_hom, CategoryTheory.Limits.PullbackCone.ofCone_pt, CategoryTheory.Limits.PullbackCone.mk_π_app_left, CategoryTheory.IsPullback.of_isLimit_cone, AlgebraicGeometry.IsOpenImmersion.hasLimit_cospan_forget_of_left', CategoryTheory.Limits.cospanExt_hom_app_left
one 📖CompOp
30 mathmath: AlgebraicGeometry.SheafedSpace.IsOpenImmersion.hasLimit_cospan_forget_of_right', CategoryTheory.Limits.diagramIsoCospan_inv_app, AlgebraicGeometry.IsOpenImmersion.hasLimit_cospan_forget_of_right', CategoryTheory.Limits.cospanExt_app_one, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.hasLimit_cospan_forget_of_left', AlgebraicGeometry.SheafedSpace.IsOpenImmersion.sheafedSpace_pullback_to_base_isOpenImmersion, AlgebraicGeometry.IsOpenImmersion.instπWalkingCospanSchemeCospanOne, CategoryTheory.Limits.diagramIsoCospan_hom_app, CategoryTheory.Limits.cospan_map_inr, CategoryTheory.Limits.Cone.ofPullbackCone_pt, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.pullbackToBaseIsOpenImmersion, CategoryTheory.Limits.cospan_map_inl, CategoryTheory.Limits.Cone.ofPullbackCone_π, CategoryTheory.Limits.PullbackCone.mk_π_app_one, TopCat.isOpenEmbedding_of_pullback, CategoryTheory.Limits.cospanExt_inv_app_one, CategoryTheory.Limits.PullbackCone.isoMk_inv_hom, CategoryTheory.Limits.cospanExt_hom_app_one, CategoryTheory.Limits.cospanCompIso_inv_app_one, CategoryTheory.Limits.PullbackCone.ofCone_π, CategoryTheory.Limits.cospanCompIso_hom_app_one, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.pullback_to_base_isOpenImmersion, CategoryTheory.Limits.PullbackCone.condition_one, CategoryTheory.Limits.cospanCompIso_app_one, CategoryTheory.Limits.PullbackCone.isoMk_hom_hom, CategoryTheory.Limits.PullbackCone.ofCone_pt, CategoryTheory.IsPullback.of_isLimit_cone, AlgebraicGeometry.IsOpenImmersion.hasLimit_cospan_forget_of_left', CategoryTheory.Limits.cospan_one, TopCat.isEmbedding_of_pullback
right 📖CompOp
25 mathmath: AlgebraicGeometry.SheafedSpace.IsOpenImmersion.hasLimit_cospan_forget_of_right', CategoryTheory.Limits.diagramIsoCospan_inv_app, AlgebraicGeometry.IsOpenImmersion.hasLimit_cospan_forget_of_right', CategoryTheory.Limits.PullbackCone.π_app_right, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.hasLimit_cospan_forget_of_left', CategoryTheory.Limits.pullbackConeOfLeftIso_π_app_right, CategoryTheory.Limits.diagramIsoCospan_hom_app, CategoryTheory.Limits.cospanExt_app_right, CategoryTheory.Limits.cospan_map_inr, CategoryTheory.Limits.Cone.ofPullbackCone_pt, CategoryTheory.Limits.Cone.ofPullbackCone_π, CategoryTheory.Limits.pullbackConeOfRightIso_π_app_right, CategoryTheory.Limits.PullbackCone.mk_π_app_right, CategoryTheory.Limits.cospanCompIso_inv_app_right, CategoryTheory.Limits.PullbackCone.isoMk_inv_hom, CategoryTheory.Limits.cospan_right, CategoryTheory.Limits.PullbackCone.ofCone_π, CategoryTheory.Limits.cospanCompIso_hom_app_right, CategoryTheory.Limits.PullbackCone.isoMk_hom_hom, CategoryTheory.Limits.PullbackCone.ofCone_pt, CategoryTheory.IsPullback.of_isLimit_cone, CategoryTheory.Limits.cospanExt_inv_app_right, CategoryTheory.Limits.cospanExt_hom_app_right, AlgebraicGeometry.IsOpenImmersion.hasLimit_cospan_forget_of_left', CategoryTheory.Limits.cospanCompIso_app_right

Theorems

NameKindAssumesProvesValidatesDepends On
instSubsingletonHom 📖mathematicalQuiver.Hom
CategoryTheory.Limits.WalkingCospan
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.WidePullbackShape.struct
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.WidePullbackShape.subsingleton_hom

CategoryTheory.Limits.WalkingCospan.Hom

Definitions

NameCategoryTheorems
id 📖CompOp
1 mathmath: CategoryTheory.Limits.cospan_map_id
inl 📖CompOp
14 mathmath: AlgebraicGeometry.SheafedSpace.IsOpenImmersion.hasLimit_cospan_forget_of_right', CategoryTheory.Limits.diagramIsoCospan_inv_app, AlgebraicGeometry.IsOpenImmersion.hasLimit_cospan_forget_of_right', AlgebraicGeometry.SheafedSpace.IsOpenImmersion.hasLimit_cospan_forget_of_left', CategoryTheory.Limits.diagramIsoCospan_hom_app, CategoryTheory.Limits.Cone.ofPullbackCone_pt, CategoryTheory.Limits.cospan_map_inl, CategoryTheory.Limits.Cone.ofPullbackCone_π, CategoryTheory.Limits.PullbackCone.isoMk_inv_hom, CategoryTheory.Limits.PullbackCone.ofCone_π, CategoryTheory.Limits.PullbackCone.isoMk_hom_hom, CategoryTheory.Limits.PullbackCone.ofCone_pt, CategoryTheory.IsPullback.of_isLimit_cone, AlgebraicGeometry.IsOpenImmersion.hasLimit_cospan_forget_of_left'
inr 📖CompOp
14 mathmath: AlgebraicGeometry.SheafedSpace.IsOpenImmersion.hasLimit_cospan_forget_of_right', CategoryTheory.Limits.diagramIsoCospan_inv_app, AlgebraicGeometry.IsOpenImmersion.hasLimit_cospan_forget_of_right', AlgebraicGeometry.SheafedSpace.IsOpenImmersion.hasLimit_cospan_forget_of_left', CategoryTheory.Limits.diagramIsoCospan_hom_app, CategoryTheory.Limits.cospan_map_inr, CategoryTheory.Limits.Cone.ofPullbackCone_pt, CategoryTheory.Limits.Cone.ofPullbackCone_π, CategoryTheory.Limits.PullbackCone.isoMk_inv_hom, CategoryTheory.Limits.PullbackCone.ofCone_π, CategoryTheory.Limits.PullbackCone.isoMk_hom_hom, CategoryTheory.Limits.PullbackCone.ofCone_pt, CategoryTheory.IsPullback.of_isLimit_cone, AlgebraicGeometry.IsOpenImmersion.hasLimit_cospan_forget_of_left'

CategoryTheory.Limits.WalkingSpan

Definitions

NameCategoryTheorems
ext 📖CompOp
left 📖CompOp
21 mathmath: CategoryTheory.Limits.spanCompIso_app_left, CategoryTheory.Limits.PushoutCocone.isoMk_inv_hom, CategoryTheory.Limits.spanCompIso_inv_app_left, CategoryTheory.Limits.PushoutCocone.ofCocone_ι, CategoryTheory.Limits.PushoutCocone.ι_app_left, CategoryTheory.Limits.pushoutCoconeOfLeftIso_ι_app_left, CategoryTheory.Limits.PushoutCocone.ofCocone_pt, CategoryTheory.Limits.spanExt_app_left, CategoryTheory.Limits.pushoutCoconeOfRightIso_ι_app_left, CategoryTheory.Limits.spanCompIso_hom_app_left, CategoryTheory.Limits.spanExt_hom_app_left, CategoryTheory.Limits.Cocone.ofPushoutCocone_ι, CategoryTheory.Limits.span_map_fst, CategoryTheory.Limits.span_left, CategoryTheory.Limits.PushoutCocone.isoMk_hom_hom, CategoryTheory.Limits.PushoutCocone.mk_ι_app_left, CategoryTheory.Limits.diagramIsoSpan_inv_app, CategoryTheory.Limits.Cocone.ofPushoutCocone_pt, CategoryTheory.Limits.diagramIsoSpan_hom_app, CategoryTheory.IsPushout.of_isColimit_cocone, CategoryTheory.Limits.spanExt_inv_app_left
right 📖CompOp
21 mathmath: CategoryTheory.Limits.pushoutCoconeOfLeftIso_ι_app_right, CategoryTheory.Limits.PushoutCocone.isoMk_inv_hom, CategoryTheory.Limits.span_right, CategoryTheory.Limits.spanExt_hom_app_right, CategoryTheory.Limits.span_map_snd, CategoryTheory.Limits.PushoutCocone.ofCocone_ι, CategoryTheory.Limits.spanCompIso_app_right, CategoryTheory.Limits.PushoutCocone.ofCocone_pt, CategoryTheory.Limits.spanCompIso_inv_app_right, CategoryTheory.Limits.PushoutCocone.ι_app_right, CategoryTheory.Limits.spanCompIso_hom_app_right, CategoryTheory.Limits.Cocone.ofPushoutCocone_ι, CategoryTheory.Limits.PushoutCocone.mk_ι_app_right, CategoryTheory.Limits.PushoutCocone.isoMk_hom_hom, CategoryTheory.Limits.spanExt_app_right, CategoryTheory.Limits.diagramIsoSpan_inv_app, CategoryTheory.Limits.Cocone.ofPushoutCocone_pt, CategoryTheory.Limits.pushoutCoconeOfRightIso_ι_app_right, CategoryTheory.Limits.diagramIsoSpan_hom_app, CategoryTheory.IsPushout.of_isColimit_cocone, CategoryTheory.Limits.spanExt_inv_app_right
zero 📖CompOp
20 mathmath: CategoryTheory.Limits.spanCompIso_inv_app_zero, CategoryTheory.Limits.PushoutCocone.mk_ι_app_zero, CategoryTheory.Limits.PushoutCocone.isoMk_inv_hom, CategoryTheory.Limits.spanCompIso_hom_app_zero, CategoryTheory.Limits.span_map_snd, CategoryTheory.Limits.spanCompIso_app_zero, CategoryTheory.Limits.PushoutCocone.ofCocone_ι, CategoryTheory.Limits.spanExt_hom_app_zero, CategoryTheory.Limits.PushoutCocone.condition_zero, CategoryTheory.Limits.PushoutCocone.ofCocone_pt, CategoryTheory.Limits.spanExt_app_one, CategoryTheory.Limits.spanExt_inv_app_zero, CategoryTheory.Limits.Cocone.ofPushoutCocone_ι, CategoryTheory.Limits.span_map_fst, CategoryTheory.Limits.PushoutCocone.isoMk_hom_hom, CategoryTheory.Limits.diagramIsoSpan_inv_app, CategoryTheory.Limits.span_zero, CategoryTheory.Limits.Cocone.ofPushoutCocone_pt, CategoryTheory.Limits.diagramIsoSpan_hom_app, CategoryTheory.IsPushout.of_isColimit_cocone

Theorems

NameKindAssumesProvesValidatesDepends On
instSubsingletonHom 📖mathematicalQuiver.Hom
CategoryTheory.Limits.WalkingSpan
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.WidePushoutShape.struct
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.WidePushoutShape.subsingleton_hom

CategoryTheory.Limits.WalkingSpan.Hom

Definitions

NameCategoryTheorems
fst 📖CompOp
10 mathmath: CategoryTheory.Limits.PushoutCocone.isoMk_inv_hom, CategoryTheory.Limits.PushoutCocone.ofCocone_ι, CategoryTheory.Limits.PushoutCocone.ofCocone_pt, CategoryTheory.Limits.Cocone.ofPushoutCocone_ι, CategoryTheory.Limits.span_map_fst, CategoryTheory.Limits.PushoutCocone.isoMk_hom_hom, CategoryTheory.Limits.diagramIsoSpan_inv_app, CategoryTheory.Limits.Cocone.ofPushoutCocone_pt, CategoryTheory.Limits.diagramIsoSpan_hom_app, CategoryTheory.IsPushout.of_isColimit_cocone
id 📖CompOp
1 mathmath: CategoryTheory.Limits.span_map_id
snd 📖CompOp
10 mathmath: CategoryTheory.Limits.PushoutCocone.isoMk_inv_hom, CategoryTheory.Limits.span_map_snd, CategoryTheory.Limits.PushoutCocone.ofCocone_ι, CategoryTheory.Limits.PushoutCocone.ofCocone_pt, CategoryTheory.Limits.Cocone.ofPushoutCocone_ι, CategoryTheory.Limits.PushoutCocone.isoMk_hom_hom, CategoryTheory.Limits.diagramIsoSpan_inv_app, CategoryTheory.Limits.Cocone.ofPushoutCocone_pt, CategoryTheory.Limits.diagramIsoSpan_hom_app, CategoryTheory.IsPushout.of_isColimit_cocone

---

← Back to Index