| Name | Category | Theorems |
flip 📖 | CompOp | 4 mathmath: flip_pt, ι_flip, flip_inr, flip_inl
|
inl 📖 | CompOp | 12 mathmath: CategoryTheory.ParametrizedAdjunction.inl_arrowHomEquiv_symm_apply_left, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_left, mapArrowRight_left, flip_inr, isPushout, flip_inl, inl_ι_assoc, ofHasPushout_inl, CategoryTheory.ParametrizedAdjunction.inl_arrowHomEquiv_symm_apply_left_assoc, mapArrowLeft_left, hom_ext_iff, inl_ι
|
inr 📖 | CompOp | 13 mathmath: inr_ι, CategoryTheory.ParametrizedAdjunction.inr_arrowHomEquiv_symm_apply_left, mapArrowRight_left, flip_inr, CategoryTheory.ParametrizedAdjunction.inr_arrowHomEquiv_symm_apply_left_assoc, isPushout, flip_inl, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_fst_assoc, mapArrowLeft_left, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_fst, ofHasPushout_inr, inr_ι_assoc, hom_ext_iff
|
mapArrowLeft 📖 | CompOp | 8 mathmath: mapArrowLeft_id, ι_iso_of_iso_left_inv, mapArrowLeft_left, mapArrowLeft_right, mapArrowLeft_comp_assoc, mapArrowLeft_comp, ι_iso_of_iso_left_hom, CategoryTheory.Functor.leibnizPushout_map_app
|
mapArrowRight 📖 | CompOp | 9 mathmath: mapArrowRight_id, mapArrowRight_left, mapArrowRight_comp_assoc, CategoryTheory.Functor.leibnizPushout_obj_map, ι_iso_of_iso_right_hom, ι_iso_of_iso_right_inv, mapArrowRight_comp, mapArrowRight_right, CategoryTheory.Functor.leibnizPushout_map_app
|
ofHasPushout 📖 | CompOp | 7 mathmath: ofHasPushout_pt, CategoryTheory.Functor.leibnizPushout_obj_map, CategoryTheory.Functor.leibnizPushout_obj_obj, ofHasPushout_inl, ofHasPushout_inr, CategoryTheory.Functor.leibnizPushout_map_app, ofHasPushout_ι
|
pt 📖 | CompOp | 35 mathmath: inr_ι, flip_pt, mapArrowRight_id, CategoryTheory.ParametrizedAdjunction.inr_arrowHomEquiv_symm_apply_left, CategoryTheory.ParametrizedAdjunction.inl_arrowHomEquiv_symm_apply_left, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_left, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_snd, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_symm_apply_right, mapArrowRight_left, mapArrowRight_comp_assoc, ofHasPushout_pt, CategoryTheory.ParametrizedAdjunction.hasLiftingProperty_iff, mapArrowLeft_id, CategoryTheory.ParametrizedAdjunction.inr_arrowHomEquiv_symm_apply_left_assoc, isPushout, ι_iso_of_iso_right_hom, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_fst_assoc, ι_iso_of_iso_left_inv, inl_ι_assoc, CategoryTheory.Functor.leibnizPushout_obj_obj, ι_iso_of_iso_right_inv, CategoryTheory.ParametrizedAdjunction.inl_arrowHomEquiv_symm_apply_left_assoc, mapArrowLeft_left, mapArrowLeft_right, mapArrowLeft_comp_assoc, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_fst, inr_ι_assoc, hom_ext_iff, mapArrowRight_comp, inl_ι, mapArrowRight_right, mapArrowLeft_comp, ι_iso_of_iso_left_hom, CategoryTheory.Functor.leibnizPushout_map_app, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_snd_assoc
|
ι 📖 | CompOp | 33 mathmath: inr_ι, mapArrowRight_id, CategoryTheory.ParametrizedAdjunction.inr_arrowHomEquiv_symm_apply_left, CategoryTheory.ParametrizedAdjunction.inl_arrowHomEquiv_symm_apply_left, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_left, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_snd, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_symm_apply_right, ι_flip, mapArrowRight_left, mapArrowRight_comp_assoc, CategoryTheory.ParametrizedAdjunction.hasLiftingProperty_iff, mapArrowLeft_id, CategoryTheory.ParametrizedAdjunction.inr_arrowHomEquiv_symm_apply_left_assoc, ι_iso_of_iso_right_hom, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_fst_assoc, ι_iso_of_iso_left_inv, inl_ι_assoc, CategoryTheory.Functor.leibnizPushout_obj_obj, ι_iso_of_iso_right_inv, CategoryTheory.ParametrizedAdjunction.inl_arrowHomEquiv_symm_apply_left_assoc, mapArrowLeft_left, mapArrowLeft_right, mapArrowLeft_comp_assoc, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_fst, inr_ι_assoc, mapArrowRight_comp, inl_ι, mapArrowRight_right, mapArrowLeft_comp, ι_iso_of_iso_left_hom, CategoryTheory.Functor.leibnizPushout_map_app, ofHasPushout_ι, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_snd_assoc
|
ι_iso_of_iso_left 📖 | CompOp | 2 mathmath: ι_iso_of_iso_left_inv, ι_iso_of_iso_left_hom
|
ι_iso_of_iso_right 📖 | CompOp | 2 mathmath: ι_iso_of_iso_right_hom, ι_iso_of_iso_right_inv
|