Documentation Verification Report

PullbackCone

📁 Source: Mathlib/CategoryTheory/Limits/Shapes/Pullback/PullbackCone.lean

Statistics

MetricCount
Definitionscocone, cone, ofPushoutCocone, ofPullbackCone, PullbackCone, lift', mk, eta, ext, flip, flipFlipIso, flipIsLimit, fst, isLimitAux, isLimitAux', isLimitOfFlip, isoMk, mk, mkSelfIsLimit, ofCone, snd, PushoutCocone, desc, desc', mk, eta, ext, flip, flipFlipIso, flipIsColimit, inl, inr, isColimitAux, isColimitAux', isColimitOfFlip, isoMk, mk, mkSelfIsColimit, ofCocone
39
Theoremscocone_inl, cocone_inr, cone_fst, cone_snd, ofPushoutCocone_pt, ofPushoutCocone_ι, ofPullbackCone_pt, ofPullbackCone_π, hom_ext, lift_fst, lift_fst_assoc, lift_snd, lift_snd_assoc, condition, condition_assoc, condition_one, equalizer_ext, eta_hom_hom, eta_inv_hom, flip_fst, flip_pt, flip_snd, isoMk_hom_hom, isoMk_inv_hom, mk_fst, mk_pt, mk_snd, mk_π_app, mk_π_app_left, mk_π_app_one, mk_π_app_right, ofCone_pt, ofCone_π, π_app_left, π_app_right, hom_ext, inl_desc, inl_desc_assoc, inr_desc, inr_desc_assoc, coequalizer_ext, condition, condition_assoc, condition_zero, eta_hom_hom, eta_inv_hom, flip_inl, flip_inr, flip_pt, isoMk_hom_hom, isoMk_inv_hom, mk_inl, mk_inr, mk_pt, mk_ι_app, mk_ι_app_left, mk_ι_app_right, mk_ι_app_zero, ofCocone_pt, ofCocone_ι, ι_app_left, ι_app_right
62
Total101

CategoryTheory.CommSq

Definitions

NameCategoryTheorems
cocone 📖CompOp
2 mathmath: cocone_inl, cocone_inr
cone 📖CompOp
2 mathmath: cone_snd, cone_fst

Theorems

NameKindAssumesProvesValidatesDepends On
cocone_inl 📖mathematicalCategoryTheory.CommSqCategoryTheory.Limits.PushoutCocone.inl
cocone
cocone_inr 📖mathematicalCategoryTheory.CommSqCategoryTheory.Limits.PushoutCocone.inr
cocone
cone_fst 📖mathematicalCategoryTheory.CommSqCategoryTheory.Limits.PullbackCone.fst
cone
cone_snd 📖mathematicalCategoryTheory.CommSqCategoryTheory.Limits.PullbackCone.snd
cone

CategoryTheory.Limits

Definitions

NameCategoryTheorems
PullbackCone 📖CompOp
9 mathmath: pullbackConeEquivBinaryFan_functor_map_hom, pullbackConeEquivBinaryFan_counitIso, IsLimit.pullbackConeEquivBinaryFanFunctor_lift_left, pullbackConeEquivBinaryFan_inverse_obj, pullbackConeEquivBinaryFan_functor_obj, PullbackCone.eta_inv_hom, PullbackCone.eta_hom_hom, pullbackConeEquivBinaryFan_unitIso, pullbackConeEquivBinaryFan_inverse_map_hom
PushoutCocone 📖CompOp
9 mathmath: pushoutCoconeEquivBinaryCofan_inverse_obj, pushoutCoconeEquivBinaryCofan_functor_obj, pushoutCoconeEquivBinaryCofan_unitIso, pushoutCoconeEquivBinaryCofan_inverse_map_hom, PushoutCocone.eta_inv_hom, pushoutCoconeEquivBinaryCofan_functor_map_hom, IsColimit.pushoutCoconeEquivBinaryCofanFunctor_desc_right, PushoutCocone.eta_hom_hom, pushoutCoconeEquivBinaryCofan_counitIso

CategoryTheory.Limits.Cocone

Definitions

NameCategoryTheorems
ofPushoutCocone 📖CompOp
2 mathmath: ofPushoutCocone_ι, ofPushoutCocone_pt

Theorems

NameKindAssumesProvesValidatesDepends On
ofPushoutCocone_pt 📖mathematicalpt
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
ofPushoutCocone
CategoryTheory.Limits.span
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingSpan.zero
CategoryTheory.Limits.WalkingSpan.left
CategoryTheory.Limits.WalkingSpan.right
CategoryTheory.Functor.map
CategoryTheory.Limits.WalkingSpan.Hom.fst
CategoryTheory.Limits.WalkingSpan.Hom.snd
ofPushoutCocone_ι 📖mathematicalι
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
ofPushoutCocone
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Limits.span
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingSpan.zero
CategoryTheory.Limits.WalkingSpan.left
CategoryTheory.Limits.WalkingSpan.right
CategoryTheory.Functor.map
CategoryTheory.Limits.WalkingSpan.Hom.fst
CategoryTheory.Limits.WalkingSpan.Hom.snd
CategoryTheory.Functor.const
pt
CategoryTheory.Iso.hom
CategoryTheory.Limits.diagramIsoSpan

CategoryTheory.Limits.Cone

Definitions

NameCategoryTheorems
ofPullbackCone 📖CompOp
2 mathmath: ofPullbackCone_pt, ofPullbackCone_π

Theorems

NameKindAssumesProvesValidatesDepends On
ofPullbackCone_pt 📖mathematicalpt
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
ofPullbackCone
CategoryTheory.Limits.cospan
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingCospan.left
CategoryTheory.Limits.WalkingCospan.right
CategoryTheory.Limits.WalkingCospan.one
CategoryTheory.Functor.map
CategoryTheory.Limits.WalkingCospan.Hom.inl
CategoryTheory.Limits.WalkingCospan.Hom.inr
ofPullbackCone_π 📖mathematicalπ
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
ofPullbackCone
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.Functor.const
pt
CategoryTheory.Limits.cospan
CategoryTheory.Limits.WalkingCospan.left
CategoryTheory.Limits.WalkingCospan.right
CategoryTheory.Limits.WalkingCospan.one
CategoryTheory.Functor.map
CategoryTheory.Limits.WalkingCospan.Hom.inl
CategoryTheory.Limits.WalkingCospan.Hom.inr
CategoryTheory.Iso.inv
CategoryTheory.Limits.diagramIsoCospan

CategoryTheory.Limits.PullbackCone

Definitions

NameCategoryTheorems
eta 📖CompOp
3 mathmath: eta_inv_hom, eta_hom_hom, CategoryTheory.Limits.pullbackConeEquivBinaryFan_unitIso
ext 📖CompOp
flip 📖CompOp
3 mathmath: flip_fst, flip_snd, flip_pt
flipFlipIso 📖CompOp
flipIsLimit 📖CompOp
fst 📖CompOp
57 mathmath: AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_snd, CategoryTheory.regularTopology.EqualizerCondition.bijective_mapToEqualizer_pullback', AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_snd_assoc, CategoryTheory.Abelian.epi_fst_of_factor_thru_epi_mono_factorization, CategoryTheory.Limits.FormalCoproduct.pullbackCone_fst_φ, condition, TopCat.Sheaf.interUnionPullbackCone_fst, CompHausLike.pullback.isLimit_lift, unop_inl, AlgebraicGeometry.Scheme.Pullback.gluedLift_p1, IsLimit.lift_fst, CategoryTheory.IsPullback.cone_fst, IsLimit.equivPullbackObj_apply_fst, condition_assoc, combine_π_app, CategoryTheory.Limits.pullbackConeEquivBinaryFan_functor_map_hom, CategoryTheory.Limits.pullbackConeEquivBinaryFan_counitIso, CategoryTheory.Limits.IsLimit.pullbackConeEquivBinaryFanFunctor_lift_left, mono_fst_of_is_pullback_of_mono, CategoryTheory.Equalizer.Presieve.isSheafFor_singleton_iff, mk_fst, isIso_fst_of_mono_of_isLimit, CategoryTheory.Limits.pullbackConeOfRightIso_fst, CategoryTheory.ChosenPullbacksAlong.pullbackCone_fst, CategoryTheory.IsPullback.of_isLimit, CategoryTheory.Limits.pullbackConeOfLeftIso_fst, CategoryTheory.Limits.pullbackConeEquivBinaryFan_functor_obj, π_app_left, CategoryTheory.regularTopology.parallelPair_pullback_initial, eta_inv_hom, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift_fst, flip_fst, TopCat.Sheaf.interUnionPullbackConeLift_left, IsLimit.equivPullbackObj_symm_apply_fst, eta_hom_hom, AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_fst_assoc, toPullbackObj_coe_fst, flip_snd, op_inl, CategoryTheory.Limits.FormalCoproduct.pullbackCone_fst_f, CategoryTheory.Limits.FormalCoproduct.pullbackCone_condition, CategoryTheory.regularTopology.equalizerCondition_w, CategoryTheory.mono_iff_fst_eq_snd, CategoryTheory.Limits.Types.pullbackLimitCone_isLimit, condition_one, CategoryTheory.Abelian.epi_fst_of_isLimit, fst_eq_snd_of_mono_eq, IsLimit.lift_fst_assoc, CategoryTheory.CommSq.cone_fst, CategoryTheory.mono_iff_isIso_fst, CategoryTheory.Limits.FormalCoproduct.homPullbackEquiv_apply_coe, CategoryTheory.Limits.pullbackConeEquivBinaryFan_unitIso, CategoryTheory.Limits.PushoutCocone.unop_fst, CategoryTheory.Limits.PushoutCocone.op_fst, CategoryTheory.Limits.FormalCoproduct.isPullback, fst_limit_cone, AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_fst
isLimitAux 📖CompOp
1 mathmath: CategoryTheory.Limits.Types.pullbackLimitCone_isLimit
isLimitAux' 📖CompOp
isLimitOfFlip 📖CompOp
isoMk 📖CompOp
2 mathmath: isoMk_inv_hom, isoMk_hom_hom
mk 📖CompOp
mkSelfIsLimit 📖CompOp
ofCone 📖CompOp
2 mathmath: ofCone_π, ofCone_pt
snd 📖CompOp
54 mathmath: CategoryTheory.regularTopology.EqualizerCondition.bijective_mapToEqualizer_pullback', TopCat.Sheaf.interUnionPullbackCone_snd, CategoryTheory.ChosenPullbacksAlong.pullbackCone_snd, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift_snd, π_app_right, condition, CategoryTheory.Limits.PushoutCocone.op_snd, CompHausLike.pullback.isLimit_lift, CategoryTheory.Limits.pullbackConeOfLeftIso_snd, mk_snd, condition_assoc, unop_inr, toPullbackObj_coe_snd, combine_π_app, CategoryTheory.Limits.pullbackConeEquivBinaryFan_functor_map_hom, op_inr, CategoryTheory.Limits.pullbackConeEquivBinaryFan_counitIso, AlgebraicGeometry.Scheme.Pullback.gluedLift_p2, CategoryTheory.Equalizer.Presieve.isSheafFor_singleton_iff, snd_limit_cone, TopCat.Sheaf.interUnionPullbackConeLift_right, CategoryTheory.IsPullback.of_isLimit, CategoryTheory.Limits.pullbackConeEquivBinaryFan_functor_obj, CategoryTheory.Abelian.epi_snd_of_isLimit, IsLimit.equivPullbackObj_apply_snd, CategoryTheory.regularTopology.parallelPair_pullback_initial, CategoryTheory.Limits.pullbackConeOfRightIso_snd, eta_inv_hom, flip_fst, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.pullbackConeSndIsOpenImmersion, eta_hom_hom, AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_fst_assoc, flip_snd, IsLimit.lift_snd, CategoryTheory.CommSq.cone_snd, CategoryTheory.IsPullback.cone_snd, CategoryTheory.Limits.FormalCoproduct.pullbackCone_condition, CategoryTheory.regularTopology.equalizerCondition_w, CategoryTheory.mono_iff_fst_eq_snd, CategoryTheory.Limits.Types.pullbackLimitCone_isLimit, isIso_snd_of_mono_of_isLimit, fst_eq_snd_of_mono_eq, IsLimit.lift_snd_assoc, CategoryTheory.Limits.FormalCoproduct.homPullbackEquiv_apply_coe, CategoryTheory.Limits.pullbackConeEquivBinaryFan_unitIso, CategoryTheory.mono_iff_isIso_snd, IsLimit.equivPullbackObj_symm_apply_snd, mono_snd_of_is_pullback_of_mono, CategoryTheory.Limits.PushoutCocone.unop_snd, CategoryTheory.Limits.FormalCoproduct.pullbackCone_snd_f, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.instSndPullbackConeOfLeft, CategoryTheory.Limits.FormalCoproduct.pullbackCone_snd_φ, CategoryTheory.Limits.FormalCoproduct.isPullback, AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_fst

Theorems

NameKindAssumesProvesValidatesDepends On
condition 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
fst
snd
CategoryTheory.Limits.Cone.w
condition_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
fst
snd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
condition
condition_one 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.cospan
CategoryTheory.Limits.Cone.π
CategoryTheory.Limits.WalkingCospan.one
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
fst
CategoryTheory.NatTrans.naturality
CategoryTheory.Category.id_comp
equalizer_ext 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
fst
snd
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.π
CategoryTheory.Limits.Cone.w
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
eta_hom_hom 📖mathematicalCategoryTheory.Limits.ConeMorphism.hom
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
CategoryTheory.Limits.Cone.pt
fst
snd
condition
CategoryTheory.Iso.hom
CategoryTheory.Limits.PullbackCone
CategoryTheory.Limits.Cone.category
eta
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
condition
eta_inv_hom 📖mathematicalCategoryTheory.Limits.ConeMorphism.hom
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
CategoryTheory.Limits.Cone.pt
fst
snd
condition
CategoryTheory.Iso.inv
CategoryTheory.Limits.PullbackCone
CategoryTheory.Limits.Cone.category
eta
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
condition
flip_fst 📖mathematicalfst
flip
snd
flip_pt 📖mathematicalCategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
flip
flip_snd 📖mathematicalsnd
flip
fst
isoMk_hom_hom 📖mathematicalCategoryTheory.Limits.ConeMorphism.hom
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingCospan.left
CategoryTheory.Limits.WalkingCospan.right
CategoryTheory.Limits.WalkingCospan.one
CategoryTheory.Functor.map
CategoryTheory.Limits.WalkingCospan.Hom.inl
CategoryTheory.Limits.WalkingCospan.Hom.inr
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
CategoryTheory.Limits.Cones.postcompose
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.diagramIsoCospan
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cone.π
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.comp
CategoryTheory.NatTrans.naturality
isoMk
CategoryTheory.CategoryStruct.id
CategoryTheory.NatTrans.naturality
isoMk_inv_hom 📖mathematicalCategoryTheory.Limits.ConeMorphism.hom
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingCospan.left
CategoryTheory.Limits.WalkingCospan.right
CategoryTheory.Limits.WalkingCospan.one
CategoryTheory.Functor.map
CategoryTheory.Limits.WalkingCospan.Hom.inl
CategoryTheory.Limits.WalkingCospan.Hom.inr
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cone.π
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
CategoryTheory.Limits.Cones.postcompose
CategoryTheory.Iso.hom
CategoryTheory.Limits.diagramIsoCospan
CategoryTheory.Iso.inv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.comp
CategoryTheory.NatTrans.naturality
isoMk
CategoryTheory.CategoryStruct.id
CategoryTheory.NatTrans.naturality
mk_fst 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
fst
mk_pt 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.comp
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
mk_snd 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
snd
mk_π_app 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.comp
CategoryTheory.NatTrans.app
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.cospan
CategoryTheory.Limits.Cone.π
mk_π_app_left 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.cospan
CategoryTheory.Limits.Cone.π
CategoryTheory.Limits.WalkingCospan.left
mk_π_app_one 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.cospan
CategoryTheory.Limits.Cone.π
CategoryTheory.Limits.WalkingCospan.one
mk_π_app_right 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.cospan
CategoryTheory.Limits.Cone.π
CategoryTheory.Limits.WalkingCospan.right
ofCone_pt 📖mathematicalCategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingCospan.left
CategoryTheory.Limits.WalkingCospan.right
CategoryTheory.Limits.WalkingCospan.one
CategoryTheory.Functor.map
CategoryTheory.Limits.WalkingCospan.Hom.inl
CategoryTheory.Limits.WalkingCospan.Hom.inr
ofCone
ofCone_π 📖mathematicalCategoryTheory.Limits.Cone.π
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingCospan.left
CategoryTheory.Limits.WalkingCospan.right
CategoryTheory.Limits.WalkingCospan.one
CategoryTheory.Functor.map
CategoryTheory.Limits.WalkingCospan.Hom.inl
CategoryTheory.Limits.WalkingCospan.Hom.inr
ofCone
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.Iso.hom
CategoryTheory.Limits.diagramIsoCospan
π_app_left 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.cospan
CategoryTheory.Limits.Cone.π
CategoryTheory.Limits.WalkingCospan.left
fst
π_app_right 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.cospan
CategoryTheory.Limits.Cone.π
CategoryTheory.Limits.WalkingCospan.right
snd

CategoryTheory.Limits.PullbackCone.IsLimit

Definitions

NameCategoryTheorems
lift' 📖CompOp
mk 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
hom_ext 📖CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
CategoryTheory.Limits.PullbackCone.fst
CategoryTheory.Limits.PullbackCone.snd
CategoryTheory.Limits.IsLimit.hom_ext
CategoryTheory.Limits.PullbackCone.equalizer_ext
lift_fst 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
lift
CategoryTheory.Limits.PullbackCone.fst
CategoryTheory.Limits.IsLimit.fac
lift_fst_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
lift
CategoryTheory.Limits.PullbackCone.fst
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift_fst
lift_snd 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
lift
CategoryTheory.Limits.PullbackCone.snd
CategoryTheory.Limits.IsLimit.fac
lift_snd_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
lift
CategoryTheory.Limits.PullbackCone.snd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift_snd

CategoryTheory.Limits.PushoutCocone

Definitions

NameCategoryTheorems
eta 📖CompOp
3 mathmath: CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_unitIso, eta_inv_hom, eta_hom_hom
ext 📖CompOp
flip 📖CompOp
3 mathmath: flip_pt, flip_inr, flip_inl
flipFlipIso 📖CompOp
flipIsColimit 📖CompOp
inl 📖CompOp
37 mathmath: inl_colimit_cocone, flip_inr, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_functor_obj, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_unitIso, CategoryTheory.Limits.Types.pushoutCocone_inl_eq_inr_iff_of_isColimit, inl_eq_inr_of_epi_eq, condition_assoc, CategoryTheory.Limits.PullbackCone.unop_inl, CommRingCat.pushoutCocone_inl, epi_inl_of_is_pushout_of_epi, CategoryTheory.IsPushout.cocone_inl, condition, CategoryTheory.CommSq.cocone_inl, CategoryTheory.Limits.pushoutCoconeOfLeftIso_inl, CategoryTheory.Limits.Types.pushoutCocone_inl_eq_inr_iff_of_iso, eta_inv_hom, condition_zero, ι_app_left, isIso_inl_of_epi_of_isColimit, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_functor_map_hom, IsColimit.inl_desc_assoc, CategoryTheory.epi_iff_inl_eq_inr, mk_inl, CategoryTheory.Limits.PullbackCone.op_inl, CategoryTheory.Limits.IsColimit.pushoutCoconeEquivBinaryCofanFunctor_desc_right, IsColimit.inl_desc, CategoryTheory.Abelian.mono_inl_of_isColimit, flip_inl, CategoryTheory.epi_iff_isIso_inl, CategoryTheory.Limits.Multicofork.IsColimit.isPushout.multicofork_π_eq_inl, eta_hom_hom, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_counitIso, CategoryTheory.Abelian.mono_inl_of_factor_thru_epi_mono_factorization, CategoryTheory.IsPushout.of_isColimit, CategoryTheory.Limits.pushoutCoconeOfRightIso_inl, unop_fst, op_fst
inr 📖CompOp
36 mathmath: flip_inr, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_functor_obj, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_unitIso, mk_inr, CategoryTheory.Limits.Types.pushoutCocone_inl_eq_inr_iff_of_isColimit, inl_eq_inr_of_epi_eq, condition_assoc, CategoryTheory.Limits.Multicofork.IsColimit.isPushout.multicofork_π_eq_inr, op_snd, CategoryTheory.IsPushout.cocone_inr, condition, CategoryTheory.Limits.PullbackCone.unop_inr, CommRingCat.pushoutCocone_inr, CategoryTheory.Limits.PullbackCone.op_inr, CategoryTheory.Limits.Types.pushoutCocone_inl_eq_inr_iff_of_iso, CategoryTheory.CommSq.cocone_inr, eta_inv_hom, ι_app_right, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_functor_map_hom, inr_colimit_cocone, CategoryTheory.epi_iff_inl_eq_inr, CategoryTheory.Limits.Types.pushoutCocone_inr_mono_of_isColimit, IsColimit.inr_desc_assoc, IsColimit.inr_desc, epi_inr_of_is_pushout_of_epi, flip_inl, eta_hom_hom, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_counitIso, CategoryTheory.Abelian.mono_inr_of_isColimit, CategoryTheory.IsPushout.of_isColimit, CategoryTheory.Limits.pushoutCoconeOfRightIso_inr, isIso_inr_of_epi_of_isColimit, unop_snd, CategoryTheory.Limits.pushoutCoconeOfLeftIso_inr, CategoryTheory.epi_iff_isIso_inr, CategoryTheory.Limits.Types.pushoutCocone_inr_injective_of_isColimit
isColimitAux 📖CompOp
isColimitAux' 📖CompOp
isColimitOfFlip 📖CompOp
isoMk 📖CompOp
2 mathmath: isoMk_inv_hom, isoMk_hom_hom
mk 📖CompOp
mkSelfIsColimit 📖CompOp
ofCocone 📖CompOp
2 mathmath: ofCocone_ι, ofCocone_pt

Theorems

NameKindAssumesProvesValidatesDepends On
coequalizer_ext 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.span
inl
inr
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ι
CategoryTheory.Limits.Cocone.w
CategoryTheory.Category.assoc
condition 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.span
inl
inr
CategoryTheory.Limits.Cocone.w
condition_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.span
inl
inr
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
condition
condition_zero 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.span
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.Cocone.ι
CategoryTheory.Limits.WalkingSpan.zero
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
inl
CategoryTheory.NatTrans.naturality
CategoryTheory.Category.comp_id
eta_hom_hom 📖mathematicalCategoryTheory.Limits.CoconeMorphism.hom
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.span
CategoryTheory.Limits.Cocone.pt
inl
inr
condition
CategoryTheory.Iso.hom
CategoryTheory.Limits.PushoutCocone
CategoryTheory.Limits.Cocone.category
eta
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
condition
eta_inv_hom 📖mathematicalCategoryTheory.Limits.CoconeMorphism.hom
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.span
CategoryTheory.Limits.Cocone.pt
inl
inr
condition
CategoryTheory.Iso.inv
CategoryTheory.Limits.PushoutCocone
CategoryTheory.Limits.Cocone.category
eta
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
condition
flip_inl 📖mathematicalinl
flip
inr
flip_inr 📖mathematicalinr
flip
inl
flip_pt 📖mathematicalCategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.span
flip
isoMk_hom_hom 📖mathematicalCategoryTheory.Limits.CoconeMorphism.hom
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.span
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingSpan.zero
CategoryTheory.Limits.WalkingSpan.left
CategoryTheory.Limits.WalkingSpan.right
CategoryTheory.Functor.map
CategoryTheory.Limits.WalkingSpan.Hom.fst
CategoryTheory.Limits.WalkingSpan.Hom.snd
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
CategoryTheory.Limits.Cocones.precompose
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.diagramIsoSpan
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ι
CategoryTheory.Iso.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.comp
CategoryTheory.NatTrans.naturality
isoMk
CategoryTheory.CategoryStruct.id
CategoryTheory.NatTrans.naturality
isoMk_inv_hom 📖mathematicalCategoryTheory.Limits.CoconeMorphism.hom
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.span
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingSpan.zero
CategoryTheory.Limits.WalkingSpan.left
CategoryTheory.Limits.WalkingSpan.right
CategoryTheory.Functor.map
CategoryTheory.Limits.WalkingSpan.Hom.fst
CategoryTheory.Limits.WalkingSpan.Hom.snd
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ι
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
CategoryTheory.Limits.Cocones.precompose
CategoryTheory.Iso.inv
CategoryTheory.Limits.diagramIsoSpan
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.comp
CategoryTheory.NatTrans.naturality
isoMk
CategoryTheory.CategoryStruct.id
CategoryTheory.NatTrans.naturality
mk_inl 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
inl
mk_inr 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
inr
mk_pt 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.span
mk_ι_app 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.span
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.ι
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
mk_ι_app_left 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.span
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.Cocone.ι
CategoryTheory.Limits.WalkingSpan.left
mk_ι_app_right 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.span
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.Cocone.ι
CategoryTheory.Limits.WalkingSpan.right
mk_ι_app_zero 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.span
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.Cocone.ι
CategoryTheory.Limits.WalkingSpan.zero
ofCocone_pt 📖mathematicalCategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.span
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingSpan.zero
CategoryTheory.Limits.WalkingSpan.left
CategoryTheory.Limits.WalkingSpan.right
CategoryTheory.Functor.map
CategoryTheory.Limits.WalkingSpan.Hom.fst
CategoryTheory.Limits.WalkingSpan.Hom.snd
ofCocone
ofCocone_ι 📖mathematicalCategoryTheory.Limits.Cocone.ι
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.span
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingSpan.zero
CategoryTheory.Limits.WalkingSpan.left
CategoryTheory.Limits.WalkingSpan.right
CategoryTheory.Functor.map
CategoryTheory.Limits.WalkingSpan.Hom.fst
CategoryTheory.Limits.WalkingSpan.Hom.snd
ofCocone
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Iso.inv
CategoryTheory.Limits.diagramIsoSpan
ι_app_left 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.span
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.Cocone.ι
CategoryTheory.Limits.WalkingSpan.left
inl
ι_app_right 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.span
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.Cocone.ι
CategoryTheory.Limits.WalkingSpan.right
inr

CategoryTheory.Limits.PushoutCocone.IsColimit

Definitions

NameCategoryTheorems
desc 📖CompOp
4 mathmath: inl_desc_assoc, inr_desc_assoc, inr_desc, inl_desc
desc' 📖CompOp
mk 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
hom_ext 📖CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.span
CategoryTheory.Limits.PushoutCocone.inl
CategoryTheory.Limits.PushoutCocone.inr
CategoryTheory.Limits.IsColimit.hom_ext
CategoryTheory.Limits.PushoutCocone.coequalizer_ext
inl_desc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.span
CategoryTheory.Limits.PushoutCocone.inl
desc
CategoryTheory.Limits.IsColimit.fac
inl_desc_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.span
CategoryTheory.Limits.PushoutCocone.inl
desc
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
inl_desc
inr_desc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.span
CategoryTheory.Limits.PushoutCocone.inr
desc
CategoryTheory.Limits.IsColimit.fac
inr_desc_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.span
CategoryTheory.Limits.PushoutCocone.inr
desc
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
inr_desc

---

← Back to Index