Documentation Verification Report

EquifiberedLimits

📁 Source: Mathlib/CategoryTheory/Limits/Shapes/Pullback/EquifiberedLimits.lean

Statistics

MetricCount
Definitions0
TheoremsinstIsClosedUnderColimitsOfShapeUnderFunctorCoequifiberedHomDiscretePUnitOfHasProductsOfShapeHom, instIsClosedUnderLimitsOfShapeOverFunctorEquifiberedHomDiscretePUnitOfHasCoproductsOfShapeHom
2
Total2

CategoryTheory.NatTrans

Theorems

NameKindAssumesProvesValidatesDepends On
instIsClosedUnderColimitsOfShapeUnderFunctorCoequifiberedHomDiscretePUnitOfHasProductsOfShapeHom 📖mathematicalCategoryTheory.Limits.HasProductsOfShape
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ObjectProperty.IsClosedUnderColimitsOfShape
CategoryTheory.Under
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.instCategoryUnder
Coequifibered
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Under.w
CategoryTheory.MorphismProperty.cancel_right_of_respectsIso
instRespectsIsoFunctorCoequifibered
CategoryTheory.Comma.instIsIsoRight
CategoryTheory.Iso.isIso_hom
CategoryTheory.Limits.hasColimitsOfShape_of_equivalence
CategoryTheory.Limits.hasCoproductsOfShape_opposite
CategoryTheory.ObjectProperty.isClosedUnderColimitsOfShape_iff_op
CategoryTheory.ObjectProperty.isClosedUnderLimitsOfShape_inverseImage_iff
CategoryTheory.ObjectProperty.instIsClosedUnderIsomorphismsOppositeOp
CategoryTheory.Iso.isIso_inv
instIsClosedUnderLimitsOfShapeOverFunctorEquifiberedHomDiscretePUnitOfHasCoproductsOfShapeHom
instIsClosedUnderLimitsOfShapeOverFunctorEquifiberedHomDiscretePUnitOfHasCoproductsOfShapeHom 📖mathematicalCategoryTheory.Limits.HasCoproductsOfShape
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ObjectProperty.IsClosedUnderLimitsOfShape
CategoryTheory.Over
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.instCategoryOver
Equifibered
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
naturality
CategoryTheory.CommSq.w
CategoryTheory.Limits.comp_preservesLimit
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.Over.preservesLimitsOfShape_forget_of_isConnected
CategoryTheory.preservesLimit_comp_of_createsLimit
CategoryTheory.Limits.comp_preservesLimitsOfShape
CategoryTheory.Functor.instPreservesLimitsOfShapeOfIsRightAdjoint
CategoryTheory.evaluationIsRightAdjoint
CategoryTheory.Category.assoc
CategoryTheory.Over.w
CategoryTheory.Limits.PullbackCone.condition
CategoryTheory.IsPullback.hom_ext
CategoryTheory.Category.id_comp
CategoryTheory.IsPullback.lift_fst
CategoryTheory.IsPullback.lift_fst_assoc
CategoryTheory.IsPullback.lift_snd
CategoryTheory.Limits.IsLimit.hom_ext
CategoryTheory.Limits.IsLimit.fac_assoc
CategoryTheory.IsConnected.is_nonempty
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.Limits.IsLimit.fac
CategoryTheory.isConnected_of_hasTerminal
CategoryTheory.WithTerminal.instHasTerminal
CategoryTheory.ObjectProperty.IsClosedUnderLimitsOfShape.limitsOfShape_le
CategoryTheory.Limits.IsTerminal.comp_from
CategoryTheory.Category.comp_id
CategoryTheory.Over.mkIdTerminal_from_left
CategoryTheory.CreatesLimit.toReflectsLimit
Equifibered.of_isIso
CategoryTheory.IsIso.id

---

← Back to Index