Documentation Verification Report

PullbackObjObj

📁 Source: Mathlib/CategoryTheory/Limits/Shapes/Pullback/PullbackObjObj.lean

Statistics

MetricCount
Definitionsadj, PullbackObjObj, fst, mapArrowLeft, mapArrowRight, ofHasPullback, pt, snd, π, π_iso_of_iso_left, π_iso_of_iso_right, PushoutObjObj, flip, inl, inr, mapArrowLeft, mapArrowRight, ofHasPushout, pt, ι, ι_iso_of_iso_left, ι_iso_of_iso_right, leibnizAdjunction, leibnizPullback, leibnizPushout
25
Theoremsadj_counit_app_left, adj_counit_app_right, adj_unit_app_left, adj_unit_app_right, hom_ext, hom_ext_iff, isPullback, mapArrowLeft_comp, mapArrowLeft_comp_assoc, mapArrowLeft_id, mapArrowLeft_left, mapArrowLeft_right, mapArrowRight_comp, mapArrowRight_comp_assoc, mapArrowRight_id, mapArrowRight_left, mapArrowRight_right, ofHasPullback_fst, ofHasPullback_pt, ofHasPullback_snd, ofHasPullback_π, π_fst, π_fst_assoc, π_iso_of_iso_left_hom, π_iso_of_iso_left_inv, π_iso_of_iso_right_hom, π_iso_of_iso_right_inv, π_snd, π_snd_assoc, flip_inl, flip_inr, flip_pt, hom_ext, hom_ext_iff, inl_ι, inl_ι_assoc, inr_ι, inr_ι_assoc, isPushout, mapArrowLeft_comp, mapArrowLeft_comp_assoc, mapArrowLeft_id, mapArrowLeft_left, mapArrowLeft_right, mapArrowRight_comp, mapArrowRight_comp_assoc, mapArrowRight_id, mapArrowRight_left, mapArrowRight_right, ofHasPushout_inl, ofHasPushout_inr, ofHasPushout_pt, ofHasPushout_ι, ι_flip, ι_iso_of_iso_left_hom, ι_iso_of_iso_left_inv, ι_iso_of_iso_right_hom, ι_iso_of_iso_right_inv, leibnizAdjunction_adj, leibnizPullback_map_app, leibnizPullback_obj_map, leibnizPullback_obj_obj, leibnizPushout_map_app, leibnizPushout_obj_map, leibnizPushout_obj_obj
65
Total90

CategoryTheory.Functor

Definitions

NameCategoryTheorems
PullbackObjObj 📖CompData
PushoutObjObj 📖CompData
leibnizAdjunction 📖CompOp
1 mathmath: leibnizAdjunction_adj
leibnizPullback 📖CompOp
8 mathmath: leibnizPullback_obj_map, LeibnizAdjunction.adj_unit_app_left, LeibnizAdjunction.adj_counit_app_left, leibnizAdjunction_adj, LeibnizAdjunction.adj_counit_app_right, LeibnizAdjunction.adj_unit_app_right, leibnizPullback_map_app, leibnizPullback_obj_obj
leibnizPushout 📖CompOp
8 mathmath: LeibnizAdjunction.adj_unit_app_left, LeibnizAdjunction.adj_counit_app_left, leibnizAdjunction_adj, leibnizPushout_obj_map, LeibnizAdjunction.adj_counit_app_right, leibnizPushout_obj_obj, LeibnizAdjunction.adj_unit_app_right, leibnizPushout_map_app

Theorems

NameKindAssumesProvesValidatesDepends On
leibnizAdjunction_adj 📖mathematicalCategoryTheory.ParametrizedAdjunction.adj
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
leibnizPushout
leibnizPullback
leibnizAdjunction
LeibnizAdjunction.adj
leibnizPullback_map_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
category
Opposite.op
id
CategoryTheory.Comma.right
Opposite.unop
CategoryTheory.Comma.left
PullbackObjObj.pt
CategoryTheory.Comma.hom
PullbackObjObj.ofHasPullback
PullbackObjObj.π
PullbackObjObj.mapArrowRight
map
leibnizPullback
PullbackObjObj.mapArrowLeft
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
leibnizPullback_obj_map 📖mathematicalmap
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
category
leibnizPullback
PullbackObjObj.mapArrowRight
Opposite.unop
PullbackObjObj.ofHasPullback
id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
leibnizPullback_obj_obj 📖mathematicalobj
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
category
leibnizPullback
Opposite.op
id
CategoryTheory.Comma.right
Opposite.unop
CategoryTheory.Comma.left
PullbackObjObj.pt
CategoryTheory.Comma.hom
PullbackObjObj.ofHasPullback
PullbackObjObj.π
leibnizPushout_map_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
PushoutObjObj.pt
obj
id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
PushoutObjObj.ofHasPushout
CategoryTheory.Functor
category
PushoutObjObj.ι
PushoutObjObj.mapArrowRight
map
leibnizPushout
PushoutObjObj.mapArrowLeft
leibnizPushout_obj_map 📖mathematicalmap
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
obj
CategoryTheory.Functor
category
leibnizPushout
PushoutObjObj.mapArrowRight
PushoutObjObj.ofHasPushout
id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
leibnizPushout_obj_obj 📖mathematicalobj
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Functor
category
leibnizPushout
PushoutObjObj.pt
id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
PushoutObjObj.ofHasPushout
PushoutObjObj.ι

CategoryTheory.Functor.LeibnizAdjunction

Definitions

NameCategoryTheorems
adj 📖CompOp
5 mathmath: adj_unit_app_left, adj_counit_app_left, CategoryTheory.Functor.leibnizAdjunction_adj, adj_counit_app_right, adj_unit_app_right

Theorems

NameKindAssumesProvesValidatesDepends On
adj_counit_app_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.leibnizPullback
Opposite.op
CategoryTheory.Functor.leibnizPushout
CategoryTheory.NatTrans.app
CategoryTheory.Adjunction.counit
adj
CategoryTheory.Limits.pushout.desc
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Functor.map
CategoryTheory.Comma.hom
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.ParametrizedAdjunction.homEquiv
CategoryTheory.CategoryStruct.id
CategoryTheory.Limits.pullback.fst
Opposite.unop
Quiver.Hom.op
adj_counit_app_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.leibnizPullback
Opposite.op
CategoryTheory.Functor.leibnizPushout
CategoryTheory.NatTrans.app
CategoryTheory.Adjunction.counit
adj
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.ParametrizedAdjunction.homEquiv
CategoryTheory.Limits.pullback.snd
CategoryTheory.Comma.left
Opposite.unop
CategoryTheory.Functor.map
CategoryTheory.Comma.hom
Quiver.Hom.op
adj_unit_app_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.comp
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.leibnizPushout
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.leibnizPullback
Opposite.op
CategoryTheory.NatTrans.app
CategoryTheory.Adjunction.unit
adj
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
Opposite.unop
CategoryTheory.Comma.left
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.ParametrizedAdjunction.homEquiv
CategoryTheory.Limits.pushout.inl
CategoryTheory.Functor.map
CategoryTheory.Comma.hom
adj_unit_app_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.comp
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.leibnizPushout
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.leibnizPullback
Opposite.op
CategoryTheory.NatTrans.app
CategoryTheory.Adjunction.unit
adj
CategoryTheory.Limits.pullback.lift
CategoryTheory.Comma.right
CategoryTheory.Comma.left
Opposite.unop
CategoryTheory.Functor.map
CategoryTheory.Comma.hom
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
DFunLike.coe
Equiv
Quiver.Hom
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.ParametrizedAdjunction.homEquiv
CategoryTheory.Limits.pushout.inr
CategoryTheory.CategoryStruct.id

CategoryTheory.Functor.PullbackObjObj

Definitions

NameCategoryTheorems
fst 📖CompOp
11 mathmath: mapArrowRight_right, CategoryTheory.ParametrizedAdjunction.inr_arrowHomEquiv_symm_apply_left, π_fst, CategoryTheory.ParametrizedAdjunction.inr_arrowHomEquiv_symm_apply_left_assoc, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_fst_assoc, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_fst, mapArrowLeft_right, π_fst_assoc, hom_ext_iff, ofHasPullback_fst, isPullback
mapArrowLeft 📖CompOp
8 mathmath: mapArrowLeft_id, π_iso_of_iso_left_inv, mapArrowLeft_comp, mapArrowLeft_left, mapArrowLeft_comp_assoc, mapArrowLeft_right, CategoryTheory.Functor.leibnizPullback_map_app, π_iso_of_iso_left_hom
mapArrowRight 📖CompOp
9 mathmath: CategoryTheory.Functor.leibnizPullback_obj_map, mapArrowRight_right, π_iso_of_iso_right_hom, mapArrowRight_comp_assoc, mapArrowRight_comp, π_iso_of_iso_right_inv, mapArrowRight_id, mapArrowRight_left, CategoryTheory.Functor.leibnizPullback_map_app
ofHasPullback 📖CompOp
7 mathmath: CategoryTheory.Functor.leibnizPullback_obj_map, ofHasPullback_π, ofHasPullback_snd, ofHasPullback_pt, CategoryTheory.Functor.leibnizPullback_map_app, CategoryTheory.Functor.leibnizPullback_obj_obj, ofHasPullback_fst
pt 📖CompOp
34 mathmath: mapArrowRight_right, mapArrowLeft_id, CategoryTheory.ParametrizedAdjunction.inr_arrowHomEquiv_symm_apply_left, CategoryTheory.ParametrizedAdjunction.inl_arrowHomEquiv_symm_apply_left, π_fst, π_iso_of_iso_left_inv, mapArrowLeft_comp, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_left, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_snd, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_symm_apply_right, π_iso_of_iso_right_hom, mapArrowRight_comp_assoc, CategoryTheory.ParametrizedAdjunction.hasLiftingProperty_iff, CategoryTheory.ParametrizedAdjunction.inr_arrowHomEquiv_symm_apply_left_assoc, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_fst_assoc, mapArrowRight_comp, π_iso_of_iso_right_inv, mapArrowLeft_left, mapArrowLeft_comp_assoc, CategoryTheory.ParametrizedAdjunction.inl_arrowHomEquiv_symm_apply_left_assoc, mapArrowRight_id, π_snd_assoc, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_fst, π_snd, mapArrowRight_left, mapArrowLeft_right, ofHasPullback_pt, π_fst_assoc, hom_ext_iff, CategoryTheory.Functor.leibnizPullback_map_app, π_iso_of_iso_left_hom, CategoryTheory.Functor.leibnizPullback_obj_obj, isPullback, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_snd_assoc
snd 📖CompOp
10 mathmath: mapArrowRight_right, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_snd, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_symm_apply_right, ofHasPullback_snd, π_snd_assoc, π_snd, mapArrowLeft_right, hom_ext_iff, isPullback, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_snd_assoc
π 📖CompOp
32 mathmath: mapArrowRight_right, mapArrowLeft_id, CategoryTheory.ParametrizedAdjunction.inr_arrowHomEquiv_symm_apply_left, CategoryTheory.ParametrizedAdjunction.inl_arrowHomEquiv_symm_apply_left, π_fst, π_iso_of_iso_left_inv, mapArrowLeft_comp, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_left, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_snd, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_symm_apply_right, π_iso_of_iso_right_hom, mapArrowRight_comp_assoc, CategoryTheory.ParametrizedAdjunction.hasLiftingProperty_iff, CategoryTheory.ParametrizedAdjunction.inr_arrowHomEquiv_symm_apply_left_assoc, ofHasPullback_π, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_fst_assoc, mapArrowRight_comp, π_iso_of_iso_right_inv, mapArrowLeft_left, mapArrowLeft_comp_assoc, CategoryTheory.ParametrizedAdjunction.inl_arrowHomEquiv_symm_apply_left_assoc, mapArrowRight_id, π_snd_assoc, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_fst, π_snd, mapArrowRight_left, mapArrowLeft_right, π_fst_assoc, CategoryTheory.Functor.leibnizPullback_map_app, π_iso_of_iso_left_hom, CategoryTheory.Functor.leibnizPullback_obj_obj, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_snd_assoc
π_iso_of_iso_left 📖CompOp
2 mathmath: π_iso_of_iso_left_inv, π_iso_of_iso_left_hom
π_iso_of_iso_right 📖CompOp
2 mathmath: π_iso_of_iso_right_hom, π_iso_of_iso_right_inv

Theorems

NameKindAssumesProvesValidatesDepends On
hom_ext 📖CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
pt
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
fst
snd
CategoryTheory.IsPullback.hom_ext
isPullback
hom_ext_iff 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
pt
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
fst
snd
hom_ext
isPullback 📖mathematicalCategoryTheory.IsPullback
pt
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
fst
snd
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
mapArrowLeft_comp 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Arrow
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Comma.left
pt
CategoryTheory.Comma.hom
π
mapArrowLeft
CategoryTheory.Arrow.hom_ext
CategoryTheory.Functor.map_comp
CategoryTheory.IsPullback.lift.congr_simp
hom_ext
CategoryTheory.Category.assoc
CategoryTheory.IsPullback.lift_fst
CategoryTheory.IsPullback.lift_fst_assoc
CategoryTheory.IsPullback.lift_snd
CategoryTheory.IsPullback.lift_snd_assoc
mapArrowLeft_comp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Arrow
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Comma.left
pt
CategoryTheory.Comma.hom
π
mapArrowLeft
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mapArrowLeft_comp
mapArrowLeft_id 📖mathematicalmapArrowLeft
CategoryTheory.CategoryStruct.id
CategoryTheory.Arrow
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Comma.left
pt
CategoryTheory.Comma.hom
π
CategoryTheory.Arrow.hom_ext
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
CategoryTheory.IsPullback.lift.congr_simp
hom_ext
CategoryTheory.IsPullback.lift_fst
CategoryTheory.Category.id_comp
CategoryTheory.IsPullback.lift_snd
mapArrowLeft_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
CategoryTheory.Comma.right
CategoryTheory.Comma.left
pt
CategoryTheory.Comma.hom
π
mapArrowLeft
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CommaMorphism.right
mapArrowLeft_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
CategoryTheory.Comma.right
CategoryTheory.Comma.left
pt
CategoryTheory.Comma.hom
π
mapArrowLeft
CategoryTheory.IsPullback.lift
fst
snd
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.comp
CategoryTheory.CommaMorphism.left
mapArrowRight_comp 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Arrow
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Comma.left
pt
CategoryTheory.Comma.hom
π
mapArrowRight
CategoryTheory.Arrow.hom_ext
CategoryTheory.Functor.map_comp
CategoryTheory.IsPullback.lift.congr_simp
hom_ext
CategoryTheory.Category.assoc
CategoryTheory.IsPullback.lift_fst
CategoryTheory.IsPullback.lift_fst_assoc
CategoryTheory.IsPullback.lift_snd
CategoryTheory.IsPullback.lift_snd_assoc
mapArrowRight_comp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Arrow
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Comma.left
pt
CategoryTheory.Comma.hom
π
mapArrowRight
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mapArrowRight_comp
mapArrowRight_id 📖mathematicalmapArrowRight
CategoryTheory.CategoryStruct.id
CategoryTheory.Arrow
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Comma.left
pt
CategoryTheory.Comma.hom
π
CategoryTheory.Arrow.hom_ext
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
CategoryTheory.IsPullback.lift.congr_simp
hom_ext
CategoryTheory.IsPullback.lift_fst
CategoryTheory.Category.id_comp
CategoryTheory.IsPullback.lift_snd
mapArrowRight_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
CategoryTheory.Comma.right
CategoryTheory.Comma.left
pt
CategoryTheory.Comma.hom
π
mapArrowRight
CategoryTheory.Functor.map
mapArrowRight_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
CategoryTheory.Comma.right
CategoryTheory.Comma.left
pt
CategoryTheory.Comma.hom
π
mapArrowRight
CategoryTheory.IsPullback.lift
fst
snd
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.comp
CategoryTheory.CommaMorphism.left
ofHasPullback_fst 📖mathematicalfst
ofHasPullback
CategoryTheory.Limits.pullback.fst
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
ofHasPullback_pt 📖mathematicalpt
ofHasPullback
CategoryTheory.Limits.pullback
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
ofHasPullback_snd 📖mathematicalsnd
ofHasPullback
CategoryTheory.Limits.pullback.snd
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
ofHasPullback_π 📖mathematicalπ
ofHasPullback
CategoryTheory.Limits.pullback.lift
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
hom_ext
CategoryTheory.IsPullback.lift_fst
isPullback
CategoryTheory.Limits.limit.lift_π
CategoryTheory.IsPullback.lift_snd
π_fst 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
pt
π
fst
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.IsPullback.lift_fst
isPullback
π_fst_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
pt
π
fst
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
π_fst
π_iso_of_iso_left_hom 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Comma.left
pt
CategoryTheory.Comma.hom
π
π_iso_of_iso_left
mapArrowLeft
CategoryTheory.Iso.inv
π_iso_of_iso_left_inv 📖mathematicalCategoryTheory.Iso.inv
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Comma.left
pt
CategoryTheory.Comma.hom
π
π_iso_of_iso_left
mapArrowLeft
CategoryTheory.Iso.hom
π_iso_of_iso_right_hom 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Comma.left
pt
CategoryTheory.Comma.hom
π
π_iso_of_iso_right
mapArrowRight
π_iso_of_iso_right_inv 📖mathematicalCategoryTheory.Iso.inv
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Comma.left
pt
CategoryTheory.Comma.hom
π
π_iso_of_iso_right
mapArrowRight
π_snd 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
pt
π
snd
CategoryTheory.Functor.map
CategoryTheory.IsPullback.lift_snd
isPullback
π_snd_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
pt
π
snd
CategoryTheory.Functor.map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
π_snd

CategoryTheory.Functor.PushoutObjObj

Definitions

NameCategoryTheorems
flip 📖CompOp
4 mathmath: flip_pt, ι_flip, flip_inr, flip_inl
inl 📖CompOp
12 mathmath: CategoryTheory.ParametrizedAdjunction.inl_arrowHomEquiv_symm_apply_left, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_left, mapArrowRight_left, flip_inr, isPushout, flip_inl, inl_ι_assoc, ofHasPushout_inl, CategoryTheory.ParametrizedAdjunction.inl_arrowHomEquiv_symm_apply_left_assoc, mapArrowLeft_left, hom_ext_iff, inl_ι
inr 📖CompOp
13 mathmath: inr_ι, CategoryTheory.ParametrizedAdjunction.inr_arrowHomEquiv_symm_apply_left, mapArrowRight_left, flip_inr, CategoryTheory.ParametrizedAdjunction.inr_arrowHomEquiv_symm_apply_left_assoc, isPushout, flip_inl, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_fst_assoc, mapArrowLeft_left, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_fst, ofHasPushout_inr, inr_ι_assoc, hom_ext_iff
mapArrowLeft 📖CompOp
8 mathmath: mapArrowLeft_id, ι_iso_of_iso_left_inv, mapArrowLeft_left, mapArrowLeft_right, mapArrowLeft_comp_assoc, mapArrowLeft_comp, ι_iso_of_iso_left_hom, CategoryTheory.Functor.leibnizPushout_map_app
mapArrowRight 📖CompOp
9 mathmath: mapArrowRight_id, mapArrowRight_left, mapArrowRight_comp_assoc, CategoryTheory.Functor.leibnizPushout_obj_map, ι_iso_of_iso_right_hom, ι_iso_of_iso_right_inv, mapArrowRight_comp, mapArrowRight_right, CategoryTheory.Functor.leibnizPushout_map_app
ofHasPushout 📖CompOp
7 mathmath: ofHasPushout_pt, CategoryTheory.Functor.leibnizPushout_obj_map, CategoryTheory.Functor.leibnizPushout_obj_obj, ofHasPushout_inl, ofHasPushout_inr, CategoryTheory.Functor.leibnizPushout_map_app, ofHasPushout_ι
pt 📖CompOp
35 mathmath: inr_ι, flip_pt, mapArrowRight_id, CategoryTheory.ParametrizedAdjunction.inr_arrowHomEquiv_symm_apply_left, CategoryTheory.ParametrizedAdjunction.inl_arrowHomEquiv_symm_apply_left, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_left, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_snd, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_symm_apply_right, mapArrowRight_left, mapArrowRight_comp_assoc, ofHasPushout_pt, CategoryTheory.ParametrizedAdjunction.hasLiftingProperty_iff, mapArrowLeft_id, CategoryTheory.ParametrizedAdjunction.inr_arrowHomEquiv_symm_apply_left_assoc, isPushout, ι_iso_of_iso_right_hom, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_fst_assoc, ι_iso_of_iso_left_inv, inl_ι_assoc, CategoryTheory.Functor.leibnizPushout_obj_obj, ι_iso_of_iso_right_inv, CategoryTheory.ParametrizedAdjunction.inl_arrowHomEquiv_symm_apply_left_assoc, mapArrowLeft_left, mapArrowLeft_right, mapArrowLeft_comp_assoc, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_fst, inr_ι_assoc, hom_ext_iff, mapArrowRight_comp, inl_ι, mapArrowRight_right, mapArrowLeft_comp, ι_iso_of_iso_left_hom, CategoryTheory.Functor.leibnizPushout_map_app, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_snd_assoc
ι 📖CompOp
33 mathmath: inr_ι, mapArrowRight_id, CategoryTheory.ParametrizedAdjunction.inr_arrowHomEquiv_symm_apply_left, CategoryTheory.ParametrizedAdjunction.inl_arrowHomEquiv_symm_apply_left, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_left, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_snd, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_symm_apply_right, ι_flip, mapArrowRight_left, mapArrowRight_comp_assoc, CategoryTheory.ParametrizedAdjunction.hasLiftingProperty_iff, mapArrowLeft_id, CategoryTheory.ParametrizedAdjunction.inr_arrowHomEquiv_symm_apply_left_assoc, ι_iso_of_iso_right_hom, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_fst_assoc, ι_iso_of_iso_left_inv, inl_ι_assoc, CategoryTheory.Functor.leibnizPushout_obj_obj, ι_iso_of_iso_right_inv, CategoryTheory.ParametrizedAdjunction.inl_arrowHomEquiv_symm_apply_left_assoc, mapArrowLeft_left, mapArrowLeft_right, mapArrowLeft_comp_assoc, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_fst, inr_ι_assoc, mapArrowRight_comp, inl_ι, mapArrowRight_right, mapArrowLeft_comp, ι_iso_of_iso_left_hom, CategoryTheory.Functor.leibnizPushout_map_app, ofHasPushout_ι, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_snd_assoc
ι_iso_of_iso_left 📖CompOp
2 mathmath: ι_iso_of_iso_left_inv, ι_iso_of_iso_left_hom
ι_iso_of_iso_right 📖CompOp
2 mathmath: ι_iso_of_iso_right_hom, ι_iso_of_iso_right_inv

Theorems

NameKindAssumesProvesValidatesDepends On
flip_inl 📖mathematicalinl
CategoryTheory.Functor.flip
flip
inr
flip_inr 📖mathematicalinr
CategoryTheory.Functor.flip
flip
inl
flip_pt 📖mathematicalpt
CategoryTheory.Functor.flip
flip
hom_ext 📖CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
pt
inl
inr
CategoryTheory.IsPushout.hom_ext
isPushout
hom_ext_iff 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
pt
inl
inr
hom_ext
inl_ι 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
pt
inl
ι
CategoryTheory.Functor.map
CategoryTheory.IsPushout.inl_desc
isPushout
inl_ι_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
pt
inl
ι
CategoryTheory.Functor.map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
inl_ι
inr_ι 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
pt
inr
ι
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
CategoryTheory.IsPushout.inr_desc
isPushout
inr_ι_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
pt
inr
ι
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
inr_ι
isPushout 📖mathematicalCategoryTheory.IsPushout
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
pt
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
inl
inr
mapArrowLeft_comp 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Arrow
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryArrow
pt
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
ι
mapArrowLeft
CategoryTheory.Arrow.hom_ext
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
CategoryTheory.IsPushout.desc.congr_simp
hom_ext
CategoryTheory.IsPushout.inl_desc_assoc
CategoryTheory.IsPushout.inl_desc
CategoryTheory.IsPushout.inr_desc_assoc
CategoryTheory.IsPushout.inr_desc
mapArrowLeft_comp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Arrow
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryArrow
pt
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
ι
mapArrowLeft
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mapArrowLeft_comp
mapArrowLeft_id 📖mathematicalmapArrowLeft
CategoryTheory.CategoryStruct.id
CategoryTheory.Arrow
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryArrow
pt
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
ι
CategoryTheory.Arrow.hom_ext
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
CategoryTheory.IsPushout.desc.congr_simp
hom_ext
CategoryTheory.IsPushout.inl_desc
CategoryTheory.Category.comp_id
CategoryTheory.IsPushout.inr_desc
mapArrowLeft_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Functor.id
pt
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
ι
mapArrowLeft
CategoryTheory.IsPushout.desc
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
inl
inr
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CommaMorphism.right
mapArrowLeft_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Functor.id
pt
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
ι
mapArrowLeft
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
mapArrowRight_comp 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Arrow
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryArrow
pt
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
ι
mapArrowRight
CategoryTheory.Arrow.hom_ext
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
CategoryTheory.IsPushout.desc.congr_simp
hom_ext
CategoryTheory.IsPushout.inl_desc_assoc
CategoryTheory.IsPushout.inl_desc
CategoryTheory.IsPushout.inr_desc_assoc
CategoryTheory.IsPushout.inr_desc
mapArrowRight_comp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Arrow
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryArrow
pt
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
ι
mapArrowRight
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mapArrowRight_comp
mapArrowRight_id 📖mathematicalmapArrowRight
CategoryTheory.CategoryStruct.id
CategoryTheory.Arrow
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryArrow
pt
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
ι
CategoryTheory.Arrow.hom_ext
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
CategoryTheory.IsPushout.desc.congr_simp
hom_ext
CategoryTheory.IsPushout.inl_desc
CategoryTheory.Category.comp_id
CategoryTheory.IsPushout.inr_desc
mapArrowRight_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Functor.id
pt
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
ι
mapArrowRight
CategoryTheory.IsPushout.desc
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
inl
inr
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CommaMorphism.right
mapArrowRight_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Functor.id
pt
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
ι
mapArrowRight
CategoryTheory.Functor.map
ofHasPushout_inl 📖mathematicalinl
ofHasPushout
CategoryTheory.Limits.pushout.inl
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
ofHasPushout_inr 📖mathematicalinr
ofHasPushout
CategoryTheory.Limits.pushout.inr
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
ofHasPushout_pt 📖mathematicalpt
ofHasPushout
CategoryTheory.Limits.pushout
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
ofHasPushout_ι 📖mathematicalι
ofHasPushout
CategoryTheory.Limits.pushout.desc
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
hom_ext
CategoryTheory.IsPushout.inl_desc
isPushout
CategoryTheory.Limits.colimit.ι_desc
CategoryTheory.IsPushout.inr_desc
ι_flip 📖mathematicalι
CategoryTheory.Functor.flip
flip
CategoryTheory.IsPushout.hom_ext
isPushout
inl_ι
flip_inl
inr_ι
CategoryTheory.Functor.flip_obj_map
flip_inr
CategoryTheory.Functor.flip_map_app
ι_iso_of_iso_left_hom 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
pt
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
ι
ι_iso_of_iso_left
mapArrowLeft
ι_iso_of_iso_left_inv 📖mathematicalCategoryTheory.Iso.inv
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
pt
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
ι
ι_iso_of_iso_left
mapArrowLeft
ι_iso_of_iso_right_hom 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
pt
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
ι
ι_iso_of_iso_right
mapArrowRight
ι_iso_of_iso_right_inv 📖mathematicalCategoryTheory.Iso.inv
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
pt
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
ι
ι_iso_of_iso_right
mapArrowRight

---

← Back to Index