Documentation Verification Report

HasPullback

📁 Source: Mathlib/CategoryTheory/Limits/Shapes/Pullback/HasPullback.lean

Statistics

MetricCount
DefinitionsHasPullback, HasPullbacks, HasPullbacksAlong, HasPushout, HasPushouts, HasPushoutsAlong, pullback, cone, congrHom, desc', fst, isLimit, lift', map, mapDesc, snd, pullbackComparison, pullbackIsPullback, pullbackProdFstIsoProd, pullbackProdSndIsoProd, pullbackSymmetry, pushout, cocone, congrHom, desc, inl, inr, isColimit, map, mapLift, pushoutComparison, pushoutIsPushout, pushoutSymmetry, walkingCospanOpEquiv, walkingSpanOpEquiv
35
Theoremsfst_limit_cone, snd_limit_cone, inl_colimit_cocone, inr_colimit_cocone, hasPullback_symmetry, hasPullback_symmetry_of_hasPullbacksAlong, hasPullbacks_of_hasLimit_cospan, hasPullbacks_of_hasWidePullbacks, hasPushout_symmetry, hasPushouts_of_hasColimit_span, hasPushouts_of_hasWidePushouts, hasPushouts_symmetry_of_hasPushoutsAlong, inl_comp_pushoutComparison, inl_comp_pushoutComparison_assoc, inl_comp_pushoutSymmetry_hom, inl_comp_pushoutSymmetry_hom_assoc, inl_comp_pushoutSymmetry_inv, inl_comp_pushoutSymmetry_inv_assoc, inr_comp_pushoutComparison, inr_comp_pushoutComparison_assoc, inr_comp_pushoutSymmetry_hom, inr_comp_pushoutSymmetry_hom_assoc, inr_comp_pushoutSymmetry_inv, inr_comp_pushoutSymmetry_inv_assoc, map_lift_pullbackComparison, map_lift_pullbackComparison_assoc, condition, condition_assoc, congrHom_hom, congrHom_inv, exists_lift, hom_ext, hom_ext_iff, lift_fst, lift_fst_assoc, lift_fst_snd, lift_snd, lift_snd_assoc, mapDesc_comp, map_comp, map_comp_assoc, map_id, map_isIso, pullbackComparison_comp_fst, pullbackComparison_comp_fst_assoc, pullbackComparison_comp_snd, pullbackComparison_comp_snd_assoc, pullbackProdFstIsoProd_hom_fst, pullbackProdFstIsoProd_hom_fst_assoc, pullbackProdFstIsoProd_hom_snd, pullbackProdFstIsoProd_hom_snd_assoc, pullbackProdFstIsoProd_inv_fst, pullbackProdFstIsoProd_inv_fst_assoc, pullbackProdFstIsoProd_inv_snd_fst, pullbackProdFstIsoProd_inv_snd_fst_assoc, pullbackProdFstIsoProd_inv_snd_snd, pullbackProdFstIsoProd_inv_snd_snd_assoc, pullbackProdSndIsoProd_hom_fst, pullbackProdSndIsoProd_hom_fst_assoc, pullbackProdSndIsoProd_hom_snd, pullbackProdSndIsoProd_hom_snd_assoc, pullbackProdSndIsoProd_inv_fst_fst, pullbackProdSndIsoProd_inv_fst_fst_assoc, pullbackProdSndIsoProd_inv_fst_snd, pullbackProdSndIsoProd_inv_fst_snd_assoc, pullbackProdSndIsoProd_inv_snd, pullbackProdSndIsoProd_inv_snd_assoc, pullbackSymmetry_hom_comp_fst, pullbackSymmetry_hom_comp_fst_assoc, pullbackSymmetry_hom_comp_snd, pullbackSymmetry_hom_comp_snd_assoc, pullbackSymmetry_inv_comp_fst, pullbackSymmetry_inv_comp_fst_assoc, pullbackSymmetry_inv_comp_snd, pullbackSymmetry_inv_comp_snd_assoc, condition, condition_assoc, congrHom_hom, congrHom_inv, desc_inl_inr, exists_desc, hom_ext, hom_ext_iff, inl_desc, inl_desc_assoc, inr_desc, inr_desc_assoc, mapLift_comp, map_comp, map_comp_assoc, map_id, map_isIso, pushoutComparison_map_desc, pushoutComparison_map_desc_assoc, walkingCospanOpEquiv_counitIso_hom_app, walkingCospanOpEquiv_counitIso_inv_app, walkingCospanOpEquiv_functor_map, walkingCospanOpEquiv_functor_obj, walkingCospanOpEquiv_inverse_map, walkingCospanOpEquiv_inverse_obj, walkingCospanOpEquiv_unitIso_hom_app, walkingCospanOpEquiv_unitIso_inv_app, walkingSpanOpEquiv_counitIso_hom_app, walkingSpanOpEquiv_counitIso_inv_app, walkingSpanOpEquiv_functor_map, walkingSpanOpEquiv_functor_obj, walkingSpanOpEquiv_inverse_map, walkingSpanOpEquiv_inverse_obj, walkingSpanOpEquiv_unitIso_hom_app, walkingSpanOpEquiv_unitIso_inv_app
110
Total145

CategoryTheory.Limits

Definitions

NameCategoryTheorems
HasPullback 📖MathDef
55 mathmath: hasPullbackVertPaste, CategoryTheory.Presieve.instHasPullbackOfHasPairwisePullbacksOfArrows, hasPullback_symmetry, hasPullback_of_left_iso, CategoryTheory.HasPullbacksOfInclusions.preservesPullbackInl', has_kernel_pair_of_mono, CategoryTheory.GlueData.instHasPullbackMapF, FormalCoproduct.instHasPullback, CategoryTheory.IsPullback.instHasPullbackFst, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.sheafedSpace_hasPullback_of_right, FormalCoproduct.hasPullback_of_pullbackCone, CategoryTheory.HasPullbacksOfInclusions.hasPullbackInr, AlgebraicGeometry.Scheme.Pullback.left_affine_comp_pullback_hasPullback, CategoryTheory.Adhesive.hasPullback_of_mono_left, CategoryTheory.Precoverage.ZeroHypercover.instHasPullbackFOfHasPullbacksPresieve₀, CategoryTheory.HasPullbacksOfInclusions.hasPullbackInl, CategoryTheory.MorphismProperty.instHasPullbackHomDiscretePUnitOfHasPullbacksAlong, CategoryTheory.FinitaryPreExtensive.hasPullbacks_of_is_coproduct, CategoryTheory.MorphismProperty.hasPullback, hasPullback_of_right_factors_mono, AlgebraicGeometry.Scheme.Pullback.affine_affine_hasPullback, hasPullback_assoc, hasPullback_symmetry_of_hasPullbacksAlong, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.hasPullback_of_right, hasPullback_assoc_symm, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.hasPullback_of_left, HasPullback.of_createsLimit, CategoryTheory.IsPullback.hasPullback, AlgebraicGeometry.IsOpenImmersion.hasPullback_of_right, CategoryTheory.instHasPullbackF', AlgebraicGeometry.SheafedSpace.IsOpenImmersion.sheafedSpace_hasPullback_of_left, CategoryTheory.FinitaryPreExtensive.hasPullbacks_of_inclusions, CategoryTheory.Presieve.HasPullbacks.hasPullback, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.hasPullback_of_left, hasPullback_of_preservesPullback, AlgebraicGeometry.Scheme.Pullback.base_affine_hasPullback, CategoryTheory.Precoverage.ZeroHypercover.instHasPullbackFOfHasPullbacksPresieve₀_1, hasPullback_of_left_factors_mono, CategoryTheory.Presieve.HasPairwisePullbacks.has_pullbacks, CategoryTheory.Presieve.hasPullback, AlgebraicGeometry.Scheme.Pullback.instHasPullback, CategoryTheory.MorphismProperty.HasPullbacksAlong.hasPullback, hasPullback_of_comp_mono, CategoryTheory.MorphismProperty.instHasPullbackSndHomDiscretePUnitOfHasPullbacksAlongOfIsStableUnderBaseChangeAlong, AlgebraicGeometry.IsOpenImmersion.hasPullback_of_left, hasPullback_over_zero, hasPullback_of_right_iso, CategoryTheory.MorphismProperty.HasPullbacks.hasPullback, CategoryTheory.IsPullback.hasPullback_biprod_fst_biprod_snd, CategoryTheory.GlueData'.f_hasPullback, CategoryTheory.GlueData.f_hasPullback, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.hasPullback_of_right, hasPullbackHorizPaste, AlgebraicGeometry.Scheme.Pullback.affine_hasPullback, CategoryTheory.HasPullbacksOfInclusions.hasPullbackInr'
HasPullbacks 📖MathDef
14 mathmath: CategoryTheory.MorphismProperty.Over.hasPullbacks, AlgebraicGeometry.Scheme.Pullback.instHasPullbacks, hasPullbacks_of_hasBinaryProducts_of_hasEqualizers, CategoryTheory.PreGaloisCategory.hasPullbacks, FormalCoproduct.instHasPullbacks, Types.instHasPullbacksType, CompHausLike.instHasPullbacksOfHasExplicitPullbacks, hasPullbacks_of_hasWidePullbacks, hasPullbacks_opposite, CategoryTheory.Over.instHasPullbacks, CategoryTheory.ChosenPullbacksAlong.hasPullbacks, CategoryTheory.Abelian.hasPullbacks, hasPullbacks_of_hasLimit_cospan, AlgebraicGeometry.Scheme.instHasPullbacksEtale
HasPullbacksAlong 📖MathDef
1 mathmath: CategoryTheory.ChosenPullbacksAlong.hasPullbackAlong
HasPushout 📖MathDef
18 mathmath: hasPushout_assoc, hasPushout_of_right_factors_epi, hasPushoutVertPaste, hasPushout_of_epi_comp, CategoryTheory.IsPushout.hasPushout, has_cokernel_pair_of_epi, hasPushout_assoc_symm, hasPushout_of_preservesPushout, CategoryTheory.IsPushout.hasPushout_biprod_fst_biprod_snd, instHasPushoutComp, CategoryTheory.Adhesive.hasPushout_of_mono_left, hasPushout_of_right_iso, hasPushout_symmetry, HasPushout.of_createsColimit, hasPushouts_symmetry_of_hasPushoutsAlong, hasPushout_of_left_iso, hasPushout_over_zero, hasPushout_of_left_factors_epi
HasPushouts 📖MathDef
8 mathmath: Types.instHasPushoutsType, hasPushouts_opposite, CategoryTheory.MorphismProperty.IsCardinalForSmallObjectArgument.hasPushouts, CategoryTheory.Abelian.hasPushouts, hasPushouts_of_hasColimit_span, hasPushouts_of_hasWidePushouts, CategoryTheory.SmallObject.hasPushouts, hasPushouts_of_hasBinaryCoproducts_of_hasCoequalizers
HasPushoutsAlong 📖MathDef
pullback 📖CompOp
708 mathmath: AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_snd, TopCat.isInducing_pullback_to_prod, CategoryTheory.FinitaryPreExtensive.isIso_sigmaDesc_fst, CategoryTheory.Functor.relativelyRepresentable.pullback₃.snd_fst'_eq_p₁, CategoryTheory.Over.associator_hom_left_snd_fst_assoc, AlgebraicGeometry.Surjective.instFstScheme, pushoutIsoOpPullback_inr_hom_assoc, CategoryTheory.Over.prodLeftIsoPullback_hom_snd_assoc, HomotopicalAlgebra.instFibrationFstOfIsStableUnderBaseChangeFibrations, CategoryTheory.Over.μ_pullback_left_snd', AlgebraicGeometry.instLocallyQuasiFiniteSndScheme, TopCat.pullbackIsoProdSubtype_hom_fst, pullbackDiagonalMapIdIso_inv_snd_fst_assoc, AlgebraicGeometry.Scheme.Pullback.Triplet.specTensorTo_fst, AlgebraicGeometry.Scheme.Hom.opensRange_pullbackSnd, AlgebraicGeometry.Scheme.Cover.pullbackCoverOver_X, AlgebraicGeometry.Scheme.Cover.gluedCoverT'_snd_snd_assoc, AlgebraicGeometry.Scheme.Cover.LocallyDirected.directed, pullbackIsoUnopPushout_inv_snd, AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_snd_assoc, CategoryTheory.PreZeroHypercover.pullbackCoverOfRight_X, CategoryTheory.PreZeroHypercover.pullback₁_X, AlgebraicGeometry.Scheme.isEmpty_pullback_iff, AlgebraicGeometry.instIsReducedPullbackSchemeOfGeometricallyReducedOfFlatOfIsLocallyNoetherian, diagonalObjPullbackFstIso_inv_snd_snd_assoc, AlgebraicGeometry.instIsAffinePullbackSchemeOfIsAffineHom_1, pullback.instIsSplitEpiFst, pullback_inv_snd_fst_of_left_isIso, CategoryTheory.IsPullback.isoPullback_inv_fst, RingHom.IsStableUnderBaseChange.pullback_fst_appTop, AlgebraicGeometry.instCompactSpaceCarrierCarrierCommRingCatPullbackSchemeOfQuasiCompact, pullbackProdSndIsoProd_hom_snd, CategoryTheory.Over.associator_inv_left_snd, AlgebraicGeometry.Scheme.Hom.toNormalization_normalizationPullback_fst, AlgebraicGeometry.Etale.instFstScheme, pullbackDiagonalMapIso.hom_fst, pushoutIsoOpPullback_inl_hom, diagonalObjPullbackFstIso_inv_fst_snd_assoc, AlgebraicGeometry.instLocallyQuasiFiniteFstScheme, CategoryTheory.Over.pullback_obj_left, CategoryTheory.MorphismProperty.IsLocalAtTarget.iff_of_zeroHypercover, AlgebraicGeometry.Scheme.Pullback.openCoverOfLeftRight_f, pullbackFstFstIso_hom, CategoryTheory.IsPullback.isoPullback_inv_snd_assoc, AlgebraicGeometry.Scheme.Pullback.Triplet.ofPoint_x, pullbackSymmetry_inv_comp_snd_assoc, prodIsoPullback_inv_fst, HomotopicalAlgebra.PrepathObject.trans_p₀, CategoryTheory.Abelian.epi_pullback_of_epi_f, CategoryTheory.IsGrothendieckAbelian.IsPresentable.surjectivity.hf, CategoryTheory.MorphismProperty.pullback_snd_iff, pullbackDiagonalMapIdIso_inv_snd_fst, AlgebraicGeometry.pullbackRestrictIsoRestrict_hom_morphismRestrict_assoc, AlgebraicGeometry.IsProper.instFstScheme, AlgebraicGeometry.IsAffineOpen.isCompact_pullback_inf, Types.range_pullbackFst, AlgebraicGeometry.Scheme.Pullback.t'_snd_fst_fst_assoc, AlgebraicGeometry.Scheme.Cover.glued_cover_cocycle_fst, AlgebraicGeometry.IsSeparated.instIsClosedImmersionMapDescScheme, CategoryTheory.Over.monObjMkPullbackSnd_mul, diagonalObjPullbackFstIso_inv_fst_fst, TopCat.snd_isOpenEmbedding_of_left, AlgebraicGeometry.diagonal_SpecMap, AlgebraicGeometry.Scheme.Pullback.openCoverOfBase_I₀, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.sheafedSpace_pullback_snd_of_left, CategoryTheory.Functor.relativelyRepresentable.pullback₃.snd_snd_eq_p₃_assoc, Concrete.pullbackMk_snd, AlgebraicGeometry.IsProper.instSndScheme, pullbackDiagonalMapIdIso_inv_snd_snd_assoc, pullbackProdSndIsoProd_inv_fst_snd, CategoryTheory.Over.grpObjMkPullbackSnd_one, AlgebraicGeometry.Scheme.Pullback.openCoverOfBase_f, pullbackAssoc_hom_snd_fst_assoc, AlgebraicGeometry.Scheme.ideal_ker_le_ker_ΓSpecIso_inv_comp, AlgebraicGeometry.Scheme.Cover.pullbackCoverOver'_X, AlgebraicGeometry.Scheme.Pullback.openCoverOfRight_I₀, AlgebraicGeometry.Scheme.Pullback.SpecTensorTo_SpecOfPoint, pullbackIsoOpPushout_hom_inr_assoc, CategoryTheory.Over.grpObjMkPullbackSnd_mul, CategoryTheory.PreOneHypercover.cylinderHom_h₁, CategoryTheory.MorphismProperty.Over.pullbackComp_hom_app_left, pushoutIsoUnopPullback_inr_hom, Types.pullbackIsoPullback_hom_fst, CategoryTheory.MorphismProperty.iff_of_zeroHypercover_target, pullback_snd_iso_of_left_iso, pullbackDiagonalMapIso.inv_fst_assoc, AlgebraicGeometry.Scheme.Cover.glued_cover_cocycle, AlgebraicGeometry.Scheme.Cover.gluedCover_t, AlgebraicGeometry.Scheme.Pullback.t_fst_snd_assoc, CategoryTheory.IsGrothendieckAbelian.IsPresentable.surjectivity.F_map, pullbackRightPullbackFstIso_hom_fst, pullbackLeftPullbackSndIso_inv_fst_snd_assoc, pushoutIsoUnopPullback_inl_hom_assoc, AlgebraicGeometry.Scheme.Pullback.Triplet.specTensorTo_base_snd, pullbackProdFstIsoProd_hom_fst_assoc, pullbackAssoc_inv_fst_snd, CategoryTheory.Over.braiding_inv_left, pullback.lift_fst_assoc, CategoryTheory.Over.prodLeftIsoPullback_inv_snd, pushoutIsoUnopPullback_inr_hom_assoc, PreservesPullback.iso_inv_fst_assoc, AlgebraicGeometry.IsSeparated.instIsClosedImmersionLiftSchemeId, AlgebraicGeometry.Scheme.Pullback.tensorCongr_SpecTensorTo, AlgebraicGeometry.instGeometricallyReducedSndScheme, CategoryTheory.GlueData.t'_iij, pullback_diagonal_map_snd_snd_fst_assoc, diagonalObjPullbackFstIso_hom_snd, pullbackIsoUnopPushout_hom_inr_assoc, CategoryTheory.IsPullback.instHasPullbackFst, CategoryTheory.Over.isCommMonObj_mk_pullbackSnd, TopCat.pullback_topology, CategoryTheory.MorphismProperty.IsLocalAtTarget.pullbackSnd, CategoryTheory.MorphismProperty.Over.pullback_obj_left, prodIsoPullback_inv_fst_assoc, AlgebraicGeometry.IsIntegralHom.instSndScheme, AlgebraicGeometry.Scheme.Pullback.Triplet.snd_SpecTensorTo_apply, pushoutIsoUnopPullback_inv_snd, AlgebraicGeometry.IsSchemeTheoreticallyDominant.pullbackSnd, equalizerPullbackMapIso_inv_ι_snd, CategoryTheory.PreZeroHypercover.pullback₂_X, pullbackAssoc_inv_fst_snd_assoc, AlgebraicGeometry.Scheme.Pullback.Triplet.specTensorTo_fst_assoc, diagonalObjPullbackFstIso_inv_snd_fst, pullbackObjIso_inv_comp_fst_assoc, HomotopicalAlgebra.PrepathObject.trans_P, equalizerPullbackMapIso_inv_ι_fst, pushoutIsoUnopPullback_inv_fst, AlgebraicGeometry.Scheme.Pullback.residueFieldCongr_inv_residueFieldMap_ofPoint, AlgebraicGeometry.IsOpenImmersion.range_pullbackSnd, pullbackLeftPullbackSndIso_inv_fst, CategoryTheory.GrothendieckTopology.OneHypercover.mem_sieve₁', AlgebraicGeometry.IsOpenImmersion.range_pullback_fst_of_right, diagonalObjPullbackFstIso_hom_fst_fst_assoc, AlgebraicGeometry.PresheafedSpace.GlueData.snd_invApp_t_app_assoc, CategoryTheory.Over.whiskerRight_left_fst, CategoryTheory.Over.postAdjunctionLeft_unit_app_left, CategoryTheory.MorphismProperty.Over.mapPullbackAdj_counit_app, AlgebraicGeometry.instGeometricallyIntegralSndScheme, AlgebraicGeometry.Scheme.Cover.pullbackCoverOverProp_f, pullback.lift_snd, AlgebraicGeometry.Proj.pullbackAwayιIso_hom_SpecMap_awayMap_right_assoc, CategoryTheory.Over.prodLeftIsoPullback_inv_fst, pullbackIsoUnopPushout_hom_inl, AlgebraicGeometry.instCompactSpaceCarrierCarrierCommRingCatPullbackSchemeOfQuasiCompact_1, pullbackProdSndIsoProd_hom_fst, AlgebraicGeometry.Scheme.Pullback.cocycle, AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso_hom_snd, TopCat.fst_iso_of_right_embedding_range_subset, AlgebraicGeometry.Scheme.Pullback.carrierEquiv_symm_fst, CategoryTheory.Over.prodLeftIsoPullback_inv_snd_assoc, AlgebraicGeometry.Proj.pullbackAwayιIso_inv_snd_assoc, CategoryTheory.Over.mapPullbackAdj_counit_app, AlgebraicGeometry.Scheme.IdealSheafData.comapIso_hom_snd_assoc, CategoryTheory.Abelian.Pseudoelement.pseudo_pullback, equalizerPullbackMapIso_hom_fst_assoc, AlgebraicGeometry.PresheafedSpace.GlueData.pullback_base, AlgebraicGeometry.Scheme.pullback_map_isOpenImmersion, AlgebraicGeometry.Flat.instFstScheme, pullback.comp_diagonal_assoc, TopCat.pullbackIsoProdSubtype_inv_fst_assoc, AlgebraicGeometry.Scheme.Pullback.range_fst_comp, AlgebraicGeometry.pullbackSpecIso_inv_snd, AlgebraicGeometry.IsImmersion.instMapDescScheme, AlgebraicGeometry.Scheme.Pullback.t'_fst_fst_snd_assoc, AlgebraicGeometry.Etale.instSndScheme, AlgebraicGeometry.Scheme.Cover.gluedCover_V, AlgebraicGeometry.Proj.pullbackAwayιIso_inv_fst, prodIsoPullback_hom_fst_assoc, CategoryTheory.Over.prodLeftIsoPullback_hom_snd, PreservesPullback.iso_inv_snd, HomotopicalAlgebra.PrepathObject.trans_p₁, PreservesPullback.iso_inv_fst, AlgebraicGeometry.pullbackRestrictIsoRestrict_inv_fst, pullback_diagonal_map_snd_fst_fst, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.pullbackSndOfLeft, diagonalObjPullbackFstIso_inv_snd_snd, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.pullbackFstOfRight, AlgebraicGeometry.Scheme.Cover.gluedCoverT'_fst_fst, AlgebraicGeometry.pullbackSpecIso_hom_base, AlgebraicGeometry.Scheme.Pullback.pullbackFstιToV_fst_assoc, CategoryTheory.Over.associator_inv_left_fst_fst_assoc, AlgebraicGeometry.Scheme.isCommMonObj_asOver_pullback, pullbackSymmetry_inv_comp_fst_assoc, CategoryTheory.PreOneHypercover.sieve₁'_eq_sieve₁, CategoryTheory.Over.associator_hom_left_fst, CategoryTheory.MorphismProperty.baseChange_map', AlgebraicGeometry.Scheme.isMonHom_fst_id_right, CategoryTheory.FinitaryPreExtensive.isIso_sigmaDesc_map, AlgebraicGeometry.Scheme.Cover.gluedCoverT'_snd_fst, pullbackZeroZeroIso_inv_fst, AlgebraicGeometry.ExistsHomHomCompEqCompAux.exists_index, CategoryTheory.IsPullback.isoPullback_inv_snd, pullbackZeroZeroIso_hom_snd, CategoryTheory.Over.prodLeftIsoPullback_hom_fst_assoc, pullbackIsoOpPushout_inv_fst_assoc, TopCat.range_pullback_map, CategoryTheory.GlueData.t'_iji, CategoryTheory.Subobject.pullback_obj, AlgebraicGeometry.Scheme.Cover.exists_lift_trans_eq, pullback_lift_diagonal_isPullback, AlgebraicGeometry.instGeometricallyReducedFstScheme, AlgebraicGeometry.instIrreducibleSpaceCarrierCarrierCommRingCatPullbackSchemeOfGeometricallyIrreducibleOfUniversallyOpen, CategoryTheory.PreOneHypercover.sieve₁_eq_pullback_sieve₁', AlgebraicGeometry.Scheme.Pullback.t_snd, pullbackRightPullbackFstIso_hom_snd, pullback.lift_snd_assoc, pullbackProdFstIsoProd_inv_fst, AlgebraicGeometry.Scheme.Pullback.Triplet.specTensorTo_snd, CategoryTheory.Over.starPullbackIsoStar_hom_app_left, CategoryTheory.ShortComplex.SnakeInput.snd_δ, CategoryTheory.ShortComplex.SnakeInput.lift_φ₂, CategoryTheory.IsGrothendieckAbelian.IsPresentable.surjectivity.isIso_f, CategoryTheory.ShortComplex.SnakeInput.snd_δ_inr, pullback.map_id, AlgebraicGeometry.Scheme.Pullback.gluing_f, AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso_hom_fst_assoc, AlgebraicGeometry.instIsClosedImmersionSndScheme, AlgebraicGeometry.Proj.pullbackAwayιIso_inv_snd, AlgebraicGeometry.Proj.pullbackAwayιIso_inv_fst_assoc, AlgebraicGeometry.pullbackSpecIso_inv_fst'_assoc, AlgebraicGeometry.Proj.pullbackAwayιIso_hom_awayι, CategoryTheory.PreZeroHypercover.pullbackCoverOfLeft_X, AlgebraicGeometry.Scheme.IdealSheafData.ker_fst_of_isClosedImmersion, AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso_hom_ι_assoc, AlgebraicGeometry.Scheme.Pullback.pullbackFstιToV_fst, AlgebraicGeometry.Scheme.Pullback.Triplet.specTensorTo_snd_assoc, AlgebraicGeometry.Scheme.Pullback.ofPointTensor_SpecTensorTo_assoc, AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso_inv_snd_assoc, AlgebraicGeometry.Scheme.Pullback.t_fst_fst, AlgebraicGeometry.Scheme.Pullback.carrierEquiv_symm_snd, AlgebraicGeometry.Proj.pullbackAwayιIso_hom_SpecMap_awayMap_right, CategoryTheory.MorphismProperty.pullback_fst, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_snd', AlgebraicGeometry.Scheme.Cover.ColimitGluingData.fst_gluedCocone_ι, AlgebraicGeometry.PresheafedSpace.GlueData.opensImagePreimageMap_app, pullbackDiagonalMapIso.hom_snd_assoc, CategoryTheory.Over.μ_pullback_left_fst_snd', pullback.instIsSplitEpiSnd, pullbackIsoUnopPushout_inv_fst, AlgebraicGeometry.Scheme.Pullback.range_map, AlgebraicGeometry.Scheme.Pullback.openCoverOfRight_f, AlgebraicGeometry.Scheme.Pullback.t'_snd_snd, AlgebraicGeometry.SurjectiveOnStalks.isEmbedding_pullback, CategoryTheory.MorphismProperty.Over.pullbackComp_inv_app_left, PreservesPullback.iso_hom_fst, pullbackLeftPullbackSndIso_inv_fst_snd, AlgebraicGeometry.instGeometricallyIrreducibleSndScheme, pullback.exists_lift, pullbackProdSndIsoProd_inv_fst_snd_assoc, CategoryTheory.PreZeroHypercover.pullbackCoverOfLeft_f, pullbackProdFstIsoProd_inv_snd_snd, pullback.diagonal_isKernelPair, pushoutIsoOpPullback_inv_fst, pullbackAssoc_hom_snd_snd, AlgebraicGeometry.Scheme.Hom.opensRange_pullbackFst, CategoryTheory.GlueData.t_fac, AlgebraicGeometry.pullbackRestrictIsoRestrict_hom_ι_assoc, CategoryTheory.regularTopology.mapToEqualizer_eq_comp, AlgebraicGeometry.UniversallyOpen.snd, TopCat.fst_isEmbedding_of_right, AlgebraicGeometry.PresheafedSpace.GlueData.opensImagePreimageMap_app', AlgebraicGeometry.Scheme.IsLocallyDirected.fst_inv_eq_snd_inv, pullbackRightPullbackFstIso_hom_fst_assoc, AlgebraicGeometry.Scheme.Hom.instIsIsoNormalizationPullbackOfSmooth, isPullback_map_snd_snd, AlgebraicGeometry.Scheme.Cover.glued_cover_cocycle_snd, AlgebraicGeometry.Scheme.Hom.normalizationPullback_snd_assoc, CategoryTheory.Over.associator_hom_left_snd_fst, CategoryTheory.PreZeroHypercover.pullbackCoverOfLeft_I₀, AlgebraicGeometry.instIsLocallyNoetherianPullbackSchemeOfLocallyOfFiniteType_1, AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso_inv_fst, PreservesPullback.iso_inv_snd_assoc, AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso_inv_fst_assoc, CategoryTheory.PreZeroHypercover.inter_f, pullbackDiagonalMapIdIso_inv_fst, CategoryTheory.GlueData.t'_comp_eq_pullbackSymmetry_assoc, CategoryTheory.PreZeroHypercover.pullbackIso_hom_h₀, AlgebraicGeometry.Scheme.Pullback.tensorCongr_SpecTensorTo_assoc, AlgebraicGeometry.Scheme.IdealSheafData.comapIso_inv_subschemeι_assoc, AlgebraicGeometry.Proj.pullbackAwayιIso_hom_SpecMap_awayMap_left, Types.pullbackIsoPullback_inv_snd, AlgebraicGeometry.Scheme.Cover.pullbackCoverOverProp'_X, AlgebraicGeometry.instQuasiCompactSndScheme, AlgebraicGeometry.pullbackSpecIso_inv_fst, AlgebraicGeometry.Scheme.Pullback.t'_snd_fst_fst, AlgebraicGeometry.IsFinite.instFstScheme, TopCat.pullbackIsoProdSubtype_inv_snd_apply, pushoutIsoUnopPullback_inl_hom, hasPullback_assoc, AlgebraicGeometry.Scheme.Cover.pullbackCoverOverProp'_f, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.pullback_snd_of_left, pullbackAssoc_hom_snd_fst, AlgebraicGeometry.Scheme.Pullback.range_snd_comp, pullbackProdFstIsoProd_inv_snd_fst, HomotopicalAlgebra.PathObject.trans_p₀, CategoryTheory.Over.pullback_map_left, pullback.condition_assoc, pullbackDiagonalMapIdIso_inv_fst_assoc, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_fst_fst, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.fst_gluedCocone_ι_assoc, pullbackRightPullbackFstIso_inv_fst, TopCat.pullbackIsoProdSubtype_inv_fst, pullbackIsoOpPushout_inv_fst, AlgebraicGeometry.Scheme.Pullback.gluing_U, AlgebraicGeometry.PresheafedSpace.GlueData.f_invApp_f_app_assoc, CategoryTheory.Functor.relativelyRepresentable.pullback₃.snd_snd_eq_p₃, AlgebraicGeometry.Scheme.Pullback.t'_fst_fst_fst, CategoryTheory.GlueData.t_fac_assoc, pullbackIsoOpPushout_inv_snd, pullbackLeftPullbackSndIso_hom_snd_assoc, CategoryTheory.ShortComplex.SnakeInput.snd_δ_assoc, CategoryTheory.PreZeroHypercover.pullbackCoverOfRight_I₀, diagonalObjPullbackFstIso_inv_snd_fst_assoc, AlgebraicGeometry.Scheme.IdealSheafData.comapIso_inv_subschemeι, AlgebraicGeometry.UniversallyOpen.fst, CategoryTheory.Over.associator_inv_left_fst_snd, AlgebraicGeometry.IsOpenImmersion.range_pullback_to_base_of_left, pullback.map_comp_assoc, AlgebraicGeometry.IsIntegralHom.instFstScheme, AlgebraicGeometry.instLocallyOfFinitePresentationFstScheme, pullbackProdFstIsoProd_inv_snd_snd_assoc, hasPullback_assoc_symm, pullbackProdSndIsoProd_inv_fst_fst, CategoryTheory.Over.associator_hom_left_snd_snd_assoc, TopCat.pullbackIsoProdSubtype_hom_snd, AlgebraicGeometry.instIsIntegralPullbackSchemeOfGeometricallyIntegralOfFlatOfUniversallyOpenOfIsLocallyNoetherian_1, pullback_map_diagonal_isPullback, pullback.map_comp, Types.pullbackIsoPullback_hom_snd, pullbackDiagonalMapIso.hom_snd, AlgebraicGeometry.Scheme.Pullback.cocycle_fst_fst_snd, CategoryTheory.Over.μ_pullback_left_fst_fst', TopCat.snd_iso_of_left_embedding_range_subset, pullbackObjIso_hom_comp_fst, pullbackRightPullbackFstIso_inv_snd_snd_assoc, CategoryTheory.Presieve.ofArrows_pullback, AlgebraicGeometry.Scheme.Pullback.openCoverOfRight_X, CategoryTheory.Over.μ_pullback_left_fst_snd, CategoryTheory.Over.monObjMkPullbackSnd_one, isIso_fst_of_mono, TopCat.pullbackIsoProdSubtype_inv_snd, CategoryTheory.Functor.relativelyRepresentable.pullback₃.fst_snd_eq_p₂_assoc, AlgebraicGeometry.instQuasiSeparatedSndScheme, pullbackSymmetry_hom_of_mono_eq, AlgebraicGeometry.Scheme.Cover.gluedCoverT'_snd_fst_assoc, CategoryTheory.ShortComplex.SnakeInput.lift_φ₂_assoc, pullbackRightPullbackFstIso_inv_fst_assoc, AlgebraicGeometry.IsFinite.instSndScheme, pullback_snd_iso_of_left_factors_mono, AlgebraicGeometry.Proj.pullbackAwayιIso_hom_SpecMap_awayMap_left_assoc, AlgebraicGeometry.PresheafedSpace.GlueData.f_invApp_f_app, pullback_diagonal_map_snd_fst_fst_assoc, AlgebraicGeometry.instLocallyOfFiniteTypeSndScheme, CategoryTheory.GlueData.t'_inv, pullbackProdSndIsoProd_inv_fst_fst_assoc, AlgebraicGeometry.instGeometricallyIntegralFstScheme, AlgebraicGeometry.Scheme.Pullback.Triplet.specTensorTo_base_fst, CategoryTheory.IsPullback.isoPullback_hom_fst, pullbackDiagonalMapIso.inv_snd_fst, CategoryTheory.PreZeroHypercover.pullbackCoverOfRight_f, pullbackProdFstIsoProd_inv_fst_assoc, CategoryTheory.regularTopology.equalizerCondition_iff_isIso_lift, CategoryTheory.GlueData.t'_jii, prodIsoPullback_hom_snd, CategoryTheory.Regular.instHasCoequalizerFstSnd, HomotopicalAlgebra.instWeakEquivalenceFstOfIsStableUnderBaseChangeTrivialFibrationsOfFibration, PreservesPullback.iso_hom_snd_assoc, TopCat.range_pullback_to_prod, CategoryTheory.Presieve.pullback_singleton, AlgebraicGeometry.Scheme.monObjAsOverPullback_mul, CategoryTheory.GlueData.cocycle_assoc, TopCat.pullback_fst_image_snd_preimage, CompleteLattice.pullback_eq_inf, CategoryTheory.Abelian.epi_pullback_of_epi_g, AlgebraicGeometry.Surjective.instSndScheme, pullbackDiagonalMapIdIso_hom_fst_assoc, prodIsoPullback_hom_snd_assoc, CategoryTheory.Over.associator_inv_left_fst_fst, AlgebraicGeometry.pullbackSpecIso_inv_snd_assoc, AlgebraicGeometry.universallyClosed_fst, pushoutIsoOpPullback_inr_hom, TopCat.pullbackIsoProdSubtype_inv_fst_apply, AlgebraicGeometry.instIsLocallyNoetherianPullbackSchemeOfLocallyOfFiniteType, CategoryTheory.GlueData'.cocycle_assoc, pullbackObjIso_hom_comp_fst_assoc, AlgebraicGeometry.Scheme.LocalRepresentability.glueData_t', CategoryTheory.Over.tensorHom_left_fst, CategoryTheory.GlueData'.cocycle, CategoryTheory.PreZeroHypercover.inter_X, AlgebraicGeometry.Scheme.instIsOverFstOverInferInstanceOverClassId, AlgebraicGeometry.IsImmersion.instFstScheme, AlgebraicGeometry.Scheme.Cover.pullbackCoverOver_f, AlgebraicGeometry.Scheme.Pullback.openCoverOfBase_X, pullbackComparison_comp_snd_assoc, pullbackDiagonalMapIso.inv_fst, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.pullback_snd_isIso_of_range_subset, AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso_hom_snd_assoc, AlgebraicGeometry.Scheme.Pullback.cocycle_fst_fst_fst, pullback.fst_of_mono, pullbackAssoc_hom_snd_snd_assoc, CategoryTheory.regularTopology.equalizerCondition_w', AlgebraicGeometry.Scheme.Pullback.openCoverOfBase'_f, AlgebraicGeometry.pullbackSpecIso_inv_fst_assoc, CategoryTheory.PreGaloisCategory.fiberPullbackEquiv_symm_fst_apply, AlgebraicGeometry.Scheme.Pullback.ofPointTensor_SpecTensorTo, equalizerPullbackMapIso_hom_snd_assoc, pullbackLeftPullbackSndIso_hom_snd, AlgebraicGeometry.IsOpenImmersion.range_pullback_snd_of_left, pullbackZeroZeroIso_hom_fst, AlgebraicGeometry.Scheme.Pullback.t_fst_snd, pullback.comp_diagonal, pullbackIsoOpPushout_hom_inl, prodIsoPullback_hom_fst, instIsIsoPullbackComparison, CategoryTheory.PreOneHypercover.sieve₀_cylinder, CategoryTheory.instHasLiftingPropertyFst, pullback.snd_of_mono, CategoryTheory.Over.prodLeftIsoPullback_inv_fst_assoc, AlgebraicGeometry.PresheafedSpace.GlueData.opensImagePreimageMap_app_assoc, AlgebraicGeometry.pullbackRestrictIsoRestrict_hom_ι, AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_fst_assoc, AlgebraicGeometry.IsOpenImmersion.range_pullback_to_base_of_right, pullbackProdFstIsoProd_inv_snd_fst_assoc, AlgebraicGeometry.Scheme.IdealSheafData.comapIso_hom_snd, CategoryTheory.MorphismProperty.pullback_fst_iff, CategoryTheory.PreGaloisCategory.fiberPullbackEquiv_symm_snd_apply, CategoryTheory.MorphismProperty.pullback_map, AlgebraicGeometry.PresheafedSpace.GlueData.snd_invApp_t_app, pullback.hom_ext_iff, AlgebraicGeometry.Scheme.Pullback.t'_snd_fst_snd, AlgebraicGeometry.instQuasiCompactFstScheme, CategoryTheory.MonoOver.inf_map_app, AlgebraicGeometry.Scheme.Pullback.Triplet.fst_SpecTensorTo_apply, pullbackObjIso_inv_comp_fst, pullbackAssoc_inv_snd_assoc, equalizerPullbackMapIso_hom_snd, pullback_inv_snd_fst_of_left_isIso_assoc, pullbackIsoUnopPushout_hom_inl_assoc, AlgebraicGeometry.pullbackSpecIso_hom_fst, diagonalObjPullbackFstIso_hom_fst_snd, AlgebraicGeometry.Scheme.IdealSheafData.comapIso_hom_fst_assoc, Types.pullbackIsoPullback_inv_fst, AlgebraicGeometry.Scheme.IsJointlySurjectivePreserving.exists_preimage_snd_triplet_of_prop, AlgebraicGeometry.Scheme.Cover.pullbackCoverOverProp_X, CategoryTheory.instHasLiftingPropertySnd, Types.pullbackIsoPullback_inv_fst_apply, equalizerPullbackMapIso_hom_fst, AlgebraicGeometry.Scheme.Pullback.cocycle_snd_fst_fst, AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso_inv_snd, TopCat.isEmbedding_pullback_to_prod, CategoryTheory.MonoOver.pullback_obj_left, AlgebraicGeometry.Scheme.Cover.gluedCoverT'_fst_snd_assoc, AlgebraicGeometry.Scheme.Pullback.range_snd, AlgebraicGeometry.instLocallyOfFinitePresentationSndScheme, TopCat.pullbackIsoProdSubtype_hom_apply, pullbackDiagonalMapIso.inv_snd_fst_assoc, equalizerPullbackMapIso_inv_ι_snd_assoc, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.pullback_cone_of_left_condition, CategoryTheory.instIsRegularEpiSnd, pullbackSymmetry_inv_comp_fst, pullback.diagonal_comp, AlgebraicGeometry.Scheme.Pullback.t'_fst_fst_snd, AlgebraicGeometry.instLocallyOfFiniteTypeFstScheme, pullbackRightPullbackFstIso_inv_snd_fst_assoc, pullbackIsoUnopPushout_inv_fst_assoc, CategoryTheory.Over.prodComparisonIso_pullback_Spec_inv_left_fst_fst', AlgebraicGeometry.Proj.pullbackAwayιIso_hom_awayι_assoc, pullbackObjIso_hom_comp_snd_assoc, pushoutIsoOpPullback_inl_hom_assoc, Types.range_pullbackSnd, pullback_snd_iso_of_right_factors_mono, AlgebraicGeometry.IsPreimmersion.instSndScheme, TopCat.fst_isOpenEmbedding_of_right, pullback_diagonal_map_snd_snd_fst, prodIsoPullback_inv_snd, AlgebraicGeometry.instIrreducibleSpaceCarrierCarrierCommRingCatPullbackSchemeOfGeometricallyIrreducibleOfUniversallyOpen_1, AlgebraicGeometry.Scheme.Pullback.cocycle_fst_snd, AlgebraicGeometry.Scheme.Pullback.range_fst, CategoryTheory.IsPullback.of_hasPullback, AlgebraicGeometry.instIsClosedImmersionFstScheme, pullback_inv_fst_snd_of_right_isIso, TopCat.pullbackIsoProdSubtype_inv_snd_assoc, diagonalObjPullbackFstIso_inv_fst_fst_assoc, pullbackDiagonalMapIdIso_inv_snd_snd, pullbackSymmetry_hom_comp_snd_assoc, AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso_hom_ι, CategoryTheory.Functor.relativelyRepresentable.pullback₃.fst_fst'_eq_p₁_assoc, pullbackSymmetry_hom_comp_snd, CategoryTheory.PreOneHypercover.inter_Y, CategoryTheory.Over.associator_inv_left_fst_snd_assoc, CategoryTheory.IsPullback.isoPullback_hom_snd_assoc, AlgebraicGeometry.Scheme.Pullback.openCoverOfLeftRight_I₀, CategoryTheory.IsKernelPair.pullback, CategoryTheory.PreZeroHypercover.pullbackIso_inv_h₀, CategoryTheory.MorphismProperty.Over.pullback_map_left, pullbackProdSndIsoProd_hom_snd_assoc, pullbackComparison_comp_fst, CategoryTheory.Functor.relativelyRepresentable.pullback₃.fst_snd_eq_p₂, AlgebraicGeometry.Scheme.Pullback.Triplet.Spec_ofPointTensor_SpecTensorTo, pullbackComparison_comp_snd, AlgebraicGeometry.Scheme.Pullback.t'_snd_snd_assoc, CategoryTheory.Functor.relativelyRepresentable.pullback₃.fst_fst'_eq_p₁, AlgebraicGeometry.Scheme.Pullback.Triplet.ofPoint_s, TopCat.pullback_map_isOpenEmbedding, CategoryTheory.Over.μ_pullback_left_snd, pullbackLeftPullbackSndIso_hom_fst_assoc, CategoryTheory.MorphismProperty.pullback_snd, CategoryTheory.PreOneHypercover.sieve₁'_cylinder, AlgebraicGeometry.pullbackSpecIso_hom_base_assoc, AlgebraicGeometry.Scheme.Cover.gluedCoverT'_snd_snd, AlgebraicGeometry.Scheme.IdealSheafData.comapIso_hom_fst, AlgebraicGeometry.pullbackRestrictIsoRestrict_inv_fst_assoc, pullbackZeroZeroIso_inv_snd, diagonalObjPullbackFstIso_hom_fst_snd_assoc, pullbackLeftPullbackSndIso_hom_fst, AlgebraicGeometry.Scheme.Pullback.Triplet.exists_preimage, CategoryTheory.GlueData'.t_fac, pullbackIsoOpPushout_hom_inr, CategoryTheory.sieve₁'_toPreOneHypercover_eq_top, pullbackObjIso_inv_comp_snd_assoc, AlgebraicGeometry.Scheme.Pullback.t'_fst_snd_assoc, pullbackDiagonalMapIso.inv_snd_snd_assoc, AlgebraicGeometry.Scheme.Hom.toNormalization_normalizationPullback_fst_assoc, CategoryTheory.Over.braiding_hom_left, TopCat.pullback_map_isEmbedding, diagonalObjPullbackFstIso_hom_snd_assoc, CategoryTheory.IsGrothendieckAbelian.IsPresentable.surjectivity.F_obj, AlgebraicGeometry.pullbackSpecIso_hom_fst'_assoc, AlgebraicGeometry.Scheme.Pullback.openCoverOfLeft_I₀, HomotopicalAlgebra.instWeakEquivalenceSndOfIsStableUnderBaseChangeTrivialFibrationsOfFibration, AlgebraicGeometry.geometrically_iff_of_commRing_of_isClosedUnderIsomorphisms, pullbackAssoc_hom_fst, PreservesPullback.iso_hom_fst_assoc, CategoryTheory.Over.μ_pullback_left_fst_fst, AlgebraicGeometry.IsSchemeTheoreticallyDominant.pullbackFst, AlgebraicGeometry.Scheme.Pullback.pullbackFstιToV_snd_assoc, pullback_inv_fst_snd_of_right_isIso_assoc, CategoryTheory.Over.starPullbackIsoStar_inv_app_left, AlgebraicGeometry.pullbackSpecIso_inv_fst', pullbackDiagonalMapIdIso_hom_snd_assoc, CategoryTheory.PreOneHypercover.toPullback_cylinder, AlgebraicGeometry.Scheme.Pullback.t'_fst_snd, AlgebraicGeometry.Scheme.Cover.pullbackCoverOver'_f, pullbackSymmetry_hom_comp_fst_assoc, AlgebraicGeometry.IsOpenImmersion.opensRange_pullback_snd_of_left, diagonalObjPullbackFstIso_hom_fst_fst, pullbackDiagonalMapIso.hom_fst_assoc, AlgebraicGeometry.Scheme.Cover.gluedCoverT'_fst_snd, pushoutIsoOpPullback_inv_snd, AlgebraicGeometry.IsPreimmersion.instFstScheme, AlgebraicGeometry.pullback_of_geometrically', AlgebraicGeometry.Scheme.IsLocallyDirected.exists_of_pullback_V_V, AlgebraicGeometry.Scheme.canonicallyOverPullback_over, AlgebraicGeometry.pullbackRestrictIsoRestrict_hom_morphismRestrict, pullbackIsoOpPushout_inv_snd_assoc, pullbackLeftPullbackSndIso_inv_snd_snd, CategoryTheory.MorphismProperty.instHasPullbackSndHomDiscretePUnitOfHasPullbacksAlongOfIsStableUnderBaseChangeAlong, AlgebraicGeometry.Scheme.Pullback.pullbackFstιToV_snd, AlgebraicGeometry.Scheme.Pullback.t'_fst_fst_fst_assoc, AlgebraicGeometry.diagonal_Spec_map, AlgebraicGeometry.instQuasiSeparatedFstScheme, AlgebraicGeometry.IsOpenImmersion.opensRange_pullback_fst_of_right, AlgebraicGeometry.isEmpty_pullback_sigmaι_of_ne, CategoryTheory.Over.tensorHom_left_snd, pullback.mapDesc_comp, AlgebraicGeometry.IsOpenImmersion.range_pullbackFst, pullbackProdFstIsoProd_hom_snd_assoc, AlgebraicGeometry.Flat.instSndScheme, CategoryTheory.IsPullback.isoPullback_inv_fst_assoc, CategoryTheory.Presieve.uncurry_pullbackArrows, pullbackSymmetry_inv_comp_snd, AlgebraicGeometry.Scheme.Pullback.cocycle_snd_snd, AlgebraicGeometry.instIsIntegralPullbackSchemeOfGeometricallyIntegralOfFlatOfUniversallyOpenOfIsLocallyNoetherian, prodIsoPullback_inv_snd_assoc, AlgebraicGeometry.Scheme.Hom.normalizationPullback_snd, AlgebraicGeometry.Scheme.Pullback.t_snd_assoc, CategoryTheory.Functor.PullbackObjObj.ofHasPullback_pt, pullback.condition, pullbackProdSndIsoProd_inv_snd_assoc, CategoryTheory.IsPullback.isoPullback_hom_snd, CategoryTheory.IsKernelPair.of_hasPullback, AlgebraicGeometry.ExistsHomHomCompEqCompAux.range_g_subset, AlgebraicGeometry.instGeometricallyIrreducibleFstScheme, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.sheafedSpace_pullback_fst_of_right, CategoryTheory.GlueData.cocycle, pullbackProdFstIsoProd_hom_fst, AlgebraicGeometry.instSmoothSndScheme, mono_pullback_to_prod, pullbackProdSndIsoProd_inv_snd, CategoryTheory.GlueData.t'_isIso, AlgebraicGeometry.pullbackSpecIso_hom_fst', AlgebraicGeometry.IsImmersion.instSndScheme, pullbackDiagonalMapIdIso_hom_snd, pullbackIsoOpPushout_hom_inl_assoc, pullback_map_eq_pullbackFstFstIso_inv, pullback.congrHom_inv, AlgebraicGeometry.Scheme.monObjAsOverPullback_one, CategoryTheory.PreOneHypercover.cylinder_p₁, HomotopicalAlgebra.instFibrationSndOfIsStableUnderBaseChangeFibrations, PreservesPullback.iso_hom_snd, AlgebraicGeometry.Scheme.Pullback.Triplet.ofPoint_y, Concrete.pullbackMk_fst, pullback_fst_iso_of_right_iso, AlgebraicGeometry.Scheme.Pullback.cocycle_snd_fst_snd, map_lift_pullbackComparison, isIso_snd_of_mono, CategoryTheory.PreOneHypercover.cylinder_p₂, CategoryTheory.regularTopology.EqualizerCondition.bijective_mapToEqualizer_pullback, AlgebraicGeometry.Scheme.Cover.intersectionOfLocallyDirected_f, pullback.congrHom_hom, AlgebraicGeometry.Scheme.Pullback.forget_comparison_surjective, pullbackIsoUnopPushout_inv_snd_assoc, pullback.lift_fst, pullbackRightPullbackFstIso_inv_snd_fst, pullbackLeftPullbackSndIso_inv_snd_snd_assoc, CategoryTheory.Over.prodLeftIsoPullback_hom_fst, diagonalObjPullbackFstIso_inv_fst_snd, CategoryTheory.Over.associator_hom_left_fst_assoc, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.pullback_snd_isIso_of_range_subset, AlgebraicGeometry.Scheme.Pullback.openCoverOfLeft_f, AlgebraicGeometry.Scheme.Pullback.Triplet.ofPoint_SpecTensorTo, map_lift_pullbackComparison_assoc, CategoryTheory.Equalizer.Presieve.Arrows.SecondObj.ext_iff, PreservesPullback.iso_hom, CategoryTheory.Over.isMonHom_pullbackFst_id_right, pullbackComparison_comp_fst_assoc, AlgebraicGeometry.pullbackSpecIso_hom_snd, AlgebraicGeometry.instSmoothFstScheme, CategoryTheory.instIsRegularEpiFst, AlgebraicGeometry.instIsReducedPullbackSchemeOfGeometricallyReducedOfFlatOfIsLocallyNoetherian_1, AlgebraicGeometry.Scheme.Pullback.t_fst_fst_assoc, AlgebraicGeometry.Scheme.isEmpty_pullback, pullbackSymmetry_hom_comp_fst, AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso_hom_fst, CategoryTheory.Over.tensorObj_left, CategoryTheory.PreZeroHypercover.toPreOneHypercover_Y, equalizerPullbackMapIso_inv_ι_fst_assoc, AlgebraicGeometry.Scheme.Cover.gluedCoverT'_fst_fst_assoc, Types.pullbackIsoPullback_inv_snd_apply, pullbackAssoc_inv_snd, TopCat.pullback_snd_range, pullbackIsoUnopPushout_hom_inr, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_fst_snd', CategoryTheory.Functor.relativelyRepresentable.pullback₃.snd_fst'_eq_p₁_assoc, TopCat.snd_isEmbedding_of_left, pullbackObjIso_inv_comp_snd, pullbackAssoc_inv_fst_fst_assoc, CategoryTheory.FinitaryPreExtensive.isPullback_sigmaDesc, CategoryTheory.Over.ε_pullback_left, pullback.lift_fst_snd, pullback_fst_map_snd_isPullback, CategoryTheory.GlueData.t'_comp_eq_pullbackSymmetry, pullback.map_isIso, AlgebraicGeometry.Scheme.pullbackComparison_forget_surjective, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.pullback_fst_of_right, CategoryTheory.Equalizer.Presieve.isSheafFor_singleton_iff_of_hasPullback, pullbackRightPullbackFstIso_hom_snd_assoc, AlgebraicGeometry.IsSeparated.instFstScheme, pullbackAssoc_hom_fst_assoc, AlgebraicGeometry.Scheme.Pullback.openCoverOfLeftRight_X, pullbackDiagonalMapIdIso_hom_fst, AlgebraicGeometry.Scheme.IsJointlySurjectivePreserving.exists_preimage_fst_triplet_of_prop, AlgebraicGeometry.Scheme.Pullback.lift_comp_ι, pullbackLeftPullbackSndIso_inv_fst_assoc, CategoryTheory.IsPullback.isoPullback_hom_fst_assoc, pullbackProdFstIsoProd_hom_snd, AlgebraicGeometry.PresheafedSpace.GlueData.snd_invApp_t_app', CategoryTheory.Functor.relativelyRepresentable.toPullbackTerminal, CategoryTheory.MorphismProperty.Over.pullbackComp_left_fst_fst, CategoryTheory.GlueData.mapGlueData_t', CategoryTheory.Over.associator_hom_left_snd_snd, CategoryTheory.Over.associator_inv_left_snd_assoc, AlgebraicGeometry.instIsAffinePullbackSchemeOfIsAffineHom, pullbackDiagonalMapIso.inv_snd_snd, AlgebraicGeometry.IsSeparated.instSndScheme, AlgebraicGeometry.IsOpenImmersion.instSndScheme, AlgebraicGeometry.Scheme.Pullback.exists_preimage_pullback, pullbackFstFstIso_inv, SSet.instFinitePullback, TopCat.pullback_fst_range, AlgebraicGeometry.pullbackSpecIso_hom_fst_assoc, AlgebraicGeometry.IsOpenImmersion.instFstScheme, CategoryTheory.Over.whiskerLeft_left_snd, HomotopicalAlgebra.PathObject.trans_p₁, diagonal_pullback_fst, TopCat.pullback_snd_image_fst_preimage, pullback_lift_map_isPullback, HomotopicalAlgebra.PathObject.trans_P, CategoryTheory.IsGrothendieckAbelian.IsPresentable.surjectivity.epi_f, AlgebraicGeometry.Scheme.Pullback.openCoverOfLeft_X, CategoryTheory.PreOneHypercover.cylinderHom_h₀, AlgebraicGeometry.geometrically_iff_of_isClosedUnderIsomorphisms, AlgebraicGeometry.Scheme.Pullback.diagonalCover_map, AlgebraicGeometry.Scheme.Pullback.t'_snd_fst_snd_assoc, CategoryTheory.Over.tensorObj_hom, pullbackRightPullbackFstIso_inv_snd_snd, CategoryTheory.Over.postAdjunctionLeft_counit_app_left, AlgebraicGeometry.Scheme.Pullback.isAffine_of_isAffine_isAffine_isAffine, pullbackAssoc_inv_fst_fst, CategoryTheory.PreOneHypercover.cylinder_Y, AlgebraicGeometry.pullback_of_geometrically, pullbackObjIso_hom_comp_snd, AlgebraicGeometry.universallyClosed_snd, AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_fst, CategoryTheory.Regular.instMonoDesc, pullbackProdSndIsoProd_hom_fst_assoc, AlgebraicGeometry.exists_etale_isCompl_of_quasiFiniteAt, AlgebraicGeometry.pullbackSpecIso_hom_snd_assoc
pullbackComparison 📖CompOp
10 mathmath: pullbackComparison_comp_snd_assoc, instIsIsoPullbackComparison, pullbackComparison_comp_fst, pullbackComparison_comp_snd, map_lift_pullbackComparison, AlgebraicGeometry.Scheme.Pullback.forget_comparison_surjective, map_lift_pullbackComparison_assoc, PreservesPullback.iso_hom, pullbackComparison_comp_fst_assoc, AlgebraicGeometry.Scheme.pullbackComparison_forget_surjective
pullbackIsPullback 📖CompOp
pullbackProdFstIsoProd 📖CompOp
12 mathmath: pullbackProdFstIsoProd_hom_fst_assoc, pullbackProdFstIsoProd_inv_fst, CategoryTheory.Over.starPullbackIsoStar_hom_app_left, pullbackProdFstIsoProd_inv_snd_snd, pullbackProdFstIsoProd_inv_snd_fst, pullbackProdFstIsoProd_inv_snd_snd_assoc, pullbackProdFstIsoProd_inv_fst_assoc, pullbackProdFstIsoProd_inv_snd_fst_assoc, CategoryTheory.Over.starPullbackIsoStar_inv_app_left, pullbackProdFstIsoProd_hom_snd_assoc, pullbackProdFstIsoProd_hom_fst, pullbackProdFstIsoProd_hom_snd
pullbackProdSndIsoProd 📖CompOp
10 mathmath: pullbackProdSndIsoProd_hom_snd, pullbackProdSndIsoProd_inv_fst_snd, pullbackProdSndIsoProd_hom_fst, pullbackProdSndIsoProd_inv_fst_snd_assoc, pullbackProdSndIsoProd_inv_fst_fst, pullbackProdSndIsoProd_inv_fst_fst_assoc, pullbackProdSndIsoProd_hom_snd_assoc, pullbackProdSndIsoProd_inv_snd_assoc, pullbackProdSndIsoProd_inv_snd, pullbackProdSndIsoProd_hom_fst_assoc
pullbackSymmetry 📖CompOp
24 mathmath: pullbackSymmetry_inv_comp_snd_assoc, AlgebraicGeometry.Scheme.Cover.gluedCover_t, CategoryTheory.Over.braiding_inv_left, CategoryTheory.GlueData.t'_iij, pullbackSymmetry_inv_comp_fst_assoc, CategoryTheory.Over.starPullbackIsoStar_hom_app_left, CategoryTheory.GlueData.t'_comp_eq_pullbackSymmetry_assoc, CategoryTheory.PreZeroHypercover.pullbackIso_hom_h₀, pullbackSymmetry_hom_of_mono_eq, CategoryTheory.GlueData.t'_inv, AlgebraicGeometry.Scheme.Pullback.openCoverOfBase'_f, AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_fst_assoc, pullbackSymmetry_inv_comp_fst, pullbackSymmetry_hom_comp_snd_assoc, pullbackSymmetry_hom_comp_snd, CategoryTheory.PreZeroHypercover.pullbackIso_inv_h₀, CategoryTheory.Over.braiding_hom_left, CategoryTheory.Over.starPullbackIsoStar_inv_app_left, pullbackSymmetry_hom_comp_fst_assoc, pullbackSymmetry_inv_comp_snd, pullbackSymmetry_hom_comp_fst, CategoryTheory.GlueData.t'_comp_eq_pullbackSymmetry, diagonal_pullback_fst, AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_fst
pushout 📖CompOp
193 mathmath: pushoutIsoOpPullback_inr_hom_assoc, CategoryTheory.IsPushout.of_hasPushout, CategoryTheory.instHasLiftingPropertyInl, hasPushout_assoc, PreservesPushout.inr_iso_inv_assoc, pullbackIsoUnopPushout_inv_snd, pushoutIsoOpPullback_inl_hom, pushout.inr_desc, PreservesPushout.inr_iso_inv, inl_coprodIsoPushout_hom, inr_inl_pushoutRightPushoutInlIso_hom_assoc, inl_comp_pushoutComparison_assoc, pullbackIsoOpPushout_hom_inr_assoc, pushout_inr_iso_of_left_iso, inl_inr_pushoutAssoc_inv_assoc, inl_comp_pushoutObjIso_hom, pushoutIsoUnopPullback_inr_hom, PreservesPushout.inr_iso_hom_assoc, instIsIsoPushoutComparison, inr_inr_pushoutRightPushoutInlIso_hom, pushoutIsoUnopPullback_inl_hom_assoc, pushoutIsoUnopPullback_inr_hom_assoc, inl_pushoutAssoc_inv_assoc, inr_inl_pushoutLeftPushoutInrIso_hom, pullbackIsoUnopPushout_hom_inr_assoc, inr_comp_pushoutObjIso_hom_assoc, pushoutIsoUnopPullback_inv_snd, pushout.condition, inr_inl_pushoutRightPushoutInlIso_hom, inl_comp_pushoutComparison, CategoryTheory.Under.pushout_map, CategoryTheory.IsPushout.inr_isoPushout_inv_assoc, pushoutIsoUnopPullback_inv_fst, inr_pushoutLeftPushoutInrIso_inv, CommRingCat.pushout_inr_tensorProdObjIsoPushoutObj_inv_right_assoc, CategoryTheory.IsPushout.inr_isoPushout_hom_assoc, inl_inl_pushoutLeftPushoutInrIso_hom_assoc, pullbackIsoUnopPushout_hom_inl, CategoryTheory.IsPushout.inr_isoPushout_inv, CategoryTheory.Under.postAdjunctionRight_unit_app_right, CategoryTheory.Functor.PushoutObjObj.ofHasPushout_pt, Types.instMonoPushoutInl, pullback_symmetry_hom_of_epi_eq, inr_pushoutZeroZeroIso_hom, inr_pushoutLeftPushoutInrIso_inv_assoc, hasPushout_assoc_symm, inl_inl_pushoutLeftPushoutInrIso_hom, pushout.inl_desc_assoc, PreservesPushout.inl_iso_inv, pullbackIsoOpPushout_inv_fst_assoc, inr_pushoutAssoc_hom_assoc, CategoryTheory.Under.mapPushoutAdj_unit_app, inl_pushoutRightPushoutInlIso_inv, CategoryTheory.ShortComplex.SnakeInput.snd_δ_inr, pushout.hom_ext_iff, CommRingCat.HomTopology.isEmbedding_pushout, inr_coprodIsoPushout_hom_assoc, HomotopicalAlgebra.instCofibrationInrOfIsStableUnderCobaseChangeCofibrations, pushoutComparison_map_desc, pushout_inr_inv_inl_of_right_isIso_assoc, AlgebraicGeometry.isIso_pushoutSection_of_isCompact_of_flat_right_of_ringHomFlat, PreservesPushout.inl_iso_inv_assoc, HomotopicalAlgebra.instWeakEquivalenceInrOfIsStableUnderCobaseChangeTrivialCofibrationsOfCofibration, pullbackIsoUnopPushout_inv_fst, pushoutIsoOpPullback_inv_fst, pushout.inl_of_epi, CommRingCat.inr_injective_of_flat, CategoryTheory.Abelian.mono_pushout_of_mono_g, pushout_inr_iso_of_right_factors_epi, inr_comp_pushoutSymmetry_inv_assoc, pushoutIsoUnopPullback_inl_hom, CommRingCat.pushout_inl_tensorProdObjIsoPushoutObj_inv_right_assoc, CategoryTheory.MorphismProperty.pushout_inr, pullbackIsoOpPushout_inv_fst, inr_pushoutAssoc_hom, pullbackIsoOpPushout_inv_snd, pushout.exists_desc, inl_comp_pushoutSymmetry_inv, HomotopicalAlgebra.Precylinder.trans_I, inl_pushoutLeftPushoutInrIso_inv, CompleteLattice.pushout_eq_sup, inr_comp_pushoutSymmetry_hom_assoc, PreservesPushout.inl_iso_hom_assoc, AlgebraicGeometry.mono_pushoutSection_of_isCompact_of_flat_left_of_ringHomFlat, CommRingCat.pushout_inl_tensorProdObjIsoPushoutObj_inv_right, inr_pushoutRightPushoutInlIso_inv, epi_coprod_to_pushout, PreservesPushout.inr_iso_hom, pushout_inl_iso_of_left_factors_epi, CategoryTheory.MorphismProperty.pushout_inl, HomotopicalAlgebra.Cylinder.trans_i₀, CategoryTheory.IsPushout.inl_isoPushout_inv, inl_inl_pushoutAssoc_hom, HomotopicalAlgebra.instCofibrationInlOfIsStableUnderCobaseChangeCofibrations, AlgebraicGeometry.isPullback_Spec_map_pushout, inr_inr_pushoutRightPushoutInlIso_hom_assoc, pushoutIsoOpPullback_inr_hom, pushout.map_comp, inl_inr_pushoutAssoc_inv, pushout.map_comp_assoc, pullbackIsoOpPushout_hom_inl, pushout.desc_inl_inr, CommRingCat.inl_injective_of_flat, CategoryTheory.instHasLiftingPropertyInr, inl_comp_pushoutObjIso_inv, pullbackIsoUnopPushout_hom_inl_assoc, inr_comp_pushoutObjIso_inv, pushoutComparison_map_desc_assoc, inr_comp_pushoutSymmetry_inv, CategoryTheory.Under.pushout_obj, CategoryTheory.IsPushout.inl_isoPushout_hom, inr_pushoutZeroZeroIso_inv, HomotopicalAlgebra.instWeakEquivalenceInlOfIsStableUnderCobaseChangeTrivialCofibrationsOfCofibration, inl_pushoutLeftPushoutInrIso_inv_assoc, AlgebraicGeometry.mono_pushoutSection_of_isCompact_of_flat_right, inr_pushoutRightPushoutInlIso_inv_assoc, inl_comp_pushoutObjIso_inv_assoc, pullbackIsoUnopPushout_inv_fst_assoc, pushoutIsoOpPullback_inl_hom_assoc, HomotopicalAlgebra.Cylinder.trans_I, CategoryTheory.IsPushout.inl_isoPushout_hom_assoc, inr_coprodIsoPushout_hom, inr_inl_pushoutAssoc_hom, pushout_inl_iso_of_right_iso, AlgebraicGeometry.mono_pushoutSection_of_isCompact_of_flat_right_of_ringHomFlat, CategoryTheory.MorphismProperty.pushout_inr_iff, inl_comp_pushoutSymmetry_inv_assoc, pushout.congrHom_hom, CategoryTheory.IsPushout.inl_isoPushout_inv_assoc, inr_comp_pushoutComparison_assoc, pushout.mapLift_comp, inl_comp_pushoutObjIso_hom_assoc, CategoryTheory.Under.mapPushoutAdj_counit_app, HomotopicalAlgebra.Cylinder.trans_i₁, AlgebraicGeometry.isPullback_SpecMap_pushout, inl_pushoutAssoc_inv, inl_inl_pushoutAssoc_hom_assoc, AlgebraicGeometry.isIso_pushoutSection_of_isQuasiSeparated_of_flat_left, pullbackIsoOpPushout_hom_inr, inl_pushoutRightPushoutInlIso_hom, inr_inr_pushoutAssoc_inv_assoc, inl_coprodIsoPushout_inv, AlgebraicGeometry.isIso_pushoutSection_iff, inl_pushoutZeroZeroIso_inv, inl_pushoutRightPushoutInlIso_hom_assoc, pushout_inl_inv_inr_of_right_isIso_assoc, pushout.inr_desc_assoc, inl_comp_pushoutSymmetry_hom_assoc, pushoutIsoOpPullback_inv_snd, PreservesPushout.inl_iso_hom, CategoryTheory.Abelian.mono_pushout_of_mono_f, pullbackIsoOpPushout_inv_snd_assoc, inl_comp_pushoutSymmetry_hom, AlgebraicGeometry.mono_pushoutSection_of_isCompact_of_flat_left, isIso_inr_of_epi, inr_coprodIsoPushout_inv, pushout.inl_desc, inr_inl_pushoutLeftPushoutInrIso_hom_assoc, inl_coprodIsoPushout_hom_assoc, CategoryTheory.Under.postAdjunctionRight_counit_app_right, inr_comp_pushoutObjIso_inv_assoc, Types.instMonoPushoutInr, inr_comp_pushoutObjIso_hom, inr_pushoutLeftPushoutInrIso_hom_assoc, pullbackIsoOpPushout_hom_inl_assoc, pushout_inl_inv_inr_of_right_isIso, AlgebraicGeometry.isIso_pushoutSection_of_isQuasiSeparated_of_flat_right, CategoryTheory.IsPushout.inr_isoPushout_hom, pushout.congrHom_inv, pullbackIsoUnopPushout_inv_snd_assoc, inl_coprodIsoPushout_inv_assoc, inr_inl_pushoutAssoc_hom_assoc, pullbackIsoUnopPushout_hom_inr, inr_pushoutLeftPushoutInrIso_hom, HomotopicalAlgebra.Precylinder.trans_i₁, inr_coprodIsoPushout_inv_assoc, pushout.condition_assoc, pushout_inr_inv_inl_of_right_isIso, inl_pushoutRightPushoutInlIso_inv_assoc, HomotopicalAlgebra.Precylinder.trans_i₀, pushout.map_id, pushout.map_isIso, inl_pushoutZeroZeroIso_hom, isIso_inl_of_epi, inr_inr_pushoutAssoc_inv, inr_comp_pushoutSymmetry_hom, CategoryTheory.MorphismProperty.pushout_inl_iff, AlgebraicGeometry.isIso_pushoutSection_of_isAffineOpen, RingHom.IsStableUnderBaseChange.pushout_inl, PreservesPushout.iso_hom, inr_comp_pushoutComparison, pushout.inr_of_epi, CommRingCat.pushout_inr_tensorProdObjIsoPushoutObj_inv_right
pushoutComparison 📖CompOp
8 mathmath: inl_comp_pushoutComparison_assoc, instIsIsoPushoutComparison, inl_comp_pushoutComparison, pushoutComparison_map_desc, pushoutComparison_map_desc_assoc, inr_comp_pushoutComparison_assoc, PreservesPushout.iso_hom, inr_comp_pushoutComparison
pushoutIsPushout 📖CompOp
pushoutSymmetry 📖CompOp
9 mathmath: pullback_symmetry_hom_of_epi_eq, inr_comp_pushoutSymmetry_inv_assoc, inl_comp_pushoutSymmetry_inv, inr_comp_pushoutSymmetry_hom_assoc, inr_comp_pushoutSymmetry_inv, inl_comp_pushoutSymmetry_inv_assoc, inl_comp_pushoutSymmetry_hom_assoc, inl_comp_pushoutSymmetry_hom, inr_comp_pushoutSymmetry_hom
walkingCospanOpEquiv 📖CompOp
14 mathmath: PushoutCocone.unop_π_app, walkingCospanOpEquiv_counitIso_hom_app, spanOp_hom_app, walkingCospanOpEquiv_counitIso_inv_app, PullbackCone.op_ι_app, walkingCospanOpEquiv_inverse_obj, walkingCospanOpEquiv_unitIso_inv_app, spanOp_inv_app, opCospan_hom_app, opCospan_inv_app, walkingCospanOpEquiv_functor_map, walkingCospanOpEquiv_functor_obj, walkingCospanOpEquiv_unitIso_hom_app, walkingCospanOpEquiv_inverse_map
walkingSpanOpEquiv 📖CompOp
14 mathmath: walkingSpanOpEquiv_inverse_map, walkingSpanOpEquiv_inverse_obj, opSpan_hom_app, walkingSpanOpEquiv_counitIso_hom_app, PushoutCocone.op_π_app, walkingSpanOpEquiv_unitIso_inv_app, PullbackCone.unop_ι_app, cospanOp_hom_app, walkingSpanOpEquiv_functor_map, cospanOp_inv_app, walkingSpanOpEquiv_functor_obj, walkingSpanOpEquiv_unitIso_hom_app, walkingSpanOpEquiv_counitIso_inv_app, opSpan_inv_app

Theorems

NameKindAssumesProvesValidatesDepends On
hasPullback_symmetry 📖mathematicalHasPullbackpullback.condition
hasPullback_symmetry_of_hasPullbacksAlong 📖mathematicalHasPullbacksAlongHasPullbackhasPullback_symmetry
hasPullbacks_of_hasLimit_cospan 📖mathematicalHasLimit
WalkingCospan
WidePullbackShape.category
WalkingPair
cospan
HasPullbackshasLimit_of_iso
hasPullbacks_of_hasWidePullbacks 📖mathematicalHasWidePullbacksHasPullbackshasWidePullbacks_shrink
hasPushout_symmetry 📖mathematicalHasPushoutpushout.condition
hasPushouts_of_hasColimit_span 📖mathematicalHasColimit
WalkingSpan
WidePushoutShape.category
WalkingPair
span
HasPushoutshasColimit_of_iso
hasPushouts_of_hasWidePushouts 📖mathematicalHasWidePushoutsHasPushoutshasWidePushouts_shrink
hasPushouts_symmetry_of_hasPushoutsAlong 📖mathematicalHasPushoutsAlongHasPushouthasPushout_symmetry
inl_comp_pushoutComparison 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
pushout
CategoryTheory.Functor.map
pushout.inl
pushoutComparison
pushout.inl_desc
inl_comp_pushoutComparison_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
pushout
CategoryTheory.Functor.map
pushout.inl
pushoutComparison
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
inl_comp_pushoutComparison
inl_comp_pushoutSymmetry_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
pushout
hasPushout_symmetry
pushout.inl
CategoryTheory.Iso.hom
pushoutSymmetry
pushout.inr
IsColimit.comp_coconePointUniqueUpToIso_hom
hasPushout_symmetry
pushout.condition
inl_comp_pushoutSymmetry_hom_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
pushout
pushout.inl
hasPushout_symmetry
CategoryTheory.Iso.hom
pushoutSymmetry
pushout.inr
hasPushout_symmetry
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
inl_comp_pushoutSymmetry_hom
inl_comp_pushoutSymmetry_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
pushout
hasPushout_symmetry
pushout.inl
CategoryTheory.Iso.inv
pushoutSymmetry
pushout.inr
hasPushout_symmetry
inr_comp_pushoutSymmetry_hom
inl_comp_pushoutSymmetry_inv_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
pushout
hasPushout_symmetry
pushout.inl
CategoryTheory.Iso.inv
pushoutSymmetry
pushout.inr
hasPushout_symmetry
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
inl_comp_pushoutSymmetry_inv
inr_comp_pushoutComparison 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
pushout
CategoryTheory.Functor.map
pushout.inr
pushoutComparison
pushout.inr_desc
inr_comp_pushoutComparison_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
pushout
CategoryTheory.Functor.map
pushout.inr
pushoutComparison
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
inr_comp_pushoutComparison
inr_comp_pushoutSymmetry_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
pushout
hasPushout_symmetry
pushout.inr
CategoryTheory.Iso.hom
pushoutSymmetry
pushout.inl
IsColimit.comp_coconePointUniqueUpToIso_hom
hasPushout_symmetry
pushout.condition
inr_comp_pushoutSymmetry_hom_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
pushout
pushout.inr
hasPushout_symmetry
CategoryTheory.Iso.hom
pushoutSymmetry
pushout.inl
hasPushout_symmetry
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
inr_comp_pushoutSymmetry_hom
inr_comp_pushoutSymmetry_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
pushout
hasPushout_symmetry
pushout.inr
CategoryTheory.Iso.inv
pushoutSymmetry
pushout.inl
hasPushout_symmetry
inl_comp_pushoutSymmetry_hom
inr_comp_pushoutSymmetry_inv_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
pushout
hasPushout_symmetry
pushout.inr
CategoryTheory.Iso.inv
pushoutSymmetry
pushout.inl
hasPushout_symmetry
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
inr_comp_pushoutSymmetry_inv
map_lift_pullbackComparison 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
pullback
CategoryTheory.Functor.map
pullback.lift
pullbackComparison
pullback.hom_ext
CategoryTheory.Category.assoc
pullbackComparison_comp_fst
CategoryTheory.Functor.map_comp
limit.lift_π
pullbackComparison_comp_snd
map_lift_pullbackComparison_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
pullback
CategoryTheory.Functor.map
pullback.lift
pullbackComparison
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_lift_pullbackComparison
pullbackComparison_comp_fst 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
pullback
CategoryTheory.Functor.map
pullbackComparison
pullback.fst
pullback.lift_fst
pullbackComparison_comp_fst_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
pullback
CategoryTheory.Functor.map
pullbackComparison
pullback.fst
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pullbackComparison_comp_fst
pullbackComparison_comp_snd 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
pullback
CategoryTheory.Functor.map
pullbackComparison
pullback.snd
pullback.lift_snd
pullbackComparison_comp_snd_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
pullback
CategoryTheory.Functor.map
pullbackComparison
pullback.snd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pullbackComparison_comp_snd
pullbackProdFstIsoProd_hom_fst 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
pullback
prod
prod.fst
CategoryTheory.Iso.hom
pullbackProdFstIsoProd
pullback.fst
limit.lift_π
pullbackProdFstIsoProd_hom_fst_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
pullback
prod
prod.fst
CategoryTheory.Iso.hom
pullbackProdFstIsoProd
pullback.fst
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pullbackProdFstIsoProd_hom_fst
pullbackProdFstIsoProd_hom_snd 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
pullback
prod
prod.fst
CategoryTheory.Iso.hom
pullbackProdFstIsoProd
prod.snd
pullback.snd
limit.lift_π
pullbackProdFstIsoProd_hom_snd_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
pullback
prod
prod.fst
CategoryTheory.Iso.hom
pullbackProdFstIsoProd
prod.snd
pullback.snd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pullbackProdFstIsoProd_hom_snd
pullbackProdFstIsoProd_inv_fst 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
prod
pullback
prod.fst
CategoryTheory.Iso.inv
pullbackProdFstIsoProd
pullback.fst
limit.lift_π
pullbackProdFstIsoProd_inv_fst_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
prod
pullback
prod.fst
CategoryTheory.Iso.inv
pullbackProdFstIsoProd
pullback.fst
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pullbackProdFstIsoProd_inv_fst
pullbackProdFstIsoProd_inv_snd_fst 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
prod
pullback
prod.fst
CategoryTheory.Iso.inv
pullbackProdFstIsoProd
pullback.snd
limit.lift_π_assoc
prod.map_fst
pullbackProdFstIsoProd_inv_snd_fst_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
prod
pullback
prod.fst
CategoryTheory.Iso.inv
pullbackProdFstIsoProd
pullback.snd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pullbackProdFstIsoProd_inv_snd_fst
pullbackProdFstIsoProd_inv_snd_snd 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
prod
pullback
prod.fst
CategoryTheory.Iso.inv
pullbackProdFstIsoProd
pullback.snd
prod.snd
limit.lift_π_assoc
prod.map_snd
CategoryTheory.Category.comp_id
pullbackProdFstIsoProd_inv_snd_snd_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
prod
pullback
prod.fst
CategoryTheory.Iso.inv
pullbackProdFstIsoProd
pullback.snd
prod.snd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pullbackProdFstIsoProd_inv_snd_snd
pullbackProdSndIsoProd_hom_fst 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
pullback
prod
prod.snd
CategoryTheory.Iso.hom
pullbackProdSndIsoProd
prod.fst
pullback.fst
limit.lift_π
pullbackProdSndIsoProd_hom_fst_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
pullback
prod
prod.snd
CategoryTheory.Iso.hom
pullbackProdSndIsoProd
prod.fst
pullback.fst
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pullbackProdSndIsoProd_hom_fst
pullbackProdSndIsoProd_hom_snd 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
pullback
prod
prod.snd
CategoryTheory.Iso.hom
pullbackProdSndIsoProd
pullback.snd
limit.lift_π
pullbackProdSndIsoProd_hom_snd_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
pullback
prod
prod.snd
CategoryTheory.Iso.hom
pullbackProdSndIsoProd
pullback.snd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pullbackProdSndIsoProd_hom_snd
pullbackProdSndIsoProd_inv_fst_fst 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
prod
pullback
prod.snd
CategoryTheory.Iso.inv
pullbackProdSndIsoProd
pullback.fst
prod.fst
limit.lift_π_assoc
prod.map_fst
CategoryTheory.Category.comp_id
pullbackProdSndIsoProd_inv_fst_fst_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
prod
pullback
prod.snd
CategoryTheory.Iso.inv
pullbackProdSndIsoProd
pullback.fst
prod.fst
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pullbackProdSndIsoProd_inv_fst_fst
pullbackProdSndIsoProd_inv_fst_snd 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
prod
pullback
prod.snd
CategoryTheory.Iso.inv
pullbackProdSndIsoProd
pullback.fst
limit.lift_π_assoc
prod.map_snd
pullbackProdSndIsoProd_inv_fst_snd_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
prod
pullback
prod.snd
CategoryTheory.Iso.inv
pullbackProdSndIsoProd
pullback.fst
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pullbackProdSndIsoProd_inv_fst_snd
pullbackProdSndIsoProd_inv_snd 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
prod
pullback
prod.snd
CategoryTheory.Iso.inv
pullbackProdSndIsoProd
pullback.snd
limit.lift_π
pullbackProdSndIsoProd_inv_snd_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
prod
pullback
prod.snd
CategoryTheory.Iso.inv
pullbackProdSndIsoProd
pullback.snd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pullbackProdSndIsoProd_inv_snd
pullbackSymmetry_hom_comp_fst 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
pullback
hasPullback_symmetry
CategoryTheory.Iso.hom
pullbackSymmetry
pullback.fst
pullback.snd
hasPullback_symmetry
limit.conePointUniqueUpToIso_hom_comp
pullback.condition
pullbackSymmetry_hom_comp_fst_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
pullback
hasPullback_symmetry
CategoryTheory.Iso.hom
pullbackSymmetry
pullback.fst
pullback.snd
hasPullback_symmetry
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pullbackSymmetry_hom_comp_fst
pullbackSymmetry_hom_comp_snd 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
pullback
hasPullback_symmetry
CategoryTheory.Iso.hom
pullbackSymmetry
pullback.snd
pullback.fst
hasPullback_symmetry
limit.conePointUniqueUpToIso_hom_comp
pullback.condition
pullbackSymmetry_hom_comp_snd_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
pullback
hasPullback_symmetry
CategoryTheory.Iso.hom
pullbackSymmetry
pullback.snd
pullback.fst
hasPullback_symmetry
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pullbackSymmetry_hom_comp_snd
pullbackSymmetry_inv_comp_fst 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
pullback
hasPullback_symmetry
CategoryTheory.Iso.inv
pullbackSymmetry
pullback.fst
pullback.snd
hasPullback_symmetry
pullbackSymmetry_hom_comp_snd
pullbackSymmetry_inv_comp_fst_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
pullback
hasPullback_symmetry
CategoryTheory.Iso.inv
pullbackSymmetry
pullback.fst
pullback.snd
hasPullback_symmetry
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pullbackSymmetry_inv_comp_fst
pullbackSymmetry_inv_comp_snd 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
pullback
hasPullback_symmetry
CategoryTheory.Iso.inv
pullbackSymmetry
pullback.snd
pullback.fst
hasPullback_symmetry
pullbackSymmetry_hom_comp_fst
pullbackSymmetry_inv_comp_snd_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
pullback
hasPullback_symmetry
CategoryTheory.Iso.inv
pullbackSymmetry
pullback.snd
pullback.fst
hasPullback_symmetry
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pullbackSymmetry_inv_comp_snd
pushoutComparison_map_desc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
pushout
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
pushoutComparison
pushout.desc
pushout.hom_ext
inl_comp_pushoutComparison_assoc
CategoryTheory.Functor.map_comp
colimit.ι_desc
inr_comp_pushoutComparison_assoc
pushoutComparison_map_desc_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
pushout
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
pushoutComparison
pushout.desc
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pushoutComparison_map_desc
walkingCospanOpEquiv_counitIso_hom_app 📖mathematicalCategoryTheory.NatTrans.app
WidePushoutShape
WalkingPair
WidePushoutShape.category
CategoryTheory.Functor.comp
Opposite
WidePullbackShape
CategoryTheory.Category.opposite
WidePullbackShape.category
widePushoutShapeOp
widePullbackShapeUnop
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.counitIso
WalkingCospan
WalkingSpan
walkingCospanOpEquiv
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
walkingCospanOpEquiv_counitIso_inv_app 📖mathematicalCategoryTheory.NatTrans.app
WidePushoutShape
WalkingPair
WidePushoutShape.category
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
Opposite
WidePullbackShape
CategoryTheory.Category.opposite
WidePullbackShape.category
widePushoutShapeOp
widePullbackShapeUnop
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.counitIso
WalkingCospan
WalkingSpan
walkingCospanOpEquiv
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
walkingCospanOpEquiv_functor_map 📖mathematicalCategoryTheory.Functor.map
Opposite
WidePullbackShape
WalkingPair
CategoryTheory.Category.opposite
WidePullbackShape.category
WidePushoutShape
WidePushoutShape.category
CategoryTheory.Equivalence.functor
WalkingCospan
WalkingSpan
walkingCospanOpEquiv
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
widePullbackShapeOpMap
Opposite.unop
walkingCospanOpEquiv_functor_obj 📖mathematicalCategoryTheory.Functor.obj
Opposite
WidePullbackShape
WalkingPair
CategoryTheory.Category.opposite
WidePullbackShape.category
WidePushoutShape
WidePushoutShape.category
CategoryTheory.Equivalence.functor
WalkingCospan
WalkingSpan
walkingCospanOpEquiv
Opposite.unop
walkingCospanOpEquiv_inverse_map 📖mathematicalCategoryTheory.Functor.map
WidePushoutShape
WalkingPair
WidePushoutShape.category
Opposite
WidePullbackShape
CategoryTheory.Category.opposite
WidePullbackShape.category
CategoryTheory.Equivalence.inverse
WalkingCospan
WalkingSpan
walkingCospanOpEquiv
widePushoutShapeOpMap
walkingCospanOpEquiv_inverse_obj 📖mathematicalCategoryTheory.Functor.obj
WidePushoutShape
WalkingPair
WidePushoutShape.category
Opposite
WidePullbackShape
CategoryTheory.Category.opposite
WidePullbackShape.category
CategoryTheory.Equivalence.inverse
WalkingCospan
WalkingSpan
walkingCospanOpEquiv
Opposite.op
walkingCospanOpEquiv_unitIso_hom_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
WidePullbackShape
WalkingPair
CategoryTheory.Category.opposite
WidePullbackShape.category
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
WidePushoutShape
WidePushoutShape.category
widePullbackShapeUnop
widePushoutShapeOp
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.unitIso
WalkingCospan
WalkingSpan
walkingCospanOpEquiv
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
walkingCospanOpEquiv_unitIso_inv_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
WidePullbackShape
WalkingPair
CategoryTheory.Category.opposite
WidePullbackShape.category
CategoryTheory.Functor.comp
WidePushoutShape
WidePushoutShape.category
widePullbackShapeUnop
widePushoutShapeOp
CategoryTheory.Functor.id
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.unitIso
WalkingCospan
WalkingSpan
walkingCospanOpEquiv
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
walkingSpanOpEquiv_counitIso_hom_app 📖mathematicalCategoryTheory.NatTrans.app
WidePullbackShape
WalkingPair
WidePullbackShape.category
CategoryTheory.Functor.comp
Opposite
WidePushoutShape
CategoryTheory.Category.opposite
WidePushoutShape.category
widePullbackShapeOp
widePushoutShapeUnop
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.counitIso
WalkingSpan
WalkingCospan
walkingSpanOpEquiv
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
walkingSpanOpEquiv_counitIso_inv_app 📖mathematicalCategoryTheory.NatTrans.app
WidePullbackShape
WalkingPair
WidePullbackShape.category
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
Opposite
WidePushoutShape
CategoryTheory.Category.opposite
WidePushoutShape.category
widePullbackShapeOp
widePushoutShapeUnop
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.counitIso
WalkingSpan
WalkingCospan
walkingSpanOpEquiv
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
walkingSpanOpEquiv_functor_map 📖mathematicalCategoryTheory.Functor.map
Opposite
WidePushoutShape
WalkingPair
CategoryTheory.Category.opposite
WidePushoutShape.category
WidePullbackShape
WidePullbackShape.category
CategoryTheory.Equivalence.functor
WalkingSpan
WalkingCospan
walkingSpanOpEquiv
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
widePushoutShapeOpMap
Opposite.unop
walkingSpanOpEquiv_functor_obj 📖mathematicalCategoryTheory.Functor.obj
Opposite
WidePushoutShape
WalkingPair
CategoryTheory.Category.opposite
WidePushoutShape.category
WidePullbackShape
WidePullbackShape.category
CategoryTheory.Equivalence.functor
WalkingSpan
WalkingCospan
walkingSpanOpEquiv
Opposite.unop
walkingSpanOpEquiv_inverse_map 📖mathematicalCategoryTheory.Functor.map
WidePullbackShape
WalkingPair
WidePullbackShape.category
Opposite
WidePushoutShape
CategoryTheory.Category.opposite
WidePushoutShape.category
CategoryTheory.Equivalence.inverse
WalkingSpan
WalkingCospan
walkingSpanOpEquiv
widePullbackShapeOpMap
walkingSpanOpEquiv_inverse_obj 📖mathematicalCategoryTheory.Functor.obj
WidePullbackShape
WalkingPair
WidePullbackShape.category
Opposite
WidePushoutShape
CategoryTheory.Category.opposite
WidePushoutShape.category
CategoryTheory.Equivalence.inverse
WalkingSpan
WalkingCospan
walkingSpanOpEquiv
Opposite.op
walkingSpanOpEquiv_unitIso_hom_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
WidePushoutShape
WalkingPair
CategoryTheory.Category.opposite
WidePushoutShape.category
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
WidePullbackShape
WidePullbackShape.category
widePushoutShapeUnop
widePullbackShapeOp
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.unitIso
WalkingSpan
WalkingCospan
walkingSpanOpEquiv
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
walkingSpanOpEquiv_unitIso_inv_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
WidePushoutShape
WalkingPair
CategoryTheory.Category.opposite
WidePushoutShape.category
CategoryTheory.Functor.comp
WidePullbackShape
WidePullbackShape.category
widePushoutShapeUnop
widePullbackShapeOp
CategoryTheory.Functor.id
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.unitIso
WalkingSpan
WalkingCospan
walkingSpanOpEquiv
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct

CategoryTheory.Limits.PullbackCone

Theorems

NameKindAssumesProvesValidatesDepends On
fst_limit_cone 📖mathematicalfst
CategoryTheory.Limits.limit.cone
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
CategoryTheory.Limits.pullback.fst
snd_limit_cone 📖mathematicalsnd
CategoryTheory.Limits.limit.cone
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
CategoryTheory.Limits.pullback.snd

CategoryTheory.Limits.PushoutCocone

Theorems

NameKindAssumesProvesValidatesDepends On
inl_colimit_cocone 📖mathematicalinl
CategoryTheory.Limits.colimit.cocone
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.span
CategoryTheory.Limits.pushout.inl
inr_colimit_cocone 📖mathematicalinr
CategoryTheory.Limits.colimit.cocone
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.span
CategoryTheory.Limits.pushout.inr

CategoryTheory.Limits.pullback

Definitions

NameCategoryTheorems
cone 📖CompOp
congrHom 📖CompOp
3 mathmath: mapDesc_comp, congrHom_inv, congrHom_hom
desc' 📖CompOp
fst 📖CompOp
434 mathmath: AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_snd, TopCat.isInducing_pullback_to_prod, CategoryTheory.FinitaryPreExtensive.isIso_sigmaDesc_fst, CategoryTheory.Over.associator_hom_left_snd_fst_assoc, AlgebraicGeometry.Surjective.instFstScheme, HomotopicalAlgebra.instFibrationFstOfIsStableUnderBaseChangeFibrations, CategoryTheory.Over.μ_pullback_left_snd', TopCat.pullbackIsoProdSubtype_hom_fst, CategoryTheory.Limits.pullbackDiagonalMapIdIso_inv_snd_fst_assoc, AlgebraicGeometry.Scheme.Pullback.Triplet.specTensorTo_fst, AlgebraicGeometry.Scheme.Cover.gluedCoverT'_snd_snd_assoc, AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_snd_assoc, CategoryTheory.Limits.diagonalObjPullbackFstIso_inv_snd_snd_assoc, instIsSplitEpiFst, CategoryTheory.Limits.pullback_inv_snd_fst_of_left_isIso, CategoryTheory.IsPullback.isoPullback_inv_fst, RingHom.IsStableUnderBaseChange.pullback_fst_appTop, CategoryTheory.Over.associator_inv_left_snd, AlgebraicGeometry.Scheme.Hom.toNormalization_normalizationPullback_fst, AlgebraicGeometry.Etale.instFstScheme, CategoryTheory.Limits.pullbackDiagonalMapIso.hom_fst, CategoryTheory.Limits.pushoutIsoOpPullback_inl_hom, CategoryTheory.Limits.diagonalObjPullbackFstIso_inv_fst_snd_assoc, AlgebraicGeometry.instLocallyQuasiFiniteFstScheme, CategoryTheory.Limits.pullbackFstFstIso_hom, AlgebraicGeometry.Scheme.Pullback.Triplet.ofPoint_x, CategoryTheory.Limits.pullbackSymmetry_inv_comp_snd_assoc, prodIsoPullback_inv_fst, HomotopicalAlgebra.PrepathObject.trans_p₀, CategoryTheory.Over.rightUnitor_inv_left_fst_assoc, CategoryTheory.Limits.pullbackDiagonalMapIdIso_inv_snd_fst, AlgebraicGeometry.IsProper.instFstScheme, AlgebraicGeometry.IsAffineOpen.isCompact_pullback_inf, CategoryTheory.Limits.Types.range_pullbackFst, AlgebraicGeometry.Scheme.Pullback.t'_snd_fst_fst_assoc, AlgebraicGeometry.Scheme.Cover.glued_cover_cocycle_fst, CategoryTheory.Limits.diagonalObjPullbackFstIso_inv_fst_fst, CategoryTheory.Limits.pullbackProdSndIsoProd_inv_fst_snd, AlgebraicGeometry.Scheme.Pullback.openCoverOfBase_f, CategoryTheory.Limits.pullbackAssoc_hom_snd_fst_assoc, CategoryTheory.PreOneHypercover.cylinderHom_h₁, CategoryTheory.Limits.Types.pullbackIsoPullback_hom_fst, CategoryTheory.Limits.pullbackDiagonalMapIso.inv_fst_assoc, AlgebraicGeometry.Scheme.Cover.glued_cover_cocycle, AlgebraicGeometry.Scheme.Pullback.t_fst_snd_assoc, CategoryTheory.Limits.pullbackRightPullbackFstIso_hom_fst, CategoryTheory.Limits.pullbackLeftPullbackSndIso_inv_fst_snd_assoc, CategoryTheory.Limits.pushoutIsoUnopPullback_inl_hom_assoc, CategoryTheory.Limits.pullbackProdFstIsoProd_hom_fst_assoc, CategoryTheory.Limits.pullbackAssoc_inv_fst_snd, lift_fst_assoc, CategoryTheory.Limits.PreservesPullback.iso_inv_fst_assoc, CategoryTheory.Limits.pullback_diagonal_map_snd_snd_fst_assoc, CategoryTheory.Limits.diagonalObjPullbackFstIso_hom_snd, CategoryTheory.IsPullback.instHasPullbackFst, CategoryTheory.Over.tensorObj_ext_iff, TopCat.pullback_topology, CategoryTheory.Functor.LeibnizAdjunction.adj_counit_app_left, prodIsoPullback_inv_fst_assoc, CategoryTheory.Limits.equalizerPullbackMapIso_inv_ι_snd, CategoryTheory.Limits.pullbackAssoc_inv_fst_snd_assoc, AlgebraicGeometry.Scheme.Pullback.Triplet.specTensorTo_fst_assoc, CategoryTheory.Over.rightUnitor_inv_left_fst, CategoryTheory.Limits.diagonalObjPullbackFstIso_inv_snd_fst, CategoryTheory.Limits.pullbackObjIso_inv_comp_fst_assoc, CategoryTheory.Limits.equalizerPullbackMapIso_inv_ι_fst, CategoryTheory.PreZeroHypercover.toPreOneHypercover_p₁, CategoryTheory.Limits.pushoutIsoUnopPullback_inv_fst, AlgebraicGeometry.Scheme.Pullback.residueFieldCongr_inv_residueFieldMap_ofPoint, CategoryTheory.Limits.pullbackLeftPullbackSndIso_inv_fst, AlgebraicGeometry.IsOpenImmersion.range_pullback_fst_of_right, CategoryTheory.Limits.diagonalObjPullbackFstIso_hom_fst_fst_assoc, AlgebraicGeometry.PresheafedSpace.GlueData.snd_invApp_t_app_assoc, CategoryTheory.MorphismProperty.Over.pullbackCongr_hom_app_left_fst, CategoryTheory.Over.whiskerRight_left_fst, CategoryTheory.Over.postAdjunctionLeft_unit_app_left, CategoryTheory.MorphismProperty.Over.mapPullbackAdj_counit_app, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.pullbackGluedIso_inv_fst_assoc, AlgebraicGeometry.Scheme.Cover.pullbackCoverOverProp_f, CategoryTheory.Over.prodLeftIsoPullback_inv_fst, CategoryTheory.Limits.pullbackIsoUnopPushout_hom_inl, CategoryTheory.Limits.pullbackProdSndIsoProd_hom_fst, AlgebraicGeometry.Scheme.Pullback.cocycle, AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso_hom_snd, TopCat.fst_iso_of_right_embedding_range_subset, AlgebraicGeometry.Scheme.Pullback.carrierEquiv_symm_fst, CategoryTheory.Over.mapPullbackAdj_counit_app, CategoryTheory.Abelian.Pseudoelement.pseudo_pullback, CategoryTheory.Limits.equalizerPullbackMapIso_hom_fst_assoc, AlgebraicGeometry.PresheafedSpace.GlueData.pullback_base, AlgebraicGeometry.Flat.instFstScheme, TopCat.pullbackIsoProdSubtype_inv_fst_assoc, AlgebraicGeometry.Scheme.Pullback.range_fst_comp, AlgebraicGeometry.Scheme.Pullback.t'_fst_fst_snd_assoc, AlgebraicGeometry.Proj.pullbackAwayιIso_inv_fst, prodIsoPullback_hom_fst_assoc, CategoryTheory.Limits.PreservesPullback.iso_inv_fst, AlgebraicGeometry.pullbackRestrictIsoRestrict_inv_fst, CategoryTheory.Limits.pullback_diagonal_map_snd_fst_fst, CategoryTheory.Limits.diagonalObjPullbackFstIso_inv_snd_snd, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.pullbackFstOfRight, AlgebraicGeometry.Scheme.Cover.gluedCoverT'_fst_fst, AlgebraicGeometry.pullbackSpecIso_hom_base, AlgebraicGeometry.Scheme.Pullback.pullbackFstιToV_fst_assoc, CategoryTheory.Over.associator_inv_left_fst_fst_assoc, CategoryTheory.Limits.pullbackSymmetry_inv_comp_fst_assoc, CategoryTheory.PreOneHypercover.sieve₁'_eq_sieve₁, CategoryTheory.Over.associator_hom_left_fst, CategoryTheory.MorphismProperty.baseChange_map', AlgebraicGeometry.Scheme.isMonHom_fst_id_right, AlgebraicGeometry.Scheme.Cover.gluedCoverT'_snd_fst, CategoryTheory.Limits.pullbackZeroZeroIso_inv_fst, CategoryTheory.Over.prodLeftIsoPullback_hom_fst_assoc, CategoryTheory.Limits.pullbackIsoOpPushout_inv_fst_assoc, TopCat.range_pullback_map, CategoryTheory.GlueData.t'_iji, AlgebraicGeometry.instGeometricallyReducedFstScheme, AlgebraicGeometry.Scheme.Pullback.t_snd, CategoryTheory.Limits.pullbackRightPullbackFstIso_hom_snd, CategoryTheory.Limits.pullbackProdFstIsoProd_inv_fst, CategoryTheory.Over.leftUnitor_inv_left_fst, CategoryTheory.ShortComplex.SnakeInput.snd_δ_inr, AlgebraicGeometry.Scheme.Pullback.gluing_f, AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso_hom_fst_assoc, AlgebraicGeometry.Proj.pullbackAwayιIso_inv_fst_assoc, AlgebraicGeometry.pullbackSpecIso_inv_fst'_assoc, AlgebraicGeometry.Proj.pullbackAwayιIso_hom_awayι, AlgebraicGeometry.Scheme.IdealSheafData.ker_fst_of_isClosedImmersion, AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso_hom_ι_assoc, AlgebraicGeometry.Scheme.Pullback.pullbackFstιToV_fst, AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso_inv_snd_assoc, AlgebraicGeometry.Scheme.Pullback.t_fst_fst, CategoryTheory.MorphismProperty.pullback_fst, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_snd', diagonal_fst, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.fst_gluedCocone_ι, AlgebraicGeometry.PresheafedSpace.GlueData.opensImagePreimageMap_app, CategoryTheory.Limits.pullbackDiagonalMapIso.hom_snd_assoc, CategoryTheory.Over.μ_pullback_left_fst_snd', CategoryTheory.Limits.pullbackIsoUnopPushout_inv_fst, AlgebraicGeometry.Scheme.Pullback.range_map, AlgebraicGeometry.Scheme.Pullback.t'_snd_snd, AlgebraicGeometry.SurjectiveOnStalks.isEmbedding_pullback, CategoryTheory.Limits.PreservesPullback.iso_hom_fst, CategoryTheory.Limits.pullbackLeftPullbackSndIso_inv_fst_snd, exists_lift, CategoryTheory.Limits.pullbackProdSndIsoProd_inv_fst_snd_assoc, diagonal_isKernelPair, CategoryTheory.Limits.pushoutIsoOpPullback_inv_fst, CategoryTheory.Limits.pullbackAssoc_hom_snd_snd, AlgebraicGeometry.Scheme.Hom.opensRange_pullbackFst, CategoryTheory.GlueData.t_fac, AlgebraicGeometry.pullbackRestrictIsoRestrict_hom_ι_assoc, CategoryTheory.regularTopology.mapToEqualizer_eq_comp, TopCat.fst_isEmbedding_of_right, AlgebraicGeometry.PresheafedSpace.GlueData.opensImagePreimageMap_app', AlgebraicGeometry.Scheme.IsLocallyDirected.fst_inv_eq_snd_inv, CategoryTheory.Limits.pullbackRightPullbackFstIso_hom_fst_assoc, CategoryTheory.Limits.isPullback_map_snd_snd, AlgebraicGeometry.Scheme.Cover.glued_cover_cocycle_snd, CategoryTheory.Over.associator_hom_left_snd_fst, AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso_inv_fst, AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso_inv_fst_assoc, CategoryTheory.PreZeroHypercover.inter_f, CategoryTheory.Limits.pullbackDiagonalMapIdIso_inv_fst, AlgebraicGeometry.Scheme.IdealSheafData.comapIso_inv_subschemeι_assoc, AlgebraicGeometry.Proj.pullbackAwayιIso_hom_SpecMap_awayMap_left, AlgebraicGeometry.pullbackSpecIso_inv_fst, AlgebraicGeometry.Scheme.Pullback.t'_snd_fst_fst, AlgebraicGeometry.IsFinite.instFstScheme, CategoryTheory.Limits.pushoutIsoUnopPullback_inl_hom, CategoryTheory.Limits.hasPullback_assoc, CategoryTheory.Limits.pullbackAssoc_hom_snd_fst, HomotopicalAlgebra.PathObject.trans_p₀, CategoryTheory.Over.pullback_map_left, condition_assoc, CategoryTheory.Limits.pullbackDiagonalMapIdIso_inv_fst_assoc, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_fst_fst, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.fst_gluedCocone_ι_assoc, CategoryTheory.Limits.pullbackRightPullbackFstIso_inv_fst, TopCat.pullbackIsoProdSubtype_inv_fst, CategoryTheory.Limits.pullbackIsoOpPushout_inv_fst, AlgebraicGeometry.PresheafedSpace.GlueData.f_invApp_f_app_assoc, AlgebraicGeometry.Scheme.Pullback.t'_fst_fst_fst, CategoryTheory.GlueData.t_fac_assoc, CategoryTheory.Limits.diagonalObjPullbackFstIso_inv_snd_fst_assoc, AlgebraicGeometry.Scheme.IdealSheafData.comapIso_inv_subschemeι, AlgebraicGeometry.UniversallyOpen.fst, CategoryTheory.Over.associator_inv_left_fst_snd, AlgebraicGeometry.IsOpenImmersion.range_pullback_to_base_of_left, AlgebraicGeometry.IsIntegralHom.instFstScheme, AlgebraicGeometry.instLocallyOfFinitePresentationFstScheme, CategoryTheory.Limits.pullbackProdSndIsoProd_inv_fst_fst, CategoryTheory.Over.associator_hom_left_snd_snd_assoc, CategoryTheory.Limits.pullback_map_diagonal_isPullback, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_inv_app_comp_fst, CategoryTheory.Limits.pullbackDiagonalMapIso.hom_snd, AlgebraicGeometry.Scheme.Pullback.cocycle_fst_fst_snd, CategoryTheory.Over.μ_pullback_left_fst_fst', CategoryTheory.Limits.pullbackObjIso_hom_comp_fst, CategoryTheory.Limits.pullbackRightPullbackFstIso_inv_snd_snd_assoc, CategoryTheory.Over.μ_pullback_left_fst_snd, CategoryTheory.Limits.isIso_fst_of_mono, CategoryTheory.Functor.relativelyRepresentable.pullback₃.fst_snd_eq_p₂_assoc, AlgebraicGeometry.Scheme.Cover.gluedCoverT'_snd_fst_assoc, CategoryTheory.Limits.pullbackRightPullbackFstIso_inv_fst_assoc, CategoryTheory.Limits.pullback_snd_iso_of_left_factors_mono, AlgebraicGeometry.Proj.pullbackAwayιIso_hom_SpecMap_awayMap_left_assoc, AlgebraicGeometry.PresheafedSpace.GlueData.f_invApp_f_app, CategoryTheory.Limits.pullback_diagonal_map_snd_fst_fst_assoc, CategoryTheory.Limits.pullbackProdSndIsoProd_inv_fst_fst_assoc, AlgebraicGeometry.instGeometricallyIntegralFstScheme, AlgebraicGeometry.Scheme.Pullback.Triplet.specTensorTo_base_fst, CategoryTheory.IsPullback.isoPullback_hom_fst, CategoryTheory.Limits.pullbackDiagonalMapIso.inv_snd_fst, CategoryTheory.Limits.pullbackProdFstIsoProd_inv_fst_assoc, CategoryTheory.regularTopology.equalizerCondition_iff_isIso_lift, CategoryTheory.GlueData.t'_jii, CategoryTheory.Regular.instHasCoequalizerFstSnd, HomotopicalAlgebra.instWeakEquivalenceFstOfIsStableUnderBaseChangeTrivialFibrationsOfFibration, TopCat.range_pullback_to_prod, TopCat.pullback_fst_image_snd_preimage, CategoryTheory.Abelian.epi_pullback_of_epi_g, CategoryTheory.Limits.pullbackDiagonalMapIdIso_hom_fst_assoc, CategoryTheory.Over.associator_inv_left_fst_fst, AlgebraicGeometry.universallyClosed_fst, TopCat.pullbackIsoProdSubtype_inv_fst_apply, CategoryTheory.Limits.pullbackObjIso_hom_comp_fst_assoc, CategoryTheory.Over.tensorHom_left_fst, AlgebraicGeometry.Scheme.instIsOverFstOverInferInstanceOverClassId, AlgebraicGeometry.IsImmersion.instFstScheme, AlgebraicGeometry.Scheme.Cover.pullbackCoverOver_f, CategoryTheory.Limits.pullbackDiagonalMapIso.inv_fst, AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso_hom_snd_assoc, AlgebraicGeometry.Scheme.Pullback.cocycle_fst_fst_fst, fst_of_mono, CategoryTheory.Limits.pullbackAssoc_hom_snd_snd_assoc, CategoryTheory.regularTopology.equalizerCondition_w', AlgebraicGeometry.Scheme.Pullback.openCoverOfBase'_f, AlgebraicGeometry.pullbackSpecIso_inv_fst_assoc, CategoryTheory.PreGaloisCategory.fiberPullbackEquiv_symm_fst_apply, CategoryTheory.Limits.equalizerPullbackMapIso_hom_snd_assoc, AlgebraicGeometry.Scheme.Cover.gluedCover_f, CategoryTheory.Limits.pullbackZeroZeroIso_hom_fst, AlgebraicGeometry.Scheme.Pullback.t_fst_snd, CategoryTheory.Limits.fst_eq_snd_of_mono_eq, CategoryTheory.Limits.pullbackIsoOpPushout_hom_inl, CategoryTheory.Over.tensorHom_left_fst_assoc, prodIsoPullback_hom_fst, CategoryTheory.instHasLiftingPropertyFst, CategoryTheory.Over.prodLeftIsoPullback_inv_fst_assoc, AlgebraicGeometry.PresheafedSpace.GlueData.opensImagePreimageMap_app_assoc, AlgebraicGeometry.pullbackRestrictIsoRestrict_hom_ι, AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_fst_assoc, diagonal_fst_assoc, AlgebraicGeometry.IsOpenImmersion.range_pullback_to_base_of_right, CategoryTheory.MorphismProperty.pullback_fst_iff, AlgebraicGeometry.PresheafedSpace.GlueData.snd_invApp_t_app, hom_ext_iff, AlgebraicGeometry.Scheme.Pullback.t'_snd_fst_snd, CategoryTheory.Over.whiskerLeft_left_fst, AlgebraicGeometry.instQuasiCompactFstScheme, CategoryTheory.MonoOver.inf_map_app, AlgebraicGeometry.Scheme.Pullback.Triplet.fst_SpecTensorTo_apply, CategoryTheory.Limits.pullbackObjIso_inv_comp_fst, CategoryTheory.Limits.pullbackAssoc_inv_snd_assoc, CategoryTheory.Limits.equalizerPullbackMapIso_hom_snd, CategoryTheory.Limits.pullback_inv_snd_fst_of_left_isIso_assoc, CategoryTheory.Limits.pullbackIsoUnopPushout_hom_inl_assoc, AlgebraicGeometry.pullbackSpecIso_hom_fst, CategoryTheory.Limits.diagonalObjPullbackFstIso_hom_fst_snd, AlgebraicGeometry.Scheme.IdealSheafData.comapIso_hom_fst_assoc, CategoryTheory.Limits.Types.pullbackIsoPullback_inv_fst, CategoryTheory.Limits.Types.pullbackIsoPullback_inv_fst_apply, CategoryTheory.Limits.equalizerPullbackMapIso_hom_fst, AlgebraicGeometry.Scheme.Pullback.cocycle_snd_fst_fst, AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso_inv_snd, CategoryTheory.Over.whiskerLeft_left_fst_assoc, TopCat.isEmbedding_pullback_to_prod, AlgebraicGeometry.Scheme.Cover.gluedCoverT'_fst_snd_assoc, TopCat.pullbackIsoProdSubtype_hom_apply, CategoryTheory.Limits.pullbackDiagonalMapIso.inv_snd_fst_assoc, CategoryTheory.Limits.equalizerPullbackMapIso_inv_ι_snd_assoc, CategoryTheory.Limits.pullbackSymmetry_inv_comp_fst, AlgebraicGeometry.Scheme.Pullback.t'_fst_fst_snd, AlgebraicGeometry.instLocallyOfFiniteTypeFstScheme, CategoryTheory.Limits.pullbackRightPullbackFstIso_inv_snd_fst_assoc, CategoryTheory.Limits.pullbackIsoUnopPushout_inv_fst_assoc, CategoryTheory.Over.prodComparisonIso_pullback_Spec_inv_left_fst_fst', AlgebraicGeometry.Proj.pullbackAwayιIso_hom_awayι_assoc, CategoryTheory.Limits.pushoutIsoOpPullback_inl_hom_assoc, TopCat.fst_isOpenEmbedding_of_right, CategoryTheory.Over.leftUnitor_inv_left_fst_assoc, CategoryTheory.Limits.pullback_diagonal_map_snd_snd_fst, AlgebraicGeometry.Scheme.Pullback.cocycle_fst_snd, AlgebraicGeometry.Scheme.Pullback.range_fst, CategoryTheory.IsPullback.of_hasPullback, AlgebraicGeometry.instIsClosedImmersionFstScheme, CategoryTheory.Limits.pullback_inv_fst_snd_of_right_isIso, CategoryTheory.Limits.diagonalObjPullbackFstIso_inv_fst_fst_assoc, CategoryTheory.Limits.pullbackSymmetry_hom_comp_snd_assoc, AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso_hom_ι, CategoryTheory.Functor.relativelyRepresentable.pullback₃.fst_fst'_eq_p₁_assoc, CategoryTheory.Limits.pullbackSymmetry_hom_comp_snd, CategoryTheory.Over.associator_inv_left_fst_snd_assoc, CategoryTheory.IsKernelPair.pullback, CategoryTheory.Over.rightUnitor_hom_left, CategoryTheory.MorphismProperty.Over.pullback_map_left, CategoryTheory.Limits.pullbackComparison_comp_fst, CategoryTheory.Functor.relativelyRepresentable.pullback₃.fst_snd_eq_p₂, AlgebraicGeometry.Scheme.Pullback.t'_snd_snd_assoc, CategoryTheory.Functor.relativelyRepresentable.pullback₃.fst_fst'_eq_p₁, AlgebraicGeometry.Scheme.Pullback.Triplet.ofPoint_s, CategoryTheory.Limits.pullbackLeftPullbackSndIso_hom_fst_assoc, CategoryTheory.PreOneHypercover.sieve₁'_cylinder, AlgebraicGeometry.pullbackSpecIso_hom_base_assoc, AlgebraicGeometry.Scheme.Cover.gluedCoverT'_snd_snd, AlgebraicGeometry.Scheme.IdealSheafData.comapIso_hom_fst, AlgebraicGeometry.pullbackRestrictIsoRestrict_inv_fst_assoc, CategoryTheory.Limits.diagonalObjPullbackFstIso_hom_fst_snd_assoc, CategoryTheory.Limits.pullbackLeftPullbackSndIso_hom_fst, AlgebraicGeometry.Scheme.Pullback.Triplet.exists_preimage, CategoryTheory.GlueData'.t_fac, AlgebraicGeometry.AffineSpace.over_over, AlgebraicGeometry.Scheme.Pullback.t'_fst_snd_assoc, CategoryTheory.Limits.pullbackDiagonalMapIso.inv_snd_snd_assoc, AlgebraicGeometry.Scheme.Hom.toNormalization_normalizationPullback_fst_assoc, CategoryTheory.Limits.diagonalObjPullbackFstIso_hom_snd_assoc, AlgebraicGeometry.pullbackSpecIso_hom_fst'_assoc, CategoryTheory.Limits.pullbackAssoc_hom_fst, CategoryTheory.Limits.PreservesPullback.iso_hom_fst_assoc, CategoryTheory.Over.μ_pullback_left_fst_fst, AlgebraicGeometry.IsSchemeTheoreticallyDominant.pullbackFst, AlgebraicGeometry.Scheme.Pullback.pullbackFstιToV_snd_assoc, CategoryTheory.Limits.pullback_inv_fst_snd_of_right_isIso_assoc, AlgebraicGeometry.pullbackSpecIso_inv_fst', CategoryTheory.PreOneHypercover.toPullback_cylinder, AlgebraicGeometry.Scheme.Pullback.t'_fst_snd, CategoryTheory.Limits.pullbackSymmetry_hom_comp_fst_assoc, CategoryTheory.Limits.diagonalObjPullbackFstIso_hom_fst_fst, CategoryTheory.Limits.pullbackDiagonalMapIso.hom_fst_assoc, AlgebraicGeometry.Scheme.Cover.gluedCoverT'_fst_snd, AlgebraicGeometry.IsPreimmersion.instFstScheme, AlgebraicGeometry.Scheme.IsLocallyDirected.exists_of_pullback_V_V, AlgebraicGeometry.Scheme.Pullback.pullbackFstιToV_snd, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_hom_app_comp_fst_assoc, AlgebraicGeometry.Scheme.Pullback.t'_fst_fst_fst_assoc, AlgebraicGeometry.instQuasiSeparatedFstScheme, AlgebraicGeometry.IsOpenImmersion.opensRange_pullback_fst_of_right, CategoryTheory.Over.whiskerRight_left_fst_assoc, CategoryTheory.PreZeroHypercover.interFst_h₀, AlgebraicGeometry.IsOpenImmersion.range_pullbackFst, CategoryTheory.IsPullback.isoPullback_inv_fst_assoc, CategoryTheory.PreZeroHypercover.pullback₁_f, CategoryTheory.Limits.pullbackSymmetry_inv_comp_snd, AlgebraicGeometry.Scheme.Pullback.cocycle_snd_snd, AlgebraicGeometry.Scheme.Pullback.t_snd_assoc, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_inv_app_comp_fst_assoc, condition, CategoryTheory.IsKernelPair.of_hasPullback, AlgebraicGeometry.instGeometricallyIrreducibleFstScheme, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.sheafedSpace_pullback_fst_of_right, CategoryTheory.Limits.pullbackProdFstIsoProd_hom_fst, CategoryTheory.Limits.mono_pullback_to_prod, AlgebraicGeometry.pullbackSpecIso_hom_fst', CategoryTheory.Limits.pullbackIsoOpPushout_hom_inl_assoc, CategoryTheory.Limits.pullback_map_eq_pullbackFstFstIso_inv, CategoryTheory.PreOneHypercover.cylinder_p₁, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_hom_app_comp_fst, CategoryTheory.Limits.Concrete.pullbackMk_fst, CategoryTheory.Limits.pullback_fst_iso_of_right_iso, AlgebraicGeometry.Scheme.Pullback.cocycle_snd_fst_snd, CategoryTheory.PreOneHypercover.cylinder_p₂, CategoryTheory.regularTopology.EqualizerCondition.bijective_mapToEqualizer_pullback, lift_fst, CategoryTheory.Limits.pullbackRightPullbackFstIso_inv_snd_fst, CategoryTheory.Over.fst_left, CategoryTheory.Over.prodLeftIsoPullback_hom_fst, CategoryTheory.Limits.diagonalObjPullbackFstIso_inv_fst_snd, CategoryTheory.Over.associator_hom_left_fst_assoc, CategoryTheory.Over.isMonHom_pullbackFst_id_right, CategoryTheory.Limits.pullbackComparison_comp_fst_assoc, AlgebraicGeometry.instSmoothFstScheme, CategoryTheory.instIsRegularEpiFst, AlgebraicGeometry.Scheme.Pullback.t_fst_fst_assoc, CategoryTheory.Limits.pullbackSymmetry_hom_comp_fst, AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso_hom_fst, CategoryTheory.Limits.equalizerPullbackMapIso_inv_ι_fst_assoc, AlgebraicGeometry.Scheme.Cover.gluedCoverT'_fst_fst_assoc, CategoryTheory.Limits.pullbackAssoc_inv_snd, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.pullbackGluedIso_inv_fst, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_fst_snd', CategoryTheory.Limits.pullbackAssoc_inv_fst_fst_assoc, CategoryTheory.FinitaryPreExtensive.isPullback_sigmaDesc, lift_fst_snd, CategoryTheory.Limits.pullback_fst_map_snd_isPullback, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.pullback_fst_of_right, CategoryTheory.Equalizer.Presieve.isSheafFor_singleton_iff_of_hasPullback, CategoryTheory.Limits.pullbackRightPullbackFstIso_hom_snd_assoc, AlgebraicGeometry.IsSeparated.instFstScheme, CategoryTheory.Limits.pullbackAssoc_hom_fst_assoc, CategoryTheory.Limits.pullbackDiagonalMapIdIso_hom_fst, AlgebraicGeometry.Scheme.IsJointlySurjectivePreserving.exists_preimage_fst_triplet_of_prop, AlgebraicGeometry.Scheme.Pullback.lift_comp_ι, CategoryTheory.Limits.pullbackLeftPullbackSndIso_inv_fst_assoc, CategoryTheory.IsPullback.isoPullback_hom_fst_assoc, AlgebraicGeometry.PresheafedSpace.GlueData.snd_invApp_t_app', CategoryTheory.Functor.relativelyRepresentable.toPullbackTerminal, CategoryTheory.MorphismProperty.Over.pullbackComp_left_fst_fst, CategoryTheory.Over.associator_hom_left_snd_snd, CategoryTheory.Over.associator_inv_left_snd_assoc, CategoryTheory.Limits.pullbackDiagonalMapIso.inv_snd_snd, AlgebraicGeometry.Scheme.Pullback.exists_preimage_pullback, CategoryTheory.Limits.pullbackFstFstIso_inv, TopCat.pullback_fst_range, CategoryTheory.Functor.PullbackObjObj.ofHasPullback_fst, AlgebraicGeometry.pullbackSpecIso_hom_fst_assoc, AlgebraicGeometry.IsOpenImmersion.instFstScheme, CategoryTheory.Limits.diagonal_pullback_fst, TopCat.pullback_snd_image_fst_preimage, CategoryTheory.Limits.pullback_lift_map_isPullback, CategoryTheory.MorphismProperty.Over.pullbackCongr_hom_app_left_fst_assoc, CategoryTheory.PreOneHypercover.cylinderHom_h₀, AlgebraicGeometry.Scheme.Pullback.diagonalCover_map, AlgebraicGeometry.Scheme.Pullback.t'_snd_fst_snd_assoc, CategoryTheory.Over.tensorObj_hom, CategoryTheory.Limits.pullbackRightPullbackFstIso_inv_snd_snd, CategoryTheory.Limits.PullbackCone.fst_limit_cone, CategoryTheory.Limits.pullbackAssoc_inv_fst_fst, CategoryTheory.PreOneHypercover.cylinder_Y, AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_fst, CategoryTheory.Regular.instMonoDesc, CategoryTheory.Limits.pullbackProdSndIsoProd_hom_fst_assoc, AlgebraicGeometry.exists_etale_isCompl_of_quasiFiniteAt
isLimit 📖CompOp
lift' 📖CompOp
map 📖CompOp
84 mathmath: CategoryTheory.Limits.pullbackDiagonalMapIdIso_inv_snd_fst_assoc, CategoryTheory.Limits.pullbackDiagonalMapIso.hom_fst, AlgebraicGeometry.Scheme.Pullback.openCoverOfLeftRight_f, CategoryTheory.Limits.pullbackDiagonalMapIdIso_inv_snd_fst, CategoryTheory.Over.whiskerLeft_left, CategoryTheory.Limits.pullbackDiagonalMapIdIso_inv_snd_snd_assoc, AlgebraicGeometry.Scheme.Pullback.openCoverOfBase_f, CategoryTheory.PreOneHypercover.cylinderHom_h₁, CategoryTheory.MorphismProperty.Over.pullbackComp_hom_app_left, CategoryTheory.Limits.pullbackDiagonalMapIso.inv_fst_assoc, CategoryTheory.Limits.pullback_diagonal_map_snd_snd_fst_assoc, CategoryTheory.MorphismProperty.Over.pullbackMapHomPullback_app, CategoryTheory.Limits.equalizerPullbackMapIso_inv_ι_snd, CategoryTheory.Limits.equalizerPullbackMapIso_inv_ι_fst, CategoryTheory.Limits.equalizerPullbackMapIso_hom_fst_assoc, AlgebraicGeometry.Scheme.pullback_map_isOpenImmersion, comp_diagonal_assoc, CategoryTheory.Limits.pullback_diagonal_map_snd_fst_fst, CategoryTheory.FinitaryPreExtensive.isIso_sigmaDesc_map, TopCat.range_pullback_map, CategoryTheory.Limits.pullback_lift_diagonal_isPullback, CategoryTheory.Over.starPullbackIsoStar_hom_app_left, map_id, CategoryTheory.Limits.pullbackDiagonalMapIso.hom_snd_assoc, AlgebraicGeometry.Scheme.Pullback.range_map, AlgebraicGeometry.Scheme.Pullback.openCoverOfRight_f, CategoryTheory.MorphismProperty.Over.pullbackComp_inv_app_left, CategoryTheory.PreZeroHypercover.pullbackCoverOfLeft_f, CategoryTheory.Limits.isPullback_map_snd_snd, CategoryTheory.Limits.pullbackDiagonalMapIdIso_inv_fst, CategoryTheory.PreOneHypercover.inter_p₂, CategoryTheory.ShortComplex.SnakeInput.functorP_map, CategoryTheory.Limits.pullbackDiagonalMapIdIso_inv_fst_assoc, CategoryTheory.Over.tensorHom_left, map_comp_assoc, CategoryTheory.Limits.pullback_map_diagonal_isPullback, map_comp, CategoryTheory.Limits.pullbackDiagonalMapIso.hom_snd, CategoryTheory.Over.whiskerRight_left, CategoryTheory.Limits.pullback_diagonal_map_snd_fst_fst_assoc, CategoryTheory.Limits.pullbackDiagonalMapIso.inv_snd_fst, CategoryTheory.PreZeroHypercover.pullbackCoverOfRight_f, CategoryTheory.Limits.pullbackDiagonalMapIdIso_hom_fst_assoc, CategoryTheory.Limits.pullbackDiagonalMapIso.inv_fst, AlgebraicGeometry.Scheme.Pullback.openCoverOfBase'_f, CategoryTheory.Limits.equalizerPullbackMapIso_hom_snd_assoc, comp_diagonal, AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_fst_assoc, CategoryTheory.MorphismProperty.pullback_map, CategoryTheory.Limits.equalizerPullbackMapIso_hom_snd, CategoryTheory.Limits.equalizerPullbackMapIso_hom_fst, CategoryTheory.Limits.pullbackDiagonalMapIso.inv_snd_fst_assoc, CategoryTheory.Limits.equalizerPullbackMapIso_inv_ι_snd_assoc, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.trans_app_left, diagonal_comp, CategoryTheory.Limits.pullback_diagonal_map_snd_snd_fst, CategoryTheory.Limits.pullbackDiagonalMapIdIso_inv_snd_snd, CategoryTheory.IsKernelPair.pullback, TopCat.pullback_map_isOpenEmbedding, CategoryTheory.PreOneHypercover.sieve₁'_cylinder, CategoryTheory.Limits.pullbackDiagonalMapIso.inv_snd_snd_assoc, TopCat.pullback_map_isEmbedding, CategoryTheory.Over.starPullbackIsoStar_inv_app_left, CategoryTheory.Limits.pullbackDiagonalMapIdIso_hom_snd_assoc, CategoryTheory.PreOneHypercover.toPullback_cylinder, CategoryTheory.Limits.pullbackDiagonalMapIso.hom_fst_assoc, CategoryTheory.PreOneHypercover.inter_p₁, CategoryTheory.Limits.pullbackDiagonalMapIdIso_hom_snd, CategoryTheory.Limits.pullback_map_eq_pullbackFstFstIso_inv, congrHom_inv, CategoryTheory.PreOneHypercover.cylinder_p₁, CategoryTheory.PreOneHypercover.cylinder_p₂, congrHom_hom, AlgebraicGeometry.Scheme.Pullback.openCoverOfLeft_f, CategoryTheory.Limits.equalizerPullbackMapIso_inv_ι_fst_assoc, CategoryTheory.Limits.pullback_fst_map_snd_isPullback, map_isIso, CategoryTheory.Limits.pullbackDiagonalMapIdIso_hom_fst, CategoryTheory.Limits.pullbackDiagonalMapIso.inv_snd_snd, CategoryTheory.Limits.pullbackFstFstIso_inv, CategoryTheory.Limits.pullback_lift_map_isPullback, AlgebraicGeometry.Scheme.Pullback.diagonalCover_map, CategoryTheory.PreOneHypercover.cylinder_Y, AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_fst
mapDesc 📖CompOp
3 mathmath: AlgebraicGeometry.IsSeparated.instIsClosedImmersionMapDescScheme, AlgebraicGeometry.IsImmersion.instMapDescScheme, mapDesc_comp
snd 📖CompOp
420 mathmath: AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_snd, TopCat.isInducing_pullback_to_prod, CategoryTheory.Functor.relativelyRepresentable.pullback₃.snd_fst'_eq_p₁, CategoryTheory.Over.associator_hom_left_snd_fst_assoc, CategoryTheory.Limits.pushoutIsoOpPullback_inr_hom_assoc, CategoryTheory.Over.prodLeftIsoPullback_hom_snd_assoc, CategoryTheory.Over.μ_pullback_left_snd', AlgebraicGeometry.instLocallyQuasiFiniteSndScheme, CategoryTheory.Limits.pullbackDiagonalMapIdIso_inv_snd_fst_assoc, AlgebraicGeometry.Scheme.Hom.opensRange_pullbackSnd, AlgebraicGeometry.Scheme.Cover.gluedCoverT'_snd_snd_assoc, CategoryTheory.Limits.pullbackIsoUnopPushout_inv_snd, AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_snd_assoc, CategoryTheory.Limits.diagonalObjPullbackFstIso_inv_snd_snd_assoc, CategoryTheory.Limits.pullback_inv_snd_fst_of_left_isIso, CategoryTheory.Limits.pullbackProdSndIsoProd_hom_snd, CategoryTheory.Over.associator_inv_left_snd, AlgebraicGeometry.Scheme.Hom.toNormalization_normalizationPullback_fst, CategoryTheory.Limits.pullbackDiagonalMapIso.hom_fst, CategoryTheory.Limits.diagonalObjPullbackFstIso_inv_fst_snd_assoc, CategoryTheory.MorphismProperty.IsLocalAtTarget.iff_of_zeroHypercover, CategoryTheory.Limits.pullbackFstFstIso_hom, CategoryTheory.IsPullback.isoPullback_inv_snd_assoc, CategoryTheory.Limits.pullbackSymmetry_inv_comp_snd_assoc, CategoryTheory.Abelian.epi_pullback_of_epi_f, CategoryTheory.IsGrothendieckAbelian.IsPresentable.surjectivity.hf, CategoryTheory.MorphismProperty.pullback_snd_iff, CategoryTheory.Limits.pullbackDiagonalMapIdIso_inv_snd_fst, AlgebraicGeometry.pullbackRestrictIsoRestrict_hom_morphismRestrict_assoc, AlgebraicGeometry.IsAffineOpen.isCompact_pullback_inf, AlgebraicGeometry.Scheme.Pullback.t'_snd_fst_fst_assoc, diagonal_snd_assoc, CategoryTheory.Over.monObjMkPullbackSnd_mul, CategoryTheory.Limits.diagonalObjPullbackFstIso_inv_fst_fst, TopCat.snd_isOpenEmbedding_of_left, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.sheafedSpace_pullback_snd_of_left, CategoryTheory.Functor.relativelyRepresentable.pullback₃.snd_snd_eq_p₃_assoc, CategoryTheory.Limits.Concrete.pullbackMk_snd, AlgebraicGeometry.IsProper.instSndScheme, CategoryTheory.Limits.pullbackDiagonalMapIdIso_inv_snd_snd_assoc, CategoryTheory.Over.grpObjMkPullbackSnd_one, AlgebraicGeometry.Scheme.Pullback.openCoverOfBase_f, CategoryTheory.Limits.pullbackAssoc_hom_snd_fst_assoc, AlgebraicGeometry.Scheme.ideal_ker_le_ker_ΓSpecIso_inv_comp, CategoryTheory.Limits.pullbackIsoOpPushout_hom_inr_assoc, CategoryTheory.Over.grpObjMkPullbackSnd_mul, CategoryTheory.PreOneHypercover.cylinderHom_h₁, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.pullbackGluedIso_inv_snd_assoc, CategoryTheory.MorphismProperty.Over.pullbackComp_hom_app_left, CategoryTheory.Limits.pushoutIsoUnopPullback_inr_hom, CategoryTheory.MorphismProperty.iff_of_zeroHypercover_target, CategoryTheory.Limits.pullback_snd_iso_of_left_iso, CategoryTheory.Limits.pullbackDiagonalMapIso.inv_fst_assoc, AlgebraicGeometry.Scheme.Pullback.t_fst_snd_assoc, CategoryTheory.IsGrothendieckAbelian.IsPresentable.surjectivity.F_map, CategoryTheory.Limits.pullbackLeftPullbackSndIso_inv_fst_snd_assoc, AlgebraicGeometry.Scheme.Pullback.Triplet.specTensorTo_base_snd, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_hom_app_comp_snd_assoc, CategoryTheory.Limits.pullbackAssoc_inv_fst_snd, CategoryTheory.Over.prodLeftIsoPullback_inv_snd, CategoryTheory.Limits.pushoutIsoUnopPullback_inr_hom_assoc, CategoryTheory.ShortComplex.SnakeInput.L₀X₂ToP_comp_pullback_snd, AlgebraicGeometry.instGeometricallyReducedSndScheme, CategoryTheory.Limits.pullback_diagonal_map_snd_snd_fst_assoc, CategoryTheory.Limits.diagonalObjPullbackFstIso_hom_snd, CategoryTheory.Limits.pullbackIsoUnopPushout_hom_inr_assoc, CategoryTheory.Over.leftUnitor_hom_left, CategoryTheory.Over.isCommMonObj_mk_pullbackSnd, CategoryTheory.Over.tensorObj_ext_iff, TopCat.pullback_topology, CategoryTheory.MorphismProperty.IsLocalAtTarget.pullbackSnd, AlgebraicGeometry.IsIntegralHom.instSndScheme, AlgebraicGeometry.Scheme.Pullback.Triplet.snd_SpecTensorTo_apply, CategoryTheory.Limits.pushoutIsoUnopPullback_inv_snd, AlgebraicGeometry.IsSchemeTheoreticallyDominant.pullbackSnd, CategoryTheory.Limits.equalizerPullbackMapIso_inv_ι_snd, CategoryTheory.Limits.pullbackAssoc_inv_fst_snd_assoc, CategoryTheory.Limits.diagonalObjPullbackFstIso_inv_snd_fst, diagonal_snd, AlgebraicGeometry.Scheme.Pullback.residueFieldCongr_inv_residueFieldMap_ofPoint, AlgebraicGeometry.IsOpenImmersion.range_pullbackSnd, CategoryTheory.Limits.pullbackLeftPullbackSndIso_inv_fst, CategoryTheory.Limits.diagonalObjPullbackFstIso_hom_fst_fst_assoc, AlgebraicGeometry.PresheafedSpace.GlueData.snd_invApp_t_app_assoc, CategoryTheory.Over.postAdjunctionLeft_unit_app_left, AlgebraicGeometry.instGeometricallyIntegralSndScheme, lift_snd, CategoryTheory.MonoOver.pullback_obj_arrow, CategoryTheory.Over.preservesTerminalIso_pullback, AlgebraicGeometry.Proj.pullbackAwayιIso_hom_SpecMap_awayMap_right_assoc, AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso_hom_snd, CategoryTheory.Over.prodLeftIsoPullback_inv_snd_assoc, CategoryTheory.Over.rightUnitor_inv_left_snd, AlgebraicGeometry.Proj.pullbackAwayιIso_inv_snd_assoc, AlgebraicGeometry.Scheme.IdealSheafData.comapIso_hom_snd_assoc, CategoryTheory.Abelian.Pseudoelement.pseudo_pullback, AlgebraicGeometry.PresheafedSpace.GlueData.pullback_base, comp_diagonal_assoc, AlgebraicGeometry.pullbackSpecIso_inv_snd, AlgebraicGeometry.Scheme.Pullback.t'_fst_fst_snd_assoc, AlgebraicGeometry.Etale.instSndScheme, CategoryTheory.Over.prodLeftIsoPullback_hom_snd, CategoryTheory.Limits.PreservesPullback.iso_inv_snd, HomotopicalAlgebra.PrepathObject.trans_p₁, CategoryTheory.Limits.HasEqualizersOfHasPullbacksAndBinaryProducts.pullbackFst_eq_pullback_snd, CategoryTheory.Limits.pullback_diagonal_map_snd_fst_fst, CategoryTheory.Over.whiskerRight_left_snd_assoc, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.pullbackSndOfLeft, CategoryTheory.Limits.diagonalObjPullbackFstIso_inv_snd_snd, AlgebraicGeometry.Scheme.Cover.gluedCoverT'_fst_fst, AlgebraicGeometry.Scheme.Pullback.pullbackFstιToV_fst_assoc, CategoryTheory.Limits.pullbackSymmetry_inv_comp_fst_assoc, CategoryTheory.PreOneHypercover.sieve₁'_eq_sieve₁, CategoryTheory.MorphismProperty.baseChange_map', AlgebraicGeometry.Scheme.Cover.gluedCoverT'_snd_fst, CategoryTheory.IsPullback.isoPullback_inv_snd, CategoryTheory.Limits.pullbackZeroZeroIso_hom_snd, TopCat.range_pullback_map, CategoryTheory.GlueData.t'_iji, CategoryTheory.Subobject.pullback_obj, AlgebraicGeometry.Scheme.Pullback.t_snd, CategoryTheory.Limits.pullbackRightPullbackFstIso_hom_snd, lift_snd_assoc, AlgebraicGeometry.Scheme.Pullback.Triplet.specTensorTo_snd, CategoryTheory.ShortComplex.SnakeInput.snd_δ, CategoryTheory.ShortComplex.SnakeInput.snd_δ_inr, AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso_hom_fst_assoc, AlgebraicGeometry.instIsClosedImmersionSndScheme, AlgebraicGeometry.Proj.pullbackAwayιIso_inv_snd, CategoryTheory.Over.tensorHom_left_snd_assoc, AlgebraicGeometry.Scheme.Pullback.pullbackFstιToV_fst, AlgebraicGeometry.Scheme.Pullback.Triplet.specTensorTo_snd_assoc, CategoryTheory.Limits.PullbackCone.snd_limit_cone, CategoryTheory.Over.leftUnitor_inv_left_snd, AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso_inv_snd_assoc, AlgebraicGeometry.Scheme.Pullback.t_fst_fst, AlgebraicGeometry.Scheme.Pullback.carrierEquiv_symm_snd, AlgebraicGeometry.Proj.pullbackAwayιIso_hom_SpecMap_awayMap_right, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_snd', AlgebraicGeometry.PresheafedSpace.GlueData.opensImagePreimageMap_app, CategoryTheory.Limits.pullbackDiagonalMapIso.hom_snd_assoc, CategoryTheory.Over.μ_pullback_left_fst_snd', instIsSplitEpiSnd, AlgebraicGeometry.Scheme.Pullback.range_map, AlgebraicGeometry.Scheme.Pullback.t'_snd_snd, AlgebraicGeometry.SurjectiveOnStalks.isEmbedding_pullback, CategoryTheory.MorphismProperty.Over.pullbackComp_inv_app_left, CategoryTheory.Limits.pullbackLeftPullbackSndIso_inv_fst_snd, AlgebraicGeometry.instGeometricallyIrreducibleSndScheme, CategoryTheory.Over.leftUnitor_inv_left_snd_assoc, exists_lift, CategoryTheory.Limits.pullbackProdFstIsoProd_inv_snd_snd, diagonal_isKernelPair, CategoryTheory.Limits.pullbackAssoc_hom_snd_snd, CategoryTheory.GlueData.t_fac, CategoryTheory.Functor.LeibnizAdjunction.adj_counit_app_right, CategoryTheory.regularTopology.mapToEqualizer_eq_comp, AlgebraicGeometry.UniversallyOpen.snd, AlgebraicGeometry.PresheafedSpace.GlueData.opensImagePreimageMap_app', AlgebraicGeometry.Scheme.IsLocallyDirected.fst_inv_eq_snd_inv, AlgebraicGeometry.Scheme.Hom.instIsIsoNormalizationPullbackOfSmooth, CategoryTheory.Limits.isPullback_map_snd_snd, CategoryTheory.PreZeroHypercover.pullback₂_f, AlgebraicGeometry.Scheme.Cover.glued_cover_cocycle_snd, AlgebraicGeometry.Scheme.Hom.normalizationPullback_snd_assoc, CategoryTheory.Over.associator_hom_left_snd_fst, CategoryTheory.Limits.PreservesPullback.iso_inv_snd_assoc, CategoryTheory.Over.rightUnitor_inv_left_snd_assoc, CategoryTheory.Limits.Types.pullbackIsoPullback_inv_snd, AlgebraicGeometry.instQuasiCompactSndScheme, AlgebraicGeometry.Scheme.Pullback.t'_snd_fst_fst, TopCat.pullbackIsoProdSubtype_inv_snd_apply, AlgebraicGeometry.Scheme.Cover.pullbackCoverOverProp'_f, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.pullback_snd_of_left, CategoryTheory.Limits.pullbackAssoc_hom_snd_fst, AlgebraicGeometry.Scheme.Pullback.range_snd_comp, CategoryTheory.Limits.pullbackProdFstIsoProd_inv_snd_fst, CategoryTheory.Over.pullback_map_left, condition_assoc, CategoryTheory.PreZeroHypercover.interSnd_h₀, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_fst_fst, AlgebraicGeometry.PresheafedSpace.GlueData.f_invApp_f_app_assoc, CategoryTheory.Functor.relativelyRepresentable.pullback₃.snd_snd_eq_p₃, AlgebraicGeometry.Scheme.Pullback.t'_fst_fst_fst, CategoryTheory.GlueData.t_fac_assoc, CategoryTheory.Limits.pullbackIsoOpPushout_inv_snd, CategoryTheory.Limits.pullbackLeftPullbackSndIso_hom_snd_assoc, CategoryTheory.ShortComplex.SnakeInput.snd_δ_assoc, CategoryTheory.Limits.diagonalObjPullbackFstIso_inv_snd_fst_assoc, CategoryTheory.Over.associator_inv_left_fst_snd, CategoryTheory.Limits.pullbackProdFstIsoProd_inv_snd_snd_assoc, CategoryTheory.Limits.hasPullback_assoc_symm, CategoryTheory.Over.associator_hom_left_snd_snd_assoc, TopCat.pullbackIsoProdSubtype_hom_snd, CategoryTheory.Limits.Types.pullbackIsoPullback_hom_snd, CategoryTheory.Limits.pullbackDiagonalMapIso.hom_snd, AlgebraicGeometry.Scheme.Pullback.cocycle_fst_fst_snd, TopCat.snd_iso_of_left_embedding_range_subset, CategoryTheory.Limits.pullbackRightPullbackFstIso_inv_snd_snd_assoc, CategoryTheory.Presieve.ofArrows_pullback, CategoryTheory.Over.μ_pullback_left_fst_snd, CategoryTheory.Over.monObjMkPullbackSnd_one, TopCat.pullbackIsoProdSubtype_inv_snd, AlgebraicGeometry.instQuasiSeparatedSndScheme, AlgebraicGeometry.Scheme.Cover.gluedCoverT'_snd_fst_assoc, AlgebraicGeometry.IsFinite.instSndScheme, AlgebraicGeometry.PresheafedSpace.GlueData.f_invApp_f_app, CategoryTheory.Limits.pullback_diagonal_map_snd_fst_fst_assoc, AlgebraicGeometry.instLocallyOfFiniteTypeSndScheme, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_inv_app_comp_snd, CategoryTheory.Limits.pullbackDiagonalMapIso.inv_snd_fst, CategoryTheory.regularTopology.equalizerCondition_iff_isIso_lift, CategoryTheory.GlueData.t'_jii, prodIsoPullback_hom_snd, CategoryTheory.Regular.instHasCoequalizerFstSnd, CategoryTheory.Limits.PreservesPullback.iso_hom_snd_assoc, TopCat.range_pullback_to_prod, CategoryTheory.Presieve.pullback_singleton, TopCat.pullback_fst_image_snd_preimage, AlgebraicGeometry.Surjective.instSndScheme, CategoryTheory.Limits.pullbackDiagonalMapIdIso_hom_fst_assoc, prodIsoPullback_hom_snd_assoc, AlgebraicGeometry.pullbackSpecIso_inv_snd_assoc, CategoryTheory.Over.snd_left, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_hom_app_comp_snd, CategoryTheory.Limits.pushoutIsoOpPullback_inr_hom, CategoryTheory.Over.whiskerRight_left_snd, AlgebraicGeometry.Scheme.Pullback.openCoverOfBase_X, CategoryTheory.Limits.pullbackComparison_comp_snd_assoc, CategoryTheory.Limits.pullbackDiagonalMapIso.inv_fst, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.pullback_snd_isIso_of_range_subset, AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso_hom_snd_assoc, CategoryTheory.Limits.pullbackAssoc_hom_snd_snd_assoc, CategoryTheory.regularTopology.equalizerCondition_w', AlgebraicGeometry.Scheme.Pullback.openCoverOfBase'_f, CategoryTheory.Limits.equalizerPullbackMapIso_hom_snd_assoc, CategoryTheory.Limits.pullbackLeftPullbackSndIso_hom_snd, AlgebraicGeometry.IsOpenImmersion.range_pullback_snd_of_left, AlgebraicGeometry.Scheme.Pullback.t_fst_snd, comp_diagonal, CategoryTheory.Limits.fst_eq_snd_of_mono_eq, snd_of_mono, AlgebraicGeometry.PresheafedSpace.GlueData.opensImagePreimageMap_app_assoc, CategoryTheory.Over.η_pullback_left, CategoryTheory.Limits.pullbackProdFstIsoProd_inv_snd_fst_assoc, AlgebraicGeometry.Scheme.IdealSheafData.comapIso_hom_snd, CategoryTheory.PreGaloisCategory.fiberPullbackEquiv_symm_snd_apply, AlgebraicGeometry.PresheafedSpace.GlueData.snd_invApp_t_app, hom_ext_iff, AlgebraicGeometry.Scheme.Pullback.t'_snd_fst_snd, CategoryTheory.MonoOver.inf_map_app, CategoryTheory.Limits.pullbackAssoc_inv_snd_assoc, CategoryTheory.Limits.equalizerPullbackMapIso_hom_snd, CategoryTheory.Limits.pullback_inv_snd_fst_of_left_isIso_assoc, CategoryTheory.Functor.PullbackObjObj.ofHasPullback_snd, CategoryTheory.Limits.diagonalObjPullbackFstIso_hom_fst_snd, AlgebraicGeometry.Scheme.IsJointlySurjectivePreserving.exists_preimage_snd_triplet_of_prop, CategoryTheory.instHasLiftingPropertySnd, AlgebraicGeometry.Scheme.Pullback.cocycle_snd_fst_fst, AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso_inv_snd, TopCat.isEmbedding_pullback_to_prod, AlgebraicGeometry.Scheme.Cover.gluedCoverT'_fst_snd_assoc, AlgebraicGeometry.Scheme.Pullback.range_snd, AlgebraicGeometry.instLocallyOfFinitePresentationSndScheme, TopCat.pullbackIsoProdSubtype_hom_apply, CategoryTheory.Limits.pullbackDiagonalMapIso.inv_snd_fst_assoc, CategoryTheory.Limits.equalizerPullbackMapIso_inv_ι_snd_assoc, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.pullback_cone_of_left_condition, CategoryTheory.instIsRegularEpiSnd, CategoryTheory.Limits.pullbackSymmetry_inv_comp_fst, diagonal_comp, AlgebraicGeometry.Scheme.Pullback.t'_fst_fst_snd, CategoryTheory.Limits.pullbackRightPullbackFstIso_inv_snd_fst_assoc, CategoryTheory.Over.prodComparisonIso_pullback_Spec_inv_left_fst_fst', CategoryTheory.Limits.pullbackObjIso_hom_comp_snd_assoc, CategoryTheory.Over.whiskerLeft_left_snd_assoc, CategoryTheory.Limits.Types.range_pullbackSnd, CategoryTheory.Limits.pullback_snd_iso_of_right_factors_mono, AlgebraicGeometry.IsPreimmersion.instSndScheme, CategoryTheory.Limits.pullback_diagonal_map_snd_snd_fst, prodIsoPullback_inv_snd, AlgebraicGeometry.Scheme.Pullback.cocycle_fst_snd, CategoryTheory.IsPullback.of_hasPullback, CategoryTheory.Limits.pullback_inv_fst_snd_of_right_isIso, TopCat.pullbackIsoProdSubtype_inv_snd_assoc, CategoryTheory.Limits.diagonalObjPullbackFstIso_inv_fst_fst_assoc, CategoryTheory.Limits.pullbackDiagonalMapIdIso_inv_snd_snd, CategoryTheory.Limits.pullbackSymmetry_hom_comp_snd_assoc, CategoryTheory.Limits.pullbackSymmetry_hom_comp_snd, CategoryTheory.Over.associator_inv_left_fst_snd_assoc, CategoryTheory.IsPullback.isoPullback_hom_snd_assoc, CategoryTheory.MorphismProperty.Over.pullback_map_left, CategoryTheory.Limits.pullbackProdSndIsoProd_hom_snd_assoc, CategoryTheory.Limits.pullbackComparison_comp_snd, AlgebraicGeometry.Scheme.Pullback.t'_snd_snd_assoc, CategoryTheory.Over.μ_pullback_left_snd, CategoryTheory.Limits.pullbackLeftPullbackSndIso_hom_fst_assoc, CategoryTheory.MorphismProperty.pullback_snd, AlgebraicGeometry.Scheme.Cover.gluedCoverT'_snd_snd, CategoryTheory.Limits.pullbackZeroZeroIso_inv_snd, CategoryTheory.Limits.diagonalObjPullbackFstIso_hom_fst_snd_assoc, CategoryTheory.Limits.pullbackLeftPullbackSndIso_hom_fst, AlgebraicGeometry.Scheme.Pullback.Triplet.exists_preimage, CategoryTheory.GlueData'.t_fac, CategoryTheory.Limits.pullbackIsoOpPushout_hom_inr, CategoryTheory.Limits.pullbackObjIso_inv_comp_snd_assoc, AlgebraicGeometry.Scheme.Pullback.t'_fst_snd_assoc, CategoryTheory.Limits.pullbackDiagonalMapIso.inv_snd_snd_assoc, AlgebraicGeometry.Scheme.Hom.toNormalization_normalizationPullback_fst_assoc, CategoryTheory.MorphismProperty.Over.pullback_obj_hom, CategoryTheory.ShortComplex.SnakeInput.L₀X₂ToP_comp_pullback_snd_assoc, CategoryTheory.Limits.diagonalObjPullbackFstIso_hom_snd_assoc, CategoryTheory.IsGrothendieckAbelian.IsPresentable.surjectivity.F_obj, HomotopicalAlgebra.instWeakEquivalenceSndOfIsStableUnderBaseChangeTrivialFibrationsOfFibration, CategoryTheory.Limits.pullbackAssoc_hom_fst, AlgebraicGeometry.Scheme.Pullback.pullbackFstιToV_snd_assoc, CategoryTheory.Limits.pullback_inv_fst_snd_of_right_isIso_assoc, CategoryTheory.Limits.pullbackDiagonalMapIdIso_hom_snd_assoc, AlgebraicGeometry.Scheme.Pullback.t'_fst_snd, AlgebraicGeometry.Scheme.Cover.pullbackCoverOver'_f, CategoryTheory.Limits.pullbackSymmetry_hom_comp_fst_assoc, AlgebraicGeometry.IsOpenImmersion.opensRange_pullback_snd_of_left, CategoryTheory.Limits.diagonalObjPullbackFstIso_hom_fst_fst, CategoryTheory.Limits.pullbackDiagonalMapIso.hom_fst_assoc, AlgebraicGeometry.Scheme.Cover.gluedCoverT'_fst_snd, CategoryTheory.Limits.pushoutIsoOpPullback_inv_snd, AlgebraicGeometry.Scheme.IsLocallyDirected.exists_of_pullback_V_V, AlgebraicGeometry.Scheme.canonicallyOverPullback_over, AlgebraicGeometry.pullbackRestrictIsoRestrict_hom_morphismRestrict, CategoryTheory.Limits.pullbackIsoOpPushout_inv_snd_assoc, CategoryTheory.Limits.pullbackLeftPullbackSndIso_inv_snd_snd, CategoryTheory.MorphismProperty.instHasPullbackSndHomDiscretePUnitOfHasPullbacksAlongOfIsStableUnderBaseChangeAlong, AlgebraicGeometry.Scheme.Pullback.pullbackFstιToV_snd, AlgebraicGeometry.Scheme.Pullback.t'_fst_fst_fst_assoc, CategoryTheory.Over.tensorHom_left_snd, CategoryTheory.Limits.pullbackProdFstIsoProd_hom_snd_assoc, AlgebraicGeometry.Flat.instSndScheme, CategoryTheory.Presieve.uncurry_pullbackArrows, CategoryTheory.Limits.pullbackSymmetry_inv_comp_snd, AlgebraicGeometry.Scheme.Pullback.cocycle_snd_snd, prodIsoPullback_inv_snd_assoc, AlgebraicGeometry.Scheme.Hom.normalizationPullback_snd, AlgebraicGeometry.Scheme.Pullback.t_snd_assoc, condition, CategoryTheory.Limits.pullbackProdSndIsoProd_inv_snd_assoc, CategoryTheory.IsPullback.isoPullback_hom_snd, CategoryTheory.IsKernelPair.of_hasPullback, AlgebraicGeometry.instSmoothSndScheme, CategoryTheory.Limits.mono_pullback_to_prod, CategoryTheory.PreOneHypercover.sieve₁_inter, CategoryTheory.Limits.pullbackProdSndIsoProd_inv_snd, AlgebraicGeometry.IsImmersion.instSndScheme, CategoryTheory.Limits.pullbackDiagonalMapIdIso_hom_snd, CategoryTheory.Limits.pullback_map_eq_pullbackFstFstIso_inv, HomotopicalAlgebra.instFibrationSndOfIsStableUnderBaseChangeFibrations, CategoryTheory.Limits.PreservesPullback.iso_hom_snd, AlgebraicGeometry.Scheme.Pullback.Triplet.ofPoint_y, AlgebraicGeometry.Scheme.Pullback.cocycle_snd_fst_snd, CategoryTheory.Limits.isIso_snd_of_mono, CategoryTheory.PreOneHypercover.cylinder_p₂, CategoryTheory.regularTopology.EqualizerCondition.bijective_mapToEqualizer_pullback, CategoryTheory.Limits.pullbackIsoUnopPushout_inv_snd_assoc, CategoryTheory.Limits.pullbackRightPullbackFstIso_inv_snd_fst, CategoryTheory.Limits.pullbackLeftPullbackSndIso_inv_snd_snd_assoc, CategoryTheory.Limits.diagonalObjPullbackFstIso_inv_fst_snd, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.pullback_snd_isIso_of_range_subset, CategoryTheory.Over.isMonHom_pullbackFst_id_right, CategoryTheory.Over.pullback_obj_hom, AlgebraicGeometry.pullbackSpecIso_hom_snd, AlgebraicGeometry.Scheme.Pullback.t_fst_fst_assoc, CategoryTheory.Limits.pullbackSymmetry_hom_comp_fst, AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso_hom_fst, AlgebraicGeometry.Scheme.Cover.gluedCoverT'_fst_fst_assoc, CategoryTheory.Limits.Types.pullbackIsoPullback_inv_snd_apply, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.pullbackGluedIso_inv_snd, CategoryTheory.Limits.pullbackAssoc_inv_snd, TopCat.pullback_snd_range, CategoryTheory.Limits.pullbackIsoUnopPushout_hom_inr, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_fst_snd', CategoryTheory.Functor.relativelyRepresentable.pullback₃.snd_fst'_eq_p₁_assoc, TopCat.snd_isEmbedding_of_left, CategoryTheory.Limits.pullbackObjIso_inv_comp_snd, CategoryTheory.Limits.pullbackAssoc_inv_fst_fst_assoc, CategoryTheory.FinitaryPreExtensive.isPullback_sigmaDesc, CategoryTheory.Over.ε_pullback_left, lift_fst_snd, CategoryTheory.Limits.pullback_fst_map_snd_isPullback, CategoryTheory.Equalizer.Presieve.isSheafFor_singleton_iff_of_hasPullback, CategoryTheory.Limits.pullbackRightPullbackFstIso_hom_snd_assoc, CategoryTheory.Limits.pullbackAssoc_hom_fst_assoc, CategoryTheory.Limits.pullbackDiagonalMapIdIso_hom_fst, AlgebraicGeometry.Scheme.Pullback.lift_comp_ι, CategoryTheory.Limits.pullbackLeftPullbackSndIso_inv_fst_assoc, CategoryTheory.Limits.pullbackProdFstIsoProd_hom_snd, AlgebraicGeometry.PresheafedSpace.GlueData.snd_invApp_t_app', CategoryTheory.Functor.relativelyRepresentable.toPullbackTerminal, CategoryTheory.MorphismProperty.Over.pullbackComp_left_fst_fst, CategoryTheory.Over.associator_hom_left_snd_snd, CategoryTheory.Over.associator_inv_left_snd_assoc, CategoryTheory.Limits.pullbackDiagonalMapIso.inv_snd_snd, AlgebraicGeometry.IsSeparated.instSndScheme, AlgebraicGeometry.IsOpenImmersion.instSndScheme, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_inv_app_comp_snd_assoc, AlgebraicGeometry.Scheme.Pullback.exists_preimage_pullback, CategoryTheory.Limits.pullbackFstFstIso_inv, CategoryTheory.Over.whiskerLeft_left_snd, HomotopicalAlgebra.PathObject.trans_p₁, CategoryTheory.PreZeroHypercover.toPreOneHypercover_p₂, CategoryTheory.Limits.diagonal_pullback_fst, TopCat.pullback_snd_image_fst_preimage, CategoryTheory.Limits.pullback_lift_map_isPullback, AlgebraicGeometry.Scheme.Pullback.t'_snd_fst_snd_assoc, CategoryTheory.Limits.pullbackRightPullbackFstIso_inv_snd_snd, CategoryTheory.Over.postAdjunctionLeft_counit_app_left, CategoryTheory.Limits.pullbackAssoc_inv_fst_fst, CategoryTheory.Limits.pullbackObjIso_hom_comp_snd, AlgebraicGeometry.universallyClosed_snd, CategoryTheory.Regular.instMonoDesc, AlgebraicGeometry.exists_etale_isCompl_of_quasiFiniteAt, AlgebraicGeometry.pullbackSpecIso_hom_snd_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
condition 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback
fst
snd
CategoryTheory.Limits.PullbackCone.condition
condition_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback
fst
snd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
condition
congrHom_hom 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.Limits.pullback
congrHom
map
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
congrHom_inv 📖mathematicalCategoryTheory.Iso.inv
CategoryTheory.Limits.pullback
congrHom
map
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
hom_ext
CategoryTheory.Limits.limit.lift_π
CategoryTheory.Category.comp_id
exists_lift 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.comp
CategoryTheory.Limits.pullback
fst
snd
CategoryTheory.Limits.limit.lift_π
hom_ext 📖CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback
fst
snd
CategoryTheory.Limits.limit.hom_ext
CategoryTheory.Limits.PullbackCone.equalizer_ext
hom_ext_iff 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback
fst
snd
hom_ext
lift_fst 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback
lift
fst
CategoryTheory.Limits.limit.lift_π
lift_fst_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback
lift
fst
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift_fst
lift_fst_snd 📖mathematicallift
CategoryTheory.Limits.pullback
fst
snd
condition
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
hom_ext
condition
CategoryTheory.Limits.limit.lift_π
CategoryTheory.Category.id_comp
lift_snd 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback
lift
snd
CategoryTheory.Limits.limit.lift_π
lift_snd_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback
lift
snd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift_snd
mapDesc_comp 📖mathematicalmapDesc
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback
CategoryTheory.Iso.hom
congrHom
CategoryTheory.Category.assoc
CategoryTheory.Category.assoc
hom_ext
CategoryTheory.Limits.limit.lift_π
CategoryTheory.Category.comp_id
map_comp 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback
map
hom_ext
CategoryTheory.Category.assoc
CategoryTheory.Limits.limit.lift_π
CategoryTheory.Limits.limit.lift_π_assoc
map_comp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback
map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_comp
map_id 📖mathematicalmap
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback
hom_ext
CategoryTheory.Limits.limit.lift_π
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
map_isIso 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.IsIso
CategoryTheory.Limits.pullback
map
CategoryTheory.IsIso.comp_inv_eq
CategoryTheory.Category.assoc
CategoryTheory.IsIso.inv_hom_id_assoc
hom_ext
CategoryTheory.Limits.limit.lift_π
CategoryTheory.Limits.limit.lift_π_assoc
CategoryTheory.IsIso.hom_inv_id
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.IsIso.inv_hom_id

CategoryTheory.Limits.pushout

Definitions

NameCategoryTheorems
cocone 📖CompOp
congrHom 📖CompOp
3 mathmath: congrHom_hom, mapLift_comp, congrHom_inv
desc 📖CompOp
15 mathmath: inr_desc, HomotopicalAlgebra.Precylinder.trans_π, CategoryTheory.Functor.LeibnizAdjunction.adj_counit_app_left, CategoryTheory.Under.pushout_map, inl_desc_assoc, CategoryTheory.Limits.pushoutComparison_map_desc, HomotopicalAlgebra.Cylinder.trans_π, HomotopicalAlgebra.Precylinder.LeftHomotopy.trans_h, desc_inl_inr, CategoryTheory.Limits.pushoutComparison_map_desc_assoc, CategoryTheory.Under.mapPushoutAdj_counit_app, inr_desc_assoc, inl_desc, CategoryTheory.Under.postAdjunctionRight_counit_app_right, CategoryTheory.Functor.PushoutObjObj.ofHasPushout_ι
inl 📖CompOp
112 mathmath: CategoryTheory.IsPushout.of_hasPushout, CategoryTheory.instHasLiftingPropertyInl, CategoryTheory.Limits.hasPushout_assoc, CategoryTheory.Limits.pushoutIsoOpPullback_inl_hom, CategoryTheory.Limits.PushoutCocone.inl_colimit_cocone, inl_coprodIsoPushout_hom, CategoryTheory.Limits.inr_inl_pushoutRightPushoutInlIso_hom_assoc, CategoryTheory.Limits.inl_comp_pushoutComparison_assoc, CategoryTheory.Limits.inl_inr_pushoutAssoc_inv_assoc, CategoryTheory.Limits.inl_comp_pushoutObjIso_hom, CategoryTheory.Limits.inr_inr_pushoutRightPushoutInlIso_hom, CategoryTheory.Limits.pushoutIsoUnopPullback_inl_hom_assoc, CategoryTheory.Functor.LeibnizAdjunction.adj_unit_app_left, CategoryTheory.Limits.inl_pushoutAssoc_inv_assoc, CategoryTheory.Limits.inr_inl_pushoutLeftPushoutInrIso_hom, condition, CategoryTheory.Limits.inr_inl_pushoutRightPushoutInlIso_hom, CategoryTheory.Limits.inl_comp_pushoutComparison, CategoryTheory.Under.pushout_map, CategoryTheory.Limits.pushoutIsoUnopPullback_inv_fst, CategoryTheory.Limits.inl_inl_pushoutLeftPushoutInrIso_hom_assoc, CategoryTheory.Limits.pullbackIsoUnopPushout_hom_inl, CategoryTheory.Limits.Types.instMonoPushoutInl, CategoryTheory.Limits.inl_inl_pushoutLeftPushoutInrIso_hom, inl_desc_assoc, CategoryTheory.Limits.PreservesPushout.inl_iso_inv, CategoryTheory.Limits.pullbackIsoOpPushout_inv_fst_assoc, CategoryTheory.Limits.inr_pushoutAssoc_hom_assoc, CategoryTheory.Under.mapPushoutAdj_unit_app, CategoryTheory.Limits.inl_pushoutRightPushoutInlIso_inv, CategoryTheory.ShortComplex.SnakeInput.snd_δ_inr, hom_ext_iff, CommRingCat.HomTopology.isEmbedding_pushout, CategoryTheory.Limits.pushout_inr_inv_inl_of_right_isIso_assoc, CategoryTheory.Limits.PreservesPushout.inl_iso_inv_assoc, CategoryTheory.Limits.pullbackIsoUnopPushout_inv_fst, CategoryTheory.Limits.pushoutIsoOpPullback_inv_fst, inl_of_epi, CategoryTheory.Limits.inl_eq_inr_of_epi_eq, CategoryTheory.Abelian.mono_pushout_of_mono_g, CategoryTheory.Limits.inr_comp_pushoutSymmetry_inv_assoc, CategoryTheory.Limits.pushoutIsoUnopPullback_inl_hom, CommRingCat.pushout_inl_tensorProdObjIsoPushoutObj_inv_right_assoc, CategoryTheory.Limits.pullbackIsoOpPushout_inv_fst, CategoryTheory.Limits.inr_pushoutAssoc_hom, exists_desc, CategoryTheory.Limits.inl_comp_pushoutSymmetry_inv, CategoryTheory.Limits.inl_pushoutLeftPushoutInrIso_inv, CategoryTheory.Limits.inr_comp_pushoutSymmetry_hom_assoc, CategoryTheory.Limits.PreservesPushout.inl_iso_hom_assoc, CommRingCat.pushout_inl_tensorProdObjIsoPushoutObj_inv_right, CategoryTheory.Limits.inr_pushoutRightPushoutInlIso_inv, CategoryTheory.Limits.epi_coprod_to_pushout, CategoryTheory.Limits.pushout_inl_iso_of_left_factors_epi, CategoryTheory.MorphismProperty.pushout_inl, HomotopicalAlgebra.Cylinder.trans_i₀, CategoryTheory.IsPushout.inl_isoPushout_inv, CategoryTheory.Limits.inl_inl_pushoutAssoc_hom, HomotopicalAlgebra.instCofibrationInlOfIsStableUnderCobaseChangeCofibrations, AlgebraicGeometry.isPullback_Spec_map_pushout, CategoryTheory.Limits.inr_inr_pushoutRightPushoutInlIso_hom_assoc, CategoryTheory.Limits.inl_inr_pushoutAssoc_inv, CategoryTheory.Limits.pullbackIsoOpPushout_hom_inl, desc_inl_inr, CommRingCat.inl_injective_of_flat, CategoryTheory.Limits.inl_comp_pushoutObjIso_inv, CategoryTheory.Limits.pullbackIsoUnopPushout_hom_inl_assoc, CategoryTheory.Limits.inr_comp_pushoutSymmetry_inv, CategoryTheory.IsPushout.inl_isoPushout_hom, HomotopicalAlgebra.instWeakEquivalenceInlOfIsStableUnderCobaseChangeTrivialCofibrationsOfCofibration, CategoryTheory.Limits.inl_pushoutLeftPushoutInrIso_inv_assoc, CategoryTheory.Limits.inr_pushoutRightPushoutInlIso_inv_assoc, CategoryTheory.Functor.PushoutObjObj.ofHasPushout_inl, CategoryTheory.Limits.inl_comp_pushoutObjIso_inv_assoc, CategoryTheory.Limits.pullbackIsoUnopPushout_inv_fst_assoc, CategoryTheory.Limits.pushoutIsoOpPullback_inl_hom_assoc, CategoryTheory.IsPushout.inl_isoPushout_hom_assoc, CategoryTheory.Limits.inr_inl_pushoutAssoc_hom, CategoryTheory.Limits.pushout_inl_iso_of_right_iso, CategoryTheory.Limits.inl_comp_pushoutSymmetry_inv_assoc, CategoryTheory.IsPushout.inl_isoPushout_inv_assoc, CategoryTheory.Limits.inl_comp_pushoutObjIso_hom_assoc, AlgebraicGeometry.isPullback_SpecMap_pushout, CategoryTheory.Limits.inl_pushoutAssoc_inv, CategoryTheory.Limits.inl_inl_pushoutAssoc_hom_assoc, CategoryTheory.Limits.inl_pushoutRightPushoutInlIso_hom, CategoryTheory.Limits.inr_inr_pushoutAssoc_inv_assoc, inl_coprodIsoPushout_inv, CategoryTheory.Limits.inl_pushoutZeroZeroIso_inv, CategoryTheory.Limits.inl_pushoutRightPushoutInlIso_hom_assoc, CategoryTheory.Limits.pushout_inl_inv_inr_of_right_isIso_assoc, CategoryTheory.Limits.inl_comp_pushoutSymmetry_hom_assoc, CategoryTheory.Limits.PreservesPushout.inl_iso_hom, CategoryTheory.Limits.inl_comp_pushoutSymmetry_hom, inl_desc, CategoryTheory.Limits.inr_inl_pushoutLeftPushoutInrIso_hom_assoc, inl_coprodIsoPushout_hom_assoc, CategoryTheory.Under.postAdjunctionRight_counit_app_right, CategoryTheory.Limits.pullbackIsoOpPushout_hom_inl_assoc, CategoryTheory.Limits.pushout_inl_inv_inr_of_right_isIso, inl_coprodIsoPushout_inv_assoc, CategoryTheory.Limits.inr_inl_pushoutAssoc_hom_assoc, condition_assoc, CategoryTheory.Limits.pushout_inr_inv_inl_of_right_isIso, CategoryTheory.Limits.inl_pushoutRightPushoutInlIso_inv_assoc, HomotopicalAlgebra.Precylinder.trans_i₀, CategoryTheory.Limits.inl_pushoutZeroZeroIso_hom, CategoryTheory.Limits.isIso_inl_of_epi, CategoryTheory.Limits.inr_inr_pushoutAssoc_inv, CategoryTheory.Limits.inr_comp_pushoutSymmetry_hom, CategoryTheory.MorphismProperty.pushout_inl_iff, RingHom.IsStableUnderBaseChange.pushout_inl
inr 📖CompOp
115 mathmath: CategoryTheory.Limits.pushoutIsoOpPullback_inr_hom_assoc, CategoryTheory.IsPushout.of_hasPushout, CategoryTheory.Limits.PreservesPushout.inr_iso_inv_assoc, CategoryTheory.Limits.pullbackIsoUnopPushout_inv_snd, inr_desc, CategoryTheory.Limits.PreservesPushout.inr_iso_inv, CategoryTheory.Limits.inr_inl_pushoutRightPushoutInlIso_hom_assoc, CategoryTheory.Limits.pullbackIsoOpPushout_hom_inr_assoc, CategoryTheory.Limits.pushout_inr_iso_of_left_iso, CategoryTheory.Limits.inl_inr_pushoutAssoc_inv_assoc, CategoryTheory.Limits.pushoutIsoUnopPullback_inr_hom, CategoryTheory.Limits.PreservesPushout.inr_iso_hom_assoc, CategoryTheory.Limits.inr_inr_pushoutRightPushoutInlIso_hom, CategoryTheory.Limits.pushoutIsoUnopPullback_inr_hom_assoc, CategoryTheory.Limits.inl_pushoutAssoc_inv_assoc, CategoryTheory.Limits.inr_inl_pushoutLeftPushoutInrIso_hom, CategoryTheory.Limits.pullbackIsoUnopPushout_hom_inr_assoc, CategoryTheory.Limits.inr_comp_pushoutObjIso_hom_assoc, CategoryTheory.Limits.pushoutIsoUnopPullback_inv_snd, condition, CategoryTheory.Limits.inr_inl_pushoutRightPushoutInlIso_hom, CategoryTheory.Under.pushout_map, CategoryTheory.IsPushout.inr_isoPushout_inv_assoc, CategoryTheory.Limits.inr_pushoutLeftPushoutInrIso_inv, CommRingCat.pushout_inr_tensorProdObjIsoPushoutObj_inv_right_assoc, CategoryTheory.IsPushout.inr_isoPushout_hom_assoc, CategoryTheory.Limits.inl_inl_pushoutLeftPushoutInrIso_hom_assoc, CategoryTheory.IsPushout.inr_isoPushout_inv, CategoryTheory.Under.postAdjunctionRight_unit_app_right, CategoryTheory.Limits.inr_pushoutZeroZeroIso_hom, CategoryTheory.Limits.inr_pushoutLeftPushoutInrIso_inv_assoc, CategoryTheory.Limits.hasPushout_assoc_symm, CategoryTheory.Limits.inl_inl_pushoutLeftPushoutInrIso_hom, CategoryTheory.Limits.inr_pushoutAssoc_hom_assoc, CategoryTheory.Under.mapPushoutAdj_unit_app, CategoryTheory.ShortComplex.SnakeInput.snd_δ_inr, hom_ext_iff, CommRingCat.HomTopology.isEmbedding_pushout, inr_coprodIsoPushout_hom_assoc, HomotopicalAlgebra.instCofibrationInrOfIsStableUnderCobaseChangeCofibrations, CategoryTheory.Limits.pushout_inr_inv_inl_of_right_isIso_assoc, HomotopicalAlgebra.instWeakEquivalenceInrOfIsStableUnderCobaseChangeTrivialCofibrationsOfCofibration, CategoryTheory.Limits.inl_eq_inr_of_epi_eq, CommRingCat.inr_injective_of_flat, CategoryTheory.Limits.pushout_inr_iso_of_right_factors_epi, CategoryTheory.Limits.inr_comp_pushoutSymmetry_inv_assoc, CategoryTheory.Limits.HasCoequalizersOfHasPushoutsAndBinaryCoproducts.pushoutInl_eq_pushout_inr, CategoryTheory.MorphismProperty.pushout_inr, CategoryTheory.Limits.inr_pushoutAssoc_hom, CategoryTheory.Limits.pullbackIsoOpPushout_inv_snd, exists_desc, CategoryTheory.Limits.inl_comp_pushoutSymmetry_inv, CategoryTheory.Limits.PushoutCocone.inr_colimit_cocone, CategoryTheory.Limits.inl_pushoutLeftPushoutInrIso_inv, CategoryTheory.Limits.inr_comp_pushoutSymmetry_hom_assoc, CategoryTheory.Limits.inr_pushoutRightPushoutInlIso_inv, CategoryTheory.Limits.epi_coprod_to_pushout, CategoryTheory.Limits.PreservesPushout.inr_iso_hom, CategoryTheory.Limits.inl_inl_pushoutAssoc_hom, AlgebraicGeometry.isPullback_Spec_map_pushout, CategoryTheory.Limits.inr_inr_pushoutRightPushoutInlIso_hom_assoc, CategoryTheory.Limits.pushoutIsoOpPullback_inr_hom, CategoryTheory.Limits.inl_inr_pushoutAssoc_inv, desc_inl_inr, CategoryTheory.instHasLiftingPropertyInr, CategoryTheory.Limits.inr_comp_pushoutObjIso_inv, CategoryTheory.Limits.inr_comp_pushoutSymmetry_inv, CategoryTheory.Under.pushout_obj, CategoryTheory.Limits.inr_pushoutZeroZeroIso_inv, CategoryTheory.Limits.inl_pushoutLeftPushoutInrIso_inv_assoc, CategoryTheory.Limits.inr_pushoutRightPushoutInlIso_inv_assoc, inr_coprodIsoPushout_hom, CategoryTheory.Limits.inr_inl_pushoutAssoc_hom, CategoryTheory.MorphismProperty.pushout_inr_iff, CategoryTheory.Limits.inl_comp_pushoutSymmetry_inv_assoc, CategoryTheory.Limits.inr_comp_pushoutComparison_assoc, CategoryTheory.Under.mapPushoutAdj_counit_app, HomotopicalAlgebra.Cylinder.trans_i₁, AlgebraicGeometry.isPullback_SpecMap_pushout, CategoryTheory.Limits.inl_pushoutAssoc_inv, CategoryTheory.Limits.inl_inl_pushoutAssoc_hom_assoc, CategoryTheory.Limits.pullbackIsoOpPushout_hom_inr, CategoryTheory.Limits.inr_inr_pushoutAssoc_inv_assoc, CategoryTheory.Limits.pushout_inl_inv_inr_of_right_isIso_assoc, inr_desc_assoc, CategoryTheory.Functor.LeibnizAdjunction.adj_unit_app_right, CategoryTheory.Functor.PushoutObjObj.ofHasPushout_inr, CategoryTheory.Limits.inl_comp_pushoutSymmetry_hom_assoc, CategoryTheory.Limits.pushoutIsoOpPullback_inv_snd, CategoryTheory.Abelian.mono_pushout_of_mono_f, CategoryTheory.Limits.pullbackIsoOpPushout_inv_snd_assoc, CategoryTheory.Limits.inl_comp_pushoutSymmetry_hom, CategoryTheory.Limits.isIso_inr_of_epi, inr_coprodIsoPushout_inv, CategoryTheory.Limits.inr_inl_pushoutLeftPushoutInrIso_hom_assoc, CategoryTheory.Under.postAdjunctionRight_counit_app_right, CategoryTheory.Limits.inr_comp_pushoutObjIso_inv_assoc, CategoryTheory.Limits.Types.instMonoPushoutInr, CategoryTheory.Limits.inr_comp_pushoutObjIso_hom, CategoryTheory.Limits.inr_pushoutLeftPushoutInrIso_hom_assoc, CategoryTheory.Limits.pushout_inl_inv_inr_of_right_isIso, CategoryTheory.IsPushout.inr_isoPushout_hom, CategoryTheory.Limits.pullbackIsoUnopPushout_inv_snd_assoc, CategoryTheory.Limits.inr_inl_pushoutAssoc_hom_assoc, CategoryTheory.Limits.pullbackIsoUnopPushout_hom_inr, CategoryTheory.Limits.inr_pushoutLeftPushoutInrIso_hom, HomotopicalAlgebra.Precylinder.trans_i₁, inr_coprodIsoPushout_inv_assoc, condition_assoc, CategoryTheory.Limits.pushout_inr_inv_inl_of_right_isIso, CategoryTheory.Limits.inr_inr_pushoutAssoc_inv, CategoryTheory.Limits.inr_comp_pushoutSymmetry_hom, CategoryTheory.Limits.inr_comp_pushoutComparison, inr_of_epi, CommRingCat.pushout_inr_tensorProdObjIsoPushoutObj_inv_right
isColimit 📖CompOp
map 📖CompOp
6 mathmath: map_comp, map_comp_assoc, congrHom_hom, congrHom_inv, map_id, map_isIso
mapLift 📖CompOp
1 mathmath: mapLift_comp

Theorems

NameKindAssumesProvesValidatesDepends On
condition 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pushout
inl
inr
CategoryTheory.Limits.PushoutCocone.condition
condition_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pushout
inl
inr
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
condition
congrHom_hom 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.Limits.pushout
congrHom
map
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
congrHom_inv 📖mathematicalCategoryTheory.Iso.inv
CategoryTheory.Limits.pushout
congrHom
map
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
hom_ext
CategoryTheory.Limits.colimit.ι_desc
CategoryTheory.Category.id_comp
desc_inl_inr 📖mathematicaldesc
CategoryTheory.Limits.pushout
inl
inr
condition
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
hom_ext
condition
CategoryTheory.Limits.colimit.ι_desc
CategoryTheory.Category.comp_id
exists_desc 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.comp
CategoryTheory.Limits.pushout
inl
inr
CategoryTheory.Limits.colimit.ι_desc
hom_ext 📖CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pushout
inl
inr
CategoryTheory.Limits.colimit.hom_ext
CategoryTheory.Limits.PushoutCocone.coequalizer_ext
hom_ext_iff 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pushout
inl
inr
hom_ext
inl_desc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pushout
inl
desc
CategoryTheory.Limits.colimit.ι_desc
inl_desc_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pushout
inl
desc
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
inl_desc
inr_desc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pushout
inr
desc
CategoryTheory.Limits.colimit.ι_desc
inr_desc_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pushout
inr
desc
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
inr_desc
mapLift_comp 📖mathematicalmapLift
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pushout
CategoryTheory.Iso.hom
congrHom
CategoryTheory.Category.assoc
CategoryTheory.Category.assoc
hom_ext
CategoryTheory.Limits.colimit.ι_desc
CategoryTheory.Category.id_comp
CategoryTheory.Limits.colimit.ι_desc_assoc
map_comp 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pushout
map
hom_ext
CategoryTheory.Limits.colimit.ι_desc_assoc
CategoryTheory.Category.assoc
CategoryTheory.Limits.colimit.ι_desc
map_comp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pushout
map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_comp
map_id 📖mathematicalmap
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pushout
hom_ext
CategoryTheory.Limits.colimit.ι_desc
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
map_isIso 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.IsIso
CategoryTheory.Limits.pushout
map
CategoryTheory.IsIso.comp_inv_eq
CategoryTheory.Category.assoc
CategoryTheory.IsIso.inv_hom_id_assoc
hom_ext
CategoryTheory.Limits.colimit.ι_desc_assoc
CategoryTheory.Limits.colimit.ι_desc
CategoryTheory.IsIso.hom_inv_id_assoc
CategoryTheory.Category.comp_id

---

← Back to Index