pullback 📖 | CompOp | 708 mathmath: AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_snd, TopCat.isInducing_pullback_to_prod, CategoryTheory.FinitaryPreExtensive.isIso_sigmaDesc_fst, CategoryTheory.Functor.relativelyRepresentable.pullback₃.snd_fst'_eq_p₁, CategoryTheory.Over.associator_hom_left_snd_fst_assoc, AlgebraicGeometry.Surjective.instFstScheme, pushoutIsoOpPullback_inr_hom_assoc, CategoryTheory.Over.prodLeftIsoPullback_hom_snd_assoc, HomotopicalAlgebra.instFibrationFstOfIsStableUnderBaseChangeFibrations, CategoryTheory.Over.μ_pullback_left_snd', AlgebraicGeometry.instLocallyQuasiFiniteSndScheme, TopCat.pullbackIsoProdSubtype_hom_fst, pullbackDiagonalMapIdIso_inv_snd_fst_assoc, AlgebraicGeometry.Scheme.Pullback.Triplet.specTensorTo_fst, AlgebraicGeometry.Scheme.Hom.opensRange_pullbackSnd, AlgebraicGeometry.Scheme.Cover.pullbackCoverOver_X, AlgebraicGeometry.Scheme.Cover.gluedCoverT'_snd_snd_assoc, AlgebraicGeometry.Scheme.Cover.LocallyDirected.directed, pullbackIsoUnopPushout_inv_snd, AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_snd_assoc, CategoryTheory.PreZeroHypercover.pullbackCoverOfRight_X, CategoryTheory.PreZeroHypercover.pullback₁_X, AlgebraicGeometry.Scheme.isEmpty_pullback_iff, AlgebraicGeometry.instIsReducedPullbackSchemeOfGeometricallyReducedOfFlatOfIsLocallyNoetherian, diagonalObjPullbackFstIso_inv_snd_snd_assoc, AlgebraicGeometry.instIsAffinePullbackSchemeOfIsAffineHom_1, pullback.instIsSplitEpiFst, pullback_inv_snd_fst_of_left_isIso, CategoryTheory.IsPullback.isoPullback_inv_fst, RingHom.IsStableUnderBaseChange.pullback_fst_appTop, AlgebraicGeometry.instCompactSpaceCarrierCarrierCommRingCatPullbackSchemeOfQuasiCompact, pullbackProdSndIsoProd_hom_snd, CategoryTheory.Over.associator_inv_left_snd, AlgebraicGeometry.Scheme.Hom.toNormalization_normalizationPullback_fst, AlgebraicGeometry.Etale.instFstScheme, pullbackDiagonalMapIso.hom_fst, pushoutIsoOpPullback_inl_hom, diagonalObjPullbackFstIso_inv_fst_snd_assoc, AlgebraicGeometry.instLocallyQuasiFiniteFstScheme, CategoryTheory.Over.pullback_obj_left, CategoryTheory.MorphismProperty.IsLocalAtTarget.iff_of_zeroHypercover, AlgebraicGeometry.Scheme.Pullback.openCoverOfLeftRight_f, pullbackFstFstIso_hom, CategoryTheory.IsPullback.isoPullback_inv_snd_assoc, AlgebraicGeometry.Scheme.Pullback.Triplet.ofPoint_x, pullbackSymmetry_inv_comp_snd_assoc, prodIsoPullback_inv_fst, HomotopicalAlgebra.PrepathObject.trans_p₀, CategoryTheory.Abelian.epi_pullback_of_epi_f, CategoryTheory.IsGrothendieckAbelian.IsPresentable.surjectivity.hf, CategoryTheory.MorphismProperty.pullback_snd_iff, pullbackDiagonalMapIdIso_inv_snd_fst, AlgebraicGeometry.pullbackRestrictIsoRestrict_hom_morphismRestrict_assoc, AlgebraicGeometry.IsProper.instFstScheme, AlgebraicGeometry.IsAffineOpen.isCompact_pullback_inf, Types.range_pullbackFst, AlgebraicGeometry.Scheme.Pullback.t'_snd_fst_fst_assoc, AlgebraicGeometry.Scheme.Cover.glued_cover_cocycle_fst, AlgebraicGeometry.IsSeparated.instIsClosedImmersionMapDescScheme, CategoryTheory.Over.monObjMkPullbackSnd_mul, diagonalObjPullbackFstIso_inv_fst_fst, TopCat.snd_isOpenEmbedding_of_left, AlgebraicGeometry.diagonal_SpecMap, AlgebraicGeometry.Scheme.Pullback.openCoverOfBase_I₀, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.sheafedSpace_pullback_snd_of_left, CategoryTheory.Functor.relativelyRepresentable.pullback₃.snd_snd_eq_p₃_assoc, Concrete.pullbackMk_snd, AlgebraicGeometry.IsProper.instSndScheme, pullbackDiagonalMapIdIso_inv_snd_snd_assoc, pullbackProdSndIsoProd_inv_fst_snd, CategoryTheory.Over.grpObjMkPullbackSnd_one, AlgebraicGeometry.Scheme.Pullback.openCoverOfBase_f, pullbackAssoc_hom_snd_fst_assoc, AlgebraicGeometry.Scheme.ideal_ker_le_ker_ΓSpecIso_inv_comp, AlgebraicGeometry.Scheme.Cover.pullbackCoverOver'_X, AlgebraicGeometry.Scheme.Pullback.openCoverOfRight_I₀, AlgebraicGeometry.Scheme.Pullback.SpecTensorTo_SpecOfPoint, pullbackIsoOpPushout_hom_inr_assoc, CategoryTheory.Over.grpObjMkPullbackSnd_mul, CategoryTheory.PreOneHypercover.cylinderHom_h₁, CategoryTheory.MorphismProperty.Over.pullbackComp_hom_app_left, pushoutIsoUnopPullback_inr_hom, Types.pullbackIsoPullback_hom_fst, CategoryTheory.MorphismProperty.iff_of_zeroHypercover_target, pullback_snd_iso_of_left_iso, pullbackDiagonalMapIso.inv_fst_assoc, AlgebraicGeometry.Scheme.Cover.glued_cover_cocycle, AlgebraicGeometry.Scheme.Cover.gluedCover_t, AlgebraicGeometry.Scheme.Pullback.t_fst_snd_assoc, CategoryTheory.IsGrothendieckAbelian.IsPresentable.surjectivity.F_map, pullbackRightPullbackFstIso_hom_fst, pullbackLeftPullbackSndIso_inv_fst_snd_assoc, pushoutIsoUnopPullback_inl_hom_assoc, AlgebraicGeometry.Scheme.Pullback.Triplet.specTensorTo_base_snd, pullbackProdFstIsoProd_hom_fst_assoc, pullbackAssoc_inv_fst_snd, CategoryTheory.Over.braiding_inv_left, pullback.lift_fst_assoc, CategoryTheory.Over.prodLeftIsoPullback_inv_snd, pushoutIsoUnopPullback_inr_hom_assoc, PreservesPullback.iso_inv_fst_assoc, AlgebraicGeometry.IsSeparated.instIsClosedImmersionLiftSchemeId, AlgebraicGeometry.Scheme.Pullback.tensorCongr_SpecTensorTo, AlgebraicGeometry.instGeometricallyReducedSndScheme, CategoryTheory.GlueData.t'_iij, pullback_diagonal_map_snd_snd_fst_assoc, diagonalObjPullbackFstIso_hom_snd, pullbackIsoUnopPushout_hom_inr_assoc, CategoryTheory.IsPullback.instHasPullbackFst, CategoryTheory.Over.isCommMonObj_mk_pullbackSnd, TopCat.pullback_topology, CategoryTheory.MorphismProperty.IsLocalAtTarget.pullbackSnd, CategoryTheory.MorphismProperty.Over.pullback_obj_left, prodIsoPullback_inv_fst_assoc, AlgebraicGeometry.IsIntegralHom.instSndScheme, AlgebraicGeometry.Scheme.Pullback.Triplet.snd_SpecTensorTo_apply, pushoutIsoUnopPullback_inv_snd, AlgebraicGeometry.IsSchemeTheoreticallyDominant.pullbackSnd, equalizerPullbackMapIso_inv_ι_snd, CategoryTheory.PreZeroHypercover.pullback₂_X, pullbackAssoc_inv_fst_snd_assoc, AlgebraicGeometry.Scheme.Pullback.Triplet.specTensorTo_fst_assoc, diagonalObjPullbackFstIso_inv_snd_fst, pullbackObjIso_inv_comp_fst_assoc, HomotopicalAlgebra.PrepathObject.trans_P, equalizerPullbackMapIso_inv_ι_fst, pushoutIsoUnopPullback_inv_fst, AlgebraicGeometry.Scheme.Pullback.residueFieldCongr_inv_residueFieldMap_ofPoint, AlgebraicGeometry.IsOpenImmersion.range_pullbackSnd, pullbackLeftPullbackSndIso_inv_fst, CategoryTheory.GrothendieckTopology.OneHypercover.mem_sieve₁', AlgebraicGeometry.IsOpenImmersion.range_pullback_fst_of_right, diagonalObjPullbackFstIso_hom_fst_fst_assoc, AlgebraicGeometry.PresheafedSpace.GlueData.snd_invApp_t_app_assoc, CategoryTheory.Over.whiskerRight_left_fst, CategoryTheory.Over.postAdjunctionLeft_unit_app_left, CategoryTheory.MorphismProperty.Over.mapPullbackAdj_counit_app, AlgebraicGeometry.instGeometricallyIntegralSndScheme, AlgebraicGeometry.Scheme.Cover.pullbackCoverOverProp_f, pullback.lift_snd, AlgebraicGeometry.Proj.pullbackAwayιIso_hom_SpecMap_awayMap_right_assoc, CategoryTheory.Over.prodLeftIsoPullback_inv_fst, pullbackIsoUnopPushout_hom_inl, AlgebraicGeometry.instCompactSpaceCarrierCarrierCommRingCatPullbackSchemeOfQuasiCompact_1, pullbackProdSndIsoProd_hom_fst, AlgebraicGeometry.Scheme.Pullback.cocycle, AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso_hom_snd, TopCat.fst_iso_of_right_embedding_range_subset, AlgebraicGeometry.Scheme.Pullback.carrierEquiv_symm_fst, CategoryTheory.Over.prodLeftIsoPullback_inv_snd_assoc, AlgebraicGeometry.Proj.pullbackAwayιIso_inv_snd_assoc, CategoryTheory.Over.mapPullbackAdj_counit_app, AlgebraicGeometry.Scheme.IdealSheafData.comapIso_hom_snd_assoc, CategoryTheory.Abelian.Pseudoelement.pseudo_pullback, equalizerPullbackMapIso_hom_fst_assoc, AlgebraicGeometry.PresheafedSpace.GlueData.pullback_base, AlgebraicGeometry.Scheme.pullback_map_isOpenImmersion, AlgebraicGeometry.Flat.instFstScheme, pullback.comp_diagonal_assoc, TopCat.pullbackIsoProdSubtype_inv_fst_assoc, AlgebraicGeometry.Scheme.Pullback.range_fst_comp, AlgebraicGeometry.pullbackSpecIso_inv_snd, AlgebraicGeometry.IsImmersion.instMapDescScheme, AlgebraicGeometry.Scheme.Pullback.t'_fst_fst_snd_assoc, AlgebraicGeometry.Etale.instSndScheme, AlgebraicGeometry.Scheme.Cover.gluedCover_V, AlgebraicGeometry.Proj.pullbackAwayιIso_inv_fst, prodIsoPullback_hom_fst_assoc, CategoryTheory.Over.prodLeftIsoPullback_hom_snd, PreservesPullback.iso_inv_snd, HomotopicalAlgebra.PrepathObject.trans_p₁, PreservesPullback.iso_inv_fst, AlgebraicGeometry.pullbackRestrictIsoRestrict_inv_fst, pullback_diagonal_map_snd_fst_fst, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.pullbackSndOfLeft, diagonalObjPullbackFstIso_inv_snd_snd, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.pullbackFstOfRight, AlgebraicGeometry.Scheme.Cover.gluedCoverT'_fst_fst, AlgebraicGeometry.pullbackSpecIso_hom_base, AlgebraicGeometry.Scheme.Pullback.pullbackFstιToV_fst_assoc, CategoryTheory.Over.associator_inv_left_fst_fst_assoc, AlgebraicGeometry.Scheme.isCommMonObj_asOver_pullback, pullbackSymmetry_inv_comp_fst_assoc, CategoryTheory.PreOneHypercover.sieve₁'_eq_sieve₁, CategoryTheory.Over.associator_hom_left_fst, CategoryTheory.MorphismProperty.baseChange_map', AlgebraicGeometry.Scheme.isMonHom_fst_id_right, CategoryTheory.FinitaryPreExtensive.isIso_sigmaDesc_map, AlgebraicGeometry.Scheme.Cover.gluedCoverT'_snd_fst, pullbackZeroZeroIso_inv_fst, AlgebraicGeometry.ExistsHomHomCompEqCompAux.exists_index, CategoryTheory.IsPullback.isoPullback_inv_snd, pullbackZeroZeroIso_hom_snd, CategoryTheory.Over.prodLeftIsoPullback_hom_fst_assoc, pullbackIsoOpPushout_inv_fst_assoc, TopCat.range_pullback_map, CategoryTheory.GlueData.t'_iji, CategoryTheory.Subobject.pullback_obj, AlgebraicGeometry.Scheme.Cover.exists_lift_trans_eq, pullback_lift_diagonal_isPullback, AlgebraicGeometry.instGeometricallyReducedFstScheme, AlgebraicGeometry.instIrreducibleSpaceCarrierCarrierCommRingCatPullbackSchemeOfGeometricallyIrreducibleOfUniversallyOpen, CategoryTheory.PreOneHypercover.sieve₁_eq_pullback_sieve₁', AlgebraicGeometry.Scheme.Pullback.t_snd, pullbackRightPullbackFstIso_hom_snd, pullback.lift_snd_assoc, pullbackProdFstIsoProd_inv_fst, AlgebraicGeometry.Scheme.Pullback.Triplet.specTensorTo_snd, CategoryTheory.Over.starPullbackIsoStar_hom_app_left, CategoryTheory.ShortComplex.SnakeInput.snd_δ, CategoryTheory.ShortComplex.SnakeInput.lift_φ₂, CategoryTheory.IsGrothendieckAbelian.IsPresentable.surjectivity.isIso_f, CategoryTheory.ShortComplex.SnakeInput.snd_δ_inr, pullback.map_id, AlgebraicGeometry.Scheme.Pullback.gluing_f, AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso_hom_fst_assoc, AlgebraicGeometry.instIsClosedImmersionSndScheme, AlgebraicGeometry.Proj.pullbackAwayιIso_inv_snd, AlgebraicGeometry.Proj.pullbackAwayιIso_inv_fst_assoc, AlgebraicGeometry.pullbackSpecIso_inv_fst'_assoc, AlgebraicGeometry.Proj.pullbackAwayιIso_hom_awayι, CategoryTheory.PreZeroHypercover.pullbackCoverOfLeft_X, AlgebraicGeometry.Scheme.IdealSheafData.ker_fst_of_isClosedImmersion, AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso_hom_ι_assoc, AlgebraicGeometry.Scheme.Pullback.pullbackFstιToV_fst, AlgebraicGeometry.Scheme.Pullback.Triplet.specTensorTo_snd_assoc, AlgebraicGeometry.Scheme.Pullback.ofPointTensor_SpecTensorTo_assoc, AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso_inv_snd_assoc, AlgebraicGeometry.Scheme.Pullback.t_fst_fst, AlgebraicGeometry.Scheme.Pullback.carrierEquiv_symm_snd, AlgebraicGeometry.Proj.pullbackAwayιIso_hom_SpecMap_awayMap_right, CategoryTheory.MorphismProperty.pullback_fst, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_snd', AlgebraicGeometry.Scheme.Cover.ColimitGluingData.fst_gluedCocone_ι, AlgebraicGeometry.PresheafedSpace.GlueData.opensImagePreimageMap_app, pullbackDiagonalMapIso.hom_snd_assoc, CategoryTheory.Over.μ_pullback_left_fst_snd', pullback.instIsSplitEpiSnd, pullbackIsoUnopPushout_inv_fst, AlgebraicGeometry.Scheme.Pullback.range_map, AlgebraicGeometry.Scheme.Pullback.openCoverOfRight_f, AlgebraicGeometry.Scheme.Pullback.t'_snd_snd, AlgebraicGeometry.SurjectiveOnStalks.isEmbedding_pullback, CategoryTheory.MorphismProperty.Over.pullbackComp_inv_app_left, PreservesPullback.iso_hom_fst, pullbackLeftPullbackSndIso_inv_fst_snd, AlgebraicGeometry.instGeometricallyIrreducibleSndScheme, pullback.exists_lift, pullbackProdSndIsoProd_inv_fst_snd_assoc, CategoryTheory.PreZeroHypercover.pullbackCoverOfLeft_f, pullbackProdFstIsoProd_inv_snd_snd, pullback.diagonal_isKernelPair, pushoutIsoOpPullback_inv_fst, pullbackAssoc_hom_snd_snd, AlgebraicGeometry.Scheme.Hom.opensRange_pullbackFst, CategoryTheory.GlueData.t_fac, AlgebraicGeometry.pullbackRestrictIsoRestrict_hom_ι_assoc, CategoryTheory.regularTopology.mapToEqualizer_eq_comp, AlgebraicGeometry.UniversallyOpen.snd, TopCat.fst_isEmbedding_of_right, AlgebraicGeometry.PresheafedSpace.GlueData.opensImagePreimageMap_app', AlgebraicGeometry.Scheme.IsLocallyDirected.fst_inv_eq_snd_inv, pullbackRightPullbackFstIso_hom_fst_assoc, AlgebraicGeometry.Scheme.Hom.instIsIsoNormalizationPullbackOfSmooth, isPullback_map_snd_snd, AlgebraicGeometry.Scheme.Cover.glued_cover_cocycle_snd, AlgebraicGeometry.Scheme.Hom.normalizationPullback_snd_assoc, CategoryTheory.Over.associator_hom_left_snd_fst, CategoryTheory.PreZeroHypercover.pullbackCoverOfLeft_I₀, AlgebraicGeometry.instIsLocallyNoetherianPullbackSchemeOfLocallyOfFiniteType_1, AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso_inv_fst, PreservesPullback.iso_inv_snd_assoc, AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso_inv_fst_assoc, CategoryTheory.PreZeroHypercover.inter_f, pullbackDiagonalMapIdIso_inv_fst, CategoryTheory.GlueData.t'_comp_eq_pullbackSymmetry_assoc, CategoryTheory.PreZeroHypercover.pullbackIso_hom_h₀, AlgebraicGeometry.Scheme.Pullback.tensorCongr_SpecTensorTo_assoc, AlgebraicGeometry.Scheme.IdealSheafData.comapIso_inv_subschemeι_assoc, AlgebraicGeometry.Proj.pullbackAwayιIso_hom_SpecMap_awayMap_left, Types.pullbackIsoPullback_inv_snd, AlgebraicGeometry.Scheme.Cover.pullbackCoverOverProp'_X, AlgebraicGeometry.instQuasiCompactSndScheme, AlgebraicGeometry.pullbackSpecIso_inv_fst, AlgebraicGeometry.Scheme.Pullback.t'_snd_fst_fst, AlgebraicGeometry.IsFinite.instFstScheme, TopCat.pullbackIsoProdSubtype_inv_snd_apply, pushoutIsoUnopPullback_inl_hom, hasPullback_assoc, AlgebraicGeometry.Scheme.Cover.pullbackCoverOverProp'_f, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.pullback_snd_of_left, pullbackAssoc_hom_snd_fst, AlgebraicGeometry.Scheme.Pullback.range_snd_comp, pullbackProdFstIsoProd_inv_snd_fst, HomotopicalAlgebra.PathObject.trans_p₀, CategoryTheory.Over.pullback_map_left, pullback.condition_assoc, pullbackDiagonalMapIdIso_inv_fst_assoc, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_fst_fst, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.fst_gluedCocone_ι_assoc, pullbackRightPullbackFstIso_inv_fst, TopCat.pullbackIsoProdSubtype_inv_fst, pullbackIsoOpPushout_inv_fst, AlgebraicGeometry.Scheme.Pullback.gluing_U, AlgebraicGeometry.PresheafedSpace.GlueData.f_invApp_f_app_assoc, CategoryTheory.Functor.relativelyRepresentable.pullback₃.snd_snd_eq_p₃, AlgebraicGeometry.Scheme.Pullback.t'_fst_fst_fst, CategoryTheory.GlueData.t_fac_assoc, pullbackIsoOpPushout_inv_snd, pullbackLeftPullbackSndIso_hom_snd_assoc, CategoryTheory.ShortComplex.SnakeInput.snd_δ_assoc, CategoryTheory.PreZeroHypercover.pullbackCoverOfRight_I₀, diagonalObjPullbackFstIso_inv_snd_fst_assoc, AlgebraicGeometry.Scheme.IdealSheafData.comapIso_inv_subschemeι, AlgebraicGeometry.UniversallyOpen.fst, CategoryTheory.Over.associator_inv_left_fst_snd, AlgebraicGeometry.IsOpenImmersion.range_pullback_to_base_of_left, pullback.map_comp_assoc, AlgebraicGeometry.IsIntegralHom.instFstScheme, AlgebraicGeometry.instLocallyOfFinitePresentationFstScheme, pullbackProdFstIsoProd_inv_snd_snd_assoc, hasPullback_assoc_symm, pullbackProdSndIsoProd_inv_fst_fst, CategoryTheory.Over.associator_hom_left_snd_snd_assoc, TopCat.pullbackIsoProdSubtype_hom_snd, AlgebraicGeometry.instIsIntegralPullbackSchemeOfGeometricallyIntegralOfFlatOfUniversallyOpenOfIsLocallyNoetherian_1, pullback_map_diagonal_isPullback, pullback.map_comp, Types.pullbackIsoPullback_hom_snd, pullbackDiagonalMapIso.hom_snd, AlgebraicGeometry.Scheme.Pullback.cocycle_fst_fst_snd, CategoryTheory.Over.μ_pullback_left_fst_fst', TopCat.snd_iso_of_left_embedding_range_subset, pullbackObjIso_hom_comp_fst, pullbackRightPullbackFstIso_inv_snd_snd_assoc, CategoryTheory.Presieve.ofArrows_pullback, AlgebraicGeometry.Scheme.Pullback.openCoverOfRight_X, CategoryTheory.Over.μ_pullback_left_fst_snd, CategoryTheory.Over.monObjMkPullbackSnd_one, isIso_fst_of_mono, TopCat.pullbackIsoProdSubtype_inv_snd, CategoryTheory.Functor.relativelyRepresentable.pullback₃.fst_snd_eq_p₂_assoc, AlgebraicGeometry.instQuasiSeparatedSndScheme, pullbackSymmetry_hom_of_mono_eq, AlgebraicGeometry.Scheme.Cover.gluedCoverT'_snd_fst_assoc, CategoryTheory.ShortComplex.SnakeInput.lift_φ₂_assoc, pullbackRightPullbackFstIso_inv_fst_assoc, AlgebraicGeometry.IsFinite.instSndScheme, pullback_snd_iso_of_left_factors_mono, AlgebraicGeometry.Proj.pullbackAwayιIso_hom_SpecMap_awayMap_left_assoc, AlgebraicGeometry.PresheafedSpace.GlueData.f_invApp_f_app, pullback_diagonal_map_snd_fst_fst_assoc, AlgebraicGeometry.instLocallyOfFiniteTypeSndScheme, CategoryTheory.GlueData.t'_inv, pullbackProdSndIsoProd_inv_fst_fst_assoc, AlgebraicGeometry.instGeometricallyIntegralFstScheme, AlgebraicGeometry.Scheme.Pullback.Triplet.specTensorTo_base_fst, CategoryTheory.IsPullback.isoPullback_hom_fst, pullbackDiagonalMapIso.inv_snd_fst, CategoryTheory.PreZeroHypercover.pullbackCoverOfRight_f, pullbackProdFstIsoProd_inv_fst_assoc, CategoryTheory.regularTopology.equalizerCondition_iff_isIso_lift, CategoryTheory.GlueData.t'_jii, prodIsoPullback_hom_snd, CategoryTheory.Regular.instHasCoequalizerFstSnd, HomotopicalAlgebra.instWeakEquivalenceFstOfIsStableUnderBaseChangeTrivialFibrationsOfFibration, PreservesPullback.iso_hom_snd_assoc, TopCat.range_pullback_to_prod, CategoryTheory.Presieve.pullback_singleton, AlgebraicGeometry.Scheme.monObjAsOverPullback_mul, CategoryTheory.GlueData.cocycle_assoc, TopCat.pullback_fst_image_snd_preimage, CompleteLattice.pullback_eq_inf, CategoryTheory.Abelian.epi_pullback_of_epi_g, AlgebraicGeometry.Surjective.instSndScheme, pullbackDiagonalMapIdIso_hom_fst_assoc, prodIsoPullback_hom_snd_assoc, CategoryTheory.Over.associator_inv_left_fst_fst, AlgebraicGeometry.pullbackSpecIso_inv_snd_assoc, AlgebraicGeometry.universallyClosed_fst, pushoutIsoOpPullback_inr_hom, TopCat.pullbackIsoProdSubtype_inv_fst_apply, AlgebraicGeometry.instIsLocallyNoetherianPullbackSchemeOfLocallyOfFiniteType, CategoryTheory.GlueData'.cocycle_assoc, pullbackObjIso_hom_comp_fst_assoc, AlgebraicGeometry.Scheme.LocalRepresentability.glueData_t', CategoryTheory.Over.tensorHom_left_fst, CategoryTheory.GlueData'.cocycle, CategoryTheory.PreZeroHypercover.inter_X, AlgebraicGeometry.Scheme.instIsOverFstOverInferInstanceOverClassId, AlgebraicGeometry.IsImmersion.instFstScheme, AlgebraicGeometry.Scheme.Cover.pullbackCoverOver_f, AlgebraicGeometry.Scheme.Pullback.openCoverOfBase_X, pullbackComparison_comp_snd_assoc, pullbackDiagonalMapIso.inv_fst, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.pullback_snd_isIso_of_range_subset, AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso_hom_snd_assoc, AlgebraicGeometry.Scheme.Pullback.cocycle_fst_fst_fst, pullback.fst_of_mono, pullbackAssoc_hom_snd_snd_assoc, CategoryTheory.regularTopology.equalizerCondition_w', AlgebraicGeometry.Scheme.Pullback.openCoverOfBase'_f, AlgebraicGeometry.pullbackSpecIso_inv_fst_assoc, CategoryTheory.PreGaloisCategory.fiberPullbackEquiv_symm_fst_apply, AlgebraicGeometry.Scheme.Pullback.ofPointTensor_SpecTensorTo, equalizerPullbackMapIso_hom_snd_assoc, pullbackLeftPullbackSndIso_hom_snd, AlgebraicGeometry.IsOpenImmersion.range_pullback_snd_of_left, pullbackZeroZeroIso_hom_fst, AlgebraicGeometry.Scheme.Pullback.t_fst_snd, pullback.comp_diagonal, pullbackIsoOpPushout_hom_inl, prodIsoPullback_hom_fst, instIsIsoPullbackComparison, CategoryTheory.PreOneHypercover.sieve₀_cylinder, CategoryTheory.instHasLiftingPropertyFst, pullback.snd_of_mono, CategoryTheory.Over.prodLeftIsoPullback_inv_fst_assoc, AlgebraicGeometry.PresheafedSpace.GlueData.opensImagePreimageMap_app_assoc, AlgebraicGeometry.pullbackRestrictIsoRestrict_hom_ι, AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_fst_assoc, AlgebraicGeometry.IsOpenImmersion.range_pullback_to_base_of_right, pullbackProdFstIsoProd_inv_snd_fst_assoc, AlgebraicGeometry.Scheme.IdealSheafData.comapIso_hom_snd, CategoryTheory.MorphismProperty.pullback_fst_iff, CategoryTheory.PreGaloisCategory.fiberPullbackEquiv_symm_snd_apply, CategoryTheory.MorphismProperty.pullback_map, AlgebraicGeometry.PresheafedSpace.GlueData.snd_invApp_t_app, pullback.hom_ext_iff, AlgebraicGeometry.Scheme.Pullback.t'_snd_fst_snd, AlgebraicGeometry.instQuasiCompactFstScheme, CategoryTheory.MonoOver.inf_map_app, AlgebraicGeometry.Scheme.Pullback.Triplet.fst_SpecTensorTo_apply, pullbackObjIso_inv_comp_fst, pullbackAssoc_inv_snd_assoc, equalizerPullbackMapIso_hom_snd, pullback_inv_snd_fst_of_left_isIso_assoc, pullbackIsoUnopPushout_hom_inl_assoc, AlgebraicGeometry.pullbackSpecIso_hom_fst, diagonalObjPullbackFstIso_hom_fst_snd, AlgebraicGeometry.Scheme.IdealSheafData.comapIso_hom_fst_assoc, Types.pullbackIsoPullback_inv_fst, AlgebraicGeometry.Scheme.IsJointlySurjectivePreserving.exists_preimage_snd_triplet_of_prop, AlgebraicGeometry.Scheme.Cover.pullbackCoverOverProp_X, CategoryTheory.instHasLiftingPropertySnd, Types.pullbackIsoPullback_inv_fst_apply, equalizerPullbackMapIso_hom_fst, AlgebraicGeometry.Scheme.Pullback.cocycle_snd_fst_fst, AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso_inv_snd, TopCat.isEmbedding_pullback_to_prod, CategoryTheory.MonoOver.pullback_obj_left, AlgebraicGeometry.Scheme.Cover.gluedCoverT'_fst_snd_assoc, AlgebraicGeometry.Scheme.Pullback.range_snd, AlgebraicGeometry.instLocallyOfFinitePresentationSndScheme, TopCat.pullbackIsoProdSubtype_hom_apply, pullbackDiagonalMapIso.inv_snd_fst_assoc, equalizerPullbackMapIso_inv_ι_snd_assoc, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.pullback_cone_of_left_condition, CategoryTheory.instIsRegularEpiSnd, pullbackSymmetry_inv_comp_fst, pullback.diagonal_comp, AlgebraicGeometry.Scheme.Pullback.t'_fst_fst_snd, AlgebraicGeometry.instLocallyOfFiniteTypeFstScheme, pullbackRightPullbackFstIso_inv_snd_fst_assoc, pullbackIsoUnopPushout_inv_fst_assoc, CategoryTheory.Over.prodComparisonIso_pullback_Spec_inv_left_fst_fst', AlgebraicGeometry.Proj.pullbackAwayιIso_hom_awayι_assoc, pullbackObjIso_hom_comp_snd_assoc, pushoutIsoOpPullback_inl_hom_assoc, Types.range_pullbackSnd, pullback_snd_iso_of_right_factors_mono, AlgebraicGeometry.IsPreimmersion.instSndScheme, TopCat.fst_isOpenEmbedding_of_right, pullback_diagonal_map_snd_snd_fst, prodIsoPullback_inv_snd, AlgebraicGeometry.instIrreducibleSpaceCarrierCarrierCommRingCatPullbackSchemeOfGeometricallyIrreducibleOfUniversallyOpen_1, AlgebraicGeometry.Scheme.Pullback.cocycle_fst_snd, AlgebraicGeometry.Scheme.Pullback.range_fst, CategoryTheory.IsPullback.of_hasPullback, AlgebraicGeometry.instIsClosedImmersionFstScheme, pullback_inv_fst_snd_of_right_isIso, TopCat.pullbackIsoProdSubtype_inv_snd_assoc, diagonalObjPullbackFstIso_inv_fst_fst_assoc, pullbackDiagonalMapIdIso_inv_snd_snd, pullbackSymmetry_hom_comp_snd_assoc, AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso_hom_ι, CategoryTheory.Functor.relativelyRepresentable.pullback₃.fst_fst'_eq_p₁_assoc, pullbackSymmetry_hom_comp_snd, CategoryTheory.PreOneHypercover.inter_Y, CategoryTheory.Over.associator_inv_left_fst_snd_assoc, CategoryTheory.IsPullback.isoPullback_hom_snd_assoc, AlgebraicGeometry.Scheme.Pullback.openCoverOfLeftRight_I₀, CategoryTheory.IsKernelPair.pullback, CategoryTheory.PreZeroHypercover.pullbackIso_inv_h₀, CategoryTheory.MorphismProperty.Over.pullback_map_left, pullbackProdSndIsoProd_hom_snd_assoc, pullbackComparison_comp_fst, CategoryTheory.Functor.relativelyRepresentable.pullback₃.fst_snd_eq_p₂, AlgebraicGeometry.Scheme.Pullback.Triplet.Spec_ofPointTensor_SpecTensorTo, pullbackComparison_comp_snd, AlgebraicGeometry.Scheme.Pullback.t'_snd_snd_assoc, CategoryTheory.Functor.relativelyRepresentable.pullback₃.fst_fst'_eq_p₁, AlgebraicGeometry.Scheme.Pullback.Triplet.ofPoint_s, TopCat.pullback_map_isOpenEmbedding, CategoryTheory.Over.μ_pullback_left_snd, pullbackLeftPullbackSndIso_hom_fst_assoc, CategoryTheory.MorphismProperty.pullback_snd, CategoryTheory.PreOneHypercover.sieve₁'_cylinder, AlgebraicGeometry.pullbackSpecIso_hom_base_assoc, AlgebraicGeometry.Scheme.Cover.gluedCoverT'_snd_snd, AlgebraicGeometry.Scheme.IdealSheafData.comapIso_hom_fst, AlgebraicGeometry.pullbackRestrictIsoRestrict_inv_fst_assoc, pullbackZeroZeroIso_inv_snd, diagonalObjPullbackFstIso_hom_fst_snd_assoc, pullbackLeftPullbackSndIso_hom_fst, AlgebraicGeometry.Scheme.Pullback.Triplet.exists_preimage, CategoryTheory.GlueData'.t_fac, pullbackIsoOpPushout_hom_inr, CategoryTheory.sieve₁'_toPreOneHypercover_eq_top, pullbackObjIso_inv_comp_snd_assoc, AlgebraicGeometry.Scheme.Pullback.t'_fst_snd_assoc, pullbackDiagonalMapIso.inv_snd_snd_assoc, AlgebraicGeometry.Scheme.Hom.toNormalization_normalizationPullback_fst_assoc, CategoryTheory.Over.braiding_hom_left, TopCat.pullback_map_isEmbedding, diagonalObjPullbackFstIso_hom_snd_assoc, CategoryTheory.IsGrothendieckAbelian.IsPresentable.surjectivity.F_obj, AlgebraicGeometry.pullbackSpecIso_hom_fst'_assoc, AlgebraicGeometry.Scheme.Pullback.openCoverOfLeft_I₀, HomotopicalAlgebra.instWeakEquivalenceSndOfIsStableUnderBaseChangeTrivialFibrationsOfFibration, AlgebraicGeometry.geometrically_iff_of_commRing_of_isClosedUnderIsomorphisms, pullbackAssoc_hom_fst, PreservesPullback.iso_hom_fst_assoc, CategoryTheory.Over.μ_pullback_left_fst_fst, AlgebraicGeometry.IsSchemeTheoreticallyDominant.pullbackFst, AlgebraicGeometry.Scheme.Pullback.pullbackFstιToV_snd_assoc, pullback_inv_fst_snd_of_right_isIso_assoc, CategoryTheory.Over.starPullbackIsoStar_inv_app_left, AlgebraicGeometry.pullbackSpecIso_inv_fst', pullbackDiagonalMapIdIso_hom_snd_assoc, CategoryTheory.PreOneHypercover.toPullback_cylinder, AlgebraicGeometry.Scheme.Pullback.t'_fst_snd, AlgebraicGeometry.Scheme.Cover.pullbackCoverOver'_f, pullbackSymmetry_hom_comp_fst_assoc, AlgebraicGeometry.IsOpenImmersion.opensRange_pullback_snd_of_left, diagonalObjPullbackFstIso_hom_fst_fst, pullbackDiagonalMapIso.hom_fst_assoc, AlgebraicGeometry.Scheme.Cover.gluedCoverT'_fst_snd, pushoutIsoOpPullback_inv_snd, AlgebraicGeometry.IsPreimmersion.instFstScheme, AlgebraicGeometry.pullback_of_geometrically', AlgebraicGeometry.Scheme.IsLocallyDirected.exists_of_pullback_V_V, AlgebraicGeometry.Scheme.canonicallyOverPullback_over, AlgebraicGeometry.pullbackRestrictIsoRestrict_hom_morphismRestrict, pullbackIsoOpPushout_inv_snd_assoc, pullbackLeftPullbackSndIso_inv_snd_snd, CategoryTheory.MorphismProperty.instHasPullbackSndHomDiscretePUnitOfHasPullbacksAlongOfIsStableUnderBaseChangeAlong, AlgebraicGeometry.Scheme.Pullback.pullbackFstιToV_snd, AlgebraicGeometry.Scheme.Pullback.t'_fst_fst_fst_assoc, AlgebraicGeometry.diagonal_Spec_map, AlgebraicGeometry.instQuasiSeparatedFstScheme, AlgebraicGeometry.IsOpenImmersion.opensRange_pullback_fst_of_right, AlgebraicGeometry.isEmpty_pullback_sigmaι_of_ne, CategoryTheory.Over.tensorHom_left_snd, pullback.mapDesc_comp, AlgebraicGeometry.IsOpenImmersion.range_pullbackFst, pullbackProdFstIsoProd_hom_snd_assoc, AlgebraicGeometry.Flat.instSndScheme, CategoryTheory.IsPullback.isoPullback_inv_fst_assoc, CategoryTheory.Presieve.uncurry_pullbackArrows, pullbackSymmetry_inv_comp_snd, AlgebraicGeometry.Scheme.Pullback.cocycle_snd_snd, AlgebraicGeometry.instIsIntegralPullbackSchemeOfGeometricallyIntegralOfFlatOfUniversallyOpenOfIsLocallyNoetherian, prodIsoPullback_inv_snd_assoc, AlgebraicGeometry.Scheme.Hom.normalizationPullback_snd, AlgebraicGeometry.Scheme.Pullback.t_snd_assoc, CategoryTheory.Functor.PullbackObjObj.ofHasPullback_pt, pullback.condition, pullbackProdSndIsoProd_inv_snd_assoc, CategoryTheory.IsPullback.isoPullback_hom_snd, CategoryTheory.IsKernelPair.of_hasPullback, AlgebraicGeometry.ExistsHomHomCompEqCompAux.range_g_subset, AlgebraicGeometry.instGeometricallyIrreducibleFstScheme, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.sheafedSpace_pullback_fst_of_right, CategoryTheory.GlueData.cocycle, pullbackProdFstIsoProd_hom_fst, AlgebraicGeometry.instSmoothSndScheme, mono_pullback_to_prod, pullbackProdSndIsoProd_inv_snd, CategoryTheory.GlueData.t'_isIso, AlgebraicGeometry.pullbackSpecIso_hom_fst', AlgebraicGeometry.IsImmersion.instSndScheme, pullbackDiagonalMapIdIso_hom_snd, pullbackIsoOpPushout_hom_inl_assoc, pullback_map_eq_pullbackFstFstIso_inv, pullback.congrHom_inv, AlgebraicGeometry.Scheme.monObjAsOverPullback_one, CategoryTheory.PreOneHypercover.cylinder_p₁, HomotopicalAlgebra.instFibrationSndOfIsStableUnderBaseChangeFibrations, PreservesPullback.iso_hom_snd, AlgebraicGeometry.Scheme.Pullback.Triplet.ofPoint_y, Concrete.pullbackMk_fst, pullback_fst_iso_of_right_iso, AlgebraicGeometry.Scheme.Pullback.cocycle_snd_fst_snd, map_lift_pullbackComparison, isIso_snd_of_mono, CategoryTheory.PreOneHypercover.cylinder_p₂, CategoryTheory.regularTopology.EqualizerCondition.bijective_mapToEqualizer_pullback, AlgebraicGeometry.Scheme.Cover.intersectionOfLocallyDirected_f, pullback.congrHom_hom, AlgebraicGeometry.Scheme.Pullback.forget_comparison_surjective, pullbackIsoUnopPushout_inv_snd_assoc, pullback.lift_fst, pullbackRightPullbackFstIso_inv_snd_fst, pullbackLeftPullbackSndIso_inv_snd_snd_assoc, CategoryTheory.Over.prodLeftIsoPullback_hom_fst, diagonalObjPullbackFstIso_inv_fst_snd, CategoryTheory.Over.associator_hom_left_fst_assoc, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.pullback_snd_isIso_of_range_subset, AlgebraicGeometry.Scheme.Pullback.openCoverOfLeft_f, AlgebraicGeometry.Scheme.Pullback.Triplet.ofPoint_SpecTensorTo, map_lift_pullbackComparison_assoc, CategoryTheory.Equalizer.Presieve.Arrows.SecondObj.ext_iff, PreservesPullback.iso_hom, CategoryTheory.Over.isMonHom_pullbackFst_id_right, pullbackComparison_comp_fst_assoc, AlgebraicGeometry.pullbackSpecIso_hom_snd, AlgebraicGeometry.instSmoothFstScheme, CategoryTheory.instIsRegularEpiFst, AlgebraicGeometry.instIsReducedPullbackSchemeOfGeometricallyReducedOfFlatOfIsLocallyNoetherian_1, AlgebraicGeometry.Scheme.Pullback.t_fst_fst_assoc, AlgebraicGeometry.Scheme.isEmpty_pullback, pullbackSymmetry_hom_comp_fst, AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso_hom_fst, CategoryTheory.Over.tensorObj_left, CategoryTheory.PreZeroHypercover.toPreOneHypercover_Y, equalizerPullbackMapIso_inv_ι_fst_assoc, AlgebraicGeometry.Scheme.Cover.gluedCoverT'_fst_fst_assoc, Types.pullbackIsoPullback_inv_snd_apply, pullbackAssoc_inv_snd, TopCat.pullback_snd_range, pullbackIsoUnopPushout_hom_inr, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_fst_snd', CategoryTheory.Functor.relativelyRepresentable.pullback₃.snd_fst'_eq_p₁_assoc, TopCat.snd_isEmbedding_of_left, pullbackObjIso_inv_comp_snd, pullbackAssoc_inv_fst_fst_assoc, CategoryTheory.FinitaryPreExtensive.isPullback_sigmaDesc, CategoryTheory.Over.ε_pullback_left, pullback.lift_fst_snd, pullback_fst_map_snd_isPullback, CategoryTheory.GlueData.t'_comp_eq_pullbackSymmetry, pullback.map_isIso, AlgebraicGeometry.Scheme.pullbackComparison_forget_surjective, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.pullback_fst_of_right, CategoryTheory.Equalizer.Presieve.isSheafFor_singleton_iff_of_hasPullback, pullbackRightPullbackFstIso_hom_snd_assoc, AlgebraicGeometry.IsSeparated.instFstScheme, pullbackAssoc_hom_fst_assoc, AlgebraicGeometry.Scheme.Pullback.openCoverOfLeftRight_X, pullbackDiagonalMapIdIso_hom_fst, AlgebraicGeometry.Scheme.IsJointlySurjectivePreserving.exists_preimage_fst_triplet_of_prop, AlgebraicGeometry.Scheme.Pullback.lift_comp_ι, pullbackLeftPullbackSndIso_inv_fst_assoc, CategoryTheory.IsPullback.isoPullback_hom_fst_assoc, pullbackProdFstIsoProd_hom_snd, AlgebraicGeometry.PresheafedSpace.GlueData.snd_invApp_t_app', CategoryTheory.Functor.relativelyRepresentable.toPullbackTerminal, CategoryTheory.MorphismProperty.Over.pullbackComp_left_fst_fst, CategoryTheory.GlueData.mapGlueData_t', CategoryTheory.Over.associator_hom_left_snd_snd, CategoryTheory.Over.associator_inv_left_snd_assoc, AlgebraicGeometry.instIsAffinePullbackSchemeOfIsAffineHom, pullbackDiagonalMapIso.inv_snd_snd, AlgebraicGeometry.IsSeparated.instSndScheme, AlgebraicGeometry.IsOpenImmersion.instSndScheme, AlgebraicGeometry.Scheme.Pullback.exists_preimage_pullback, pullbackFstFstIso_inv, SSet.instFinitePullback, TopCat.pullback_fst_range, AlgebraicGeometry.pullbackSpecIso_hom_fst_assoc, AlgebraicGeometry.IsOpenImmersion.instFstScheme, CategoryTheory.Over.whiskerLeft_left_snd, HomotopicalAlgebra.PathObject.trans_p₁, diagonal_pullback_fst, TopCat.pullback_snd_image_fst_preimage, pullback_lift_map_isPullback, HomotopicalAlgebra.PathObject.trans_P, CategoryTheory.IsGrothendieckAbelian.IsPresentable.surjectivity.epi_f, AlgebraicGeometry.Scheme.Pullback.openCoverOfLeft_X, CategoryTheory.PreOneHypercover.cylinderHom_h₀, AlgebraicGeometry.geometrically_iff_of_isClosedUnderIsomorphisms, AlgebraicGeometry.Scheme.Pullback.diagonalCover_map, AlgebraicGeometry.Scheme.Pullback.t'_snd_fst_snd_assoc, CategoryTheory.Over.tensorObj_hom, pullbackRightPullbackFstIso_inv_snd_snd, CategoryTheory.Over.postAdjunctionLeft_counit_app_left, AlgebraicGeometry.Scheme.Pullback.isAffine_of_isAffine_isAffine_isAffine, pullbackAssoc_inv_fst_fst, CategoryTheory.PreOneHypercover.cylinder_Y, AlgebraicGeometry.pullback_of_geometrically, pullbackObjIso_hom_comp_snd, AlgebraicGeometry.universallyClosed_snd, AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_fst, CategoryTheory.Regular.instMonoDesc, pullbackProdSndIsoProd_hom_fst_assoc, AlgebraicGeometry.exists_etale_isCompl_of_quasiFiniteAt, AlgebraicGeometry.pullbackSpecIso_hom_snd_assoc
|
pushout 📖 | CompOp | 193 mathmath: pushoutIsoOpPullback_inr_hom_assoc, CategoryTheory.IsPushout.of_hasPushout, CategoryTheory.instHasLiftingPropertyInl, hasPushout_assoc, PreservesPushout.inr_iso_inv_assoc, pullbackIsoUnopPushout_inv_snd, pushoutIsoOpPullback_inl_hom, pushout.inr_desc, PreservesPushout.inr_iso_inv, inl_coprodIsoPushout_hom, inr_inl_pushoutRightPushoutInlIso_hom_assoc, inl_comp_pushoutComparison_assoc, pullbackIsoOpPushout_hom_inr_assoc, pushout_inr_iso_of_left_iso, inl_inr_pushoutAssoc_inv_assoc, inl_comp_pushoutObjIso_hom, pushoutIsoUnopPullback_inr_hom, PreservesPushout.inr_iso_hom_assoc, instIsIsoPushoutComparison, inr_inr_pushoutRightPushoutInlIso_hom, pushoutIsoUnopPullback_inl_hom_assoc, pushoutIsoUnopPullback_inr_hom_assoc, inl_pushoutAssoc_inv_assoc, inr_inl_pushoutLeftPushoutInrIso_hom, pullbackIsoUnopPushout_hom_inr_assoc, inr_comp_pushoutObjIso_hom_assoc, pushoutIsoUnopPullback_inv_snd, pushout.condition, inr_inl_pushoutRightPushoutInlIso_hom, inl_comp_pushoutComparison, CategoryTheory.Under.pushout_map, CategoryTheory.IsPushout.inr_isoPushout_inv_assoc, pushoutIsoUnopPullback_inv_fst, inr_pushoutLeftPushoutInrIso_inv, CommRingCat.pushout_inr_tensorProdObjIsoPushoutObj_inv_right_assoc, CategoryTheory.IsPushout.inr_isoPushout_hom_assoc, inl_inl_pushoutLeftPushoutInrIso_hom_assoc, pullbackIsoUnopPushout_hom_inl, CategoryTheory.IsPushout.inr_isoPushout_inv, CategoryTheory.Under.postAdjunctionRight_unit_app_right, CategoryTheory.Functor.PushoutObjObj.ofHasPushout_pt, Types.instMonoPushoutInl, pullback_symmetry_hom_of_epi_eq, inr_pushoutZeroZeroIso_hom, inr_pushoutLeftPushoutInrIso_inv_assoc, hasPushout_assoc_symm, inl_inl_pushoutLeftPushoutInrIso_hom, pushout.inl_desc_assoc, PreservesPushout.inl_iso_inv, pullbackIsoOpPushout_inv_fst_assoc, inr_pushoutAssoc_hom_assoc, CategoryTheory.Under.mapPushoutAdj_unit_app, inl_pushoutRightPushoutInlIso_inv, CategoryTheory.ShortComplex.SnakeInput.snd_δ_inr, pushout.hom_ext_iff, CommRingCat.HomTopology.isEmbedding_pushout, inr_coprodIsoPushout_hom_assoc, HomotopicalAlgebra.instCofibrationInrOfIsStableUnderCobaseChangeCofibrations, pushoutComparison_map_desc, pushout_inr_inv_inl_of_right_isIso_assoc, AlgebraicGeometry.isIso_pushoutSection_of_isCompact_of_flat_right_of_ringHomFlat, PreservesPushout.inl_iso_inv_assoc, HomotopicalAlgebra.instWeakEquivalenceInrOfIsStableUnderCobaseChangeTrivialCofibrationsOfCofibration, pullbackIsoUnopPushout_inv_fst, pushoutIsoOpPullback_inv_fst, pushout.inl_of_epi, CommRingCat.inr_injective_of_flat, CategoryTheory.Abelian.mono_pushout_of_mono_g, pushout_inr_iso_of_right_factors_epi, inr_comp_pushoutSymmetry_inv_assoc, pushoutIsoUnopPullback_inl_hom, CommRingCat.pushout_inl_tensorProdObjIsoPushoutObj_inv_right_assoc, CategoryTheory.MorphismProperty.pushout_inr, pullbackIsoOpPushout_inv_fst, inr_pushoutAssoc_hom, pullbackIsoOpPushout_inv_snd, pushout.exists_desc, inl_comp_pushoutSymmetry_inv, HomotopicalAlgebra.Precylinder.trans_I, inl_pushoutLeftPushoutInrIso_inv, CompleteLattice.pushout_eq_sup, inr_comp_pushoutSymmetry_hom_assoc, PreservesPushout.inl_iso_hom_assoc, AlgebraicGeometry.mono_pushoutSection_of_isCompact_of_flat_left_of_ringHomFlat, CommRingCat.pushout_inl_tensorProdObjIsoPushoutObj_inv_right, inr_pushoutRightPushoutInlIso_inv, epi_coprod_to_pushout, PreservesPushout.inr_iso_hom, pushout_inl_iso_of_left_factors_epi, CategoryTheory.MorphismProperty.pushout_inl, HomotopicalAlgebra.Cylinder.trans_i₀, CategoryTheory.IsPushout.inl_isoPushout_inv, inl_inl_pushoutAssoc_hom, HomotopicalAlgebra.instCofibrationInlOfIsStableUnderCobaseChangeCofibrations, AlgebraicGeometry.isPullback_Spec_map_pushout, inr_inr_pushoutRightPushoutInlIso_hom_assoc, pushoutIsoOpPullback_inr_hom, pushout.map_comp, inl_inr_pushoutAssoc_inv, pushout.map_comp_assoc, pullbackIsoOpPushout_hom_inl, pushout.desc_inl_inr, CommRingCat.inl_injective_of_flat, CategoryTheory.instHasLiftingPropertyInr, inl_comp_pushoutObjIso_inv, pullbackIsoUnopPushout_hom_inl_assoc, inr_comp_pushoutObjIso_inv, pushoutComparison_map_desc_assoc, inr_comp_pushoutSymmetry_inv, CategoryTheory.Under.pushout_obj, CategoryTheory.IsPushout.inl_isoPushout_hom, inr_pushoutZeroZeroIso_inv, HomotopicalAlgebra.instWeakEquivalenceInlOfIsStableUnderCobaseChangeTrivialCofibrationsOfCofibration, inl_pushoutLeftPushoutInrIso_inv_assoc, AlgebraicGeometry.mono_pushoutSection_of_isCompact_of_flat_right, inr_pushoutRightPushoutInlIso_inv_assoc, inl_comp_pushoutObjIso_inv_assoc, pullbackIsoUnopPushout_inv_fst_assoc, pushoutIsoOpPullback_inl_hom_assoc, HomotopicalAlgebra.Cylinder.trans_I, CategoryTheory.IsPushout.inl_isoPushout_hom_assoc, inr_coprodIsoPushout_hom, inr_inl_pushoutAssoc_hom, pushout_inl_iso_of_right_iso, AlgebraicGeometry.mono_pushoutSection_of_isCompact_of_flat_right_of_ringHomFlat, CategoryTheory.MorphismProperty.pushout_inr_iff, inl_comp_pushoutSymmetry_inv_assoc, pushout.congrHom_hom, CategoryTheory.IsPushout.inl_isoPushout_inv_assoc, inr_comp_pushoutComparison_assoc, pushout.mapLift_comp, inl_comp_pushoutObjIso_hom_assoc, CategoryTheory.Under.mapPushoutAdj_counit_app, HomotopicalAlgebra.Cylinder.trans_i₁, AlgebraicGeometry.isPullback_SpecMap_pushout, inl_pushoutAssoc_inv, inl_inl_pushoutAssoc_hom_assoc, AlgebraicGeometry.isIso_pushoutSection_of_isQuasiSeparated_of_flat_left, pullbackIsoOpPushout_hom_inr, inl_pushoutRightPushoutInlIso_hom, inr_inr_pushoutAssoc_inv_assoc, inl_coprodIsoPushout_inv, AlgebraicGeometry.isIso_pushoutSection_iff, inl_pushoutZeroZeroIso_inv, inl_pushoutRightPushoutInlIso_hom_assoc, pushout_inl_inv_inr_of_right_isIso_assoc, pushout.inr_desc_assoc, inl_comp_pushoutSymmetry_hom_assoc, pushoutIsoOpPullback_inv_snd, PreservesPushout.inl_iso_hom, CategoryTheory.Abelian.mono_pushout_of_mono_f, pullbackIsoOpPushout_inv_snd_assoc, inl_comp_pushoutSymmetry_hom, AlgebraicGeometry.mono_pushoutSection_of_isCompact_of_flat_left, isIso_inr_of_epi, inr_coprodIsoPushout_inv, pushout.inl_desc, inr_inl_pushoutLeftPushoutInrIso_hom_assoc, inl_coprodIsoPushout_hom_assoc, CategoryTheory.Under.postAdjunctionRight_counit_app_right, inr_comp_pushoutObjIso_inv_assoc, Types.instMonoPushoutInr, inr_comp_pushoutObjIso_hom, inr_pushoutLeftPushoutInrIso_hom_assoc, pullbackIsoOpPushout_hom_inl_assoc, pushout_inl_inv_inr_of_right_isIso, AlgebraicGeometry.isIso_pushoutSection_of_isQuasiSeparated_of_flat_right, CategoryTheory.IsPushout.inr_isoPushout_hom, pushout.congrHom_inv, pullbackIsoUnopPushout_inv_snd_assoc, inl_coprodIsoPushout_inv_assoc, inr_inl_pushoutAssoc_hom_assoc, pullbackIsoUnopPushout_hom_inr, inr_pushoutLeftPushoutInrIso_hom, HomotopicalAlgebra.Precylinder.trans_i₁, inr_coprodIsoPushout_inv_assoc, pushout.condition_assoc, pushout_inr_inv_inl_of_right_isIso, inl_pushoutRightPushoutInlIso_inv_assoc, HomotopicalAlgebra.Precylinder.trans_i₀, pushout.map_id, pushout.map_isIso, inl_pushoutZeroZeroIso_hom, isIso_inl_of_epi, inr_inr_pushoutAssoc_inv, inr_comp_pushoutSymmetry_hom, CategoryTheory.MorphismProperty.pushout_inl_iff, AlgebraicGeometry.isIso_pushoutSection_of_isAffineOpen, RingHom.IsStableUnderBaseChange.pushout_inl, PreservesPushout.iso_hom, inr_comp_pushoutComparison, pushout.inr_of_epi, CommRingCat.pushout_inr_tensorProdObjIsoPushoutObj_inv_right
|