Documentation Verification Report

Reflexive

📁 Source: Mathlib/CategoryTheory/Limits/Shapes/Reflexive.lean

Statistics

MetricCount
DefinitionsIsCoreflexivePair, IsReflexivePair, HasCoreflexiveEqualizers, HasReflexiveCoequalizers, ReflexiveCofork, isColimitEquiv, mk, toCofork, π, inclusionWalkingReflexivePair, WalkingReflexivePair, comp, category, instDecidableEqHom, decEq, colimitOfIsReflexivePairIsoCoequalizer, inclusionWalkingReflexivePairOfIsReflexivePairIso, instDecidableEqWalkingReflexivePair, instInhabitedWalkingReflexivePair, default, ofIsReflexivePair, reflexiveCoequalizerIsoCoequalizer, reflexiveCoforkEquivCofork, reflexiveCoforkEquivCoforkObjIso, reflexivePair, compRightIso, diagramIsoReflexivePair, mkNatIso, mkNatTrans, commonRetraction, commonSection, Reflexive
32
Theoremscommon_retraction, common_retraction', mk', swap, isReflexivePair, common_section, common_section', mk', swap, has_eq, has_coeq, app_one_eq_π, condition, mk_pt, mk_π, inclusionWalkingReflexivePair_final, inclusionWalkingReflexivePair_map, inclusionWalkingReflexivePair_obj, instIsConnectedStructuredArrowWalkingReflexivePairInclusionWalkingReflexivePair, instNonemptyStructuredArrowWalkingReflexivePairInclusionWalkingReflexivePair, id_eq, leftCompReflexion_eq, map_reflexion_comp_map_left, map_reflexion_comp_map_left_assoc, map_reflexion_comp_map_right, map_reflexion_comp_map_right_assoc, reflexion_comp_left, reflexion_comp_left_assoc, reflexion_comp_right, reflexion_comp_right_assoc, rightCompReflexion_eq, hasCoequalizer_of_common_section, hasCoreflexiveEqualizers_of_hasEqualizers, hasEqualizer_of_common_retraction, hasReflexiveCoequalizer_iff_hasCoequalizer, hasReflexiveCoequalizers_iff, hasReflexiveCoequalizers_of_hasCoequalizers, ofIsReflexivePair_hasColimit_of_hasCoequalizer, ofIsReflexivePair_map_left, ofIsReflexivePair_map_right, reflexiveCoforkEquivCofork_functor_obj_pt, reflexiveCoforkEquivCofork_functor_obj_π, reflexiveCoforkEquivCofork_inverse_obj_pt, reflexiveCoforkEquivCofork_inverse_obj_π, compRightIso_hom_app, compRightIso_inv_app, diagramIsoReflexivePair_hom_app, diagramIsoReflexivePair_inv_app, mkNatIso_hom_app, mkNatIso_inv_app, mkNatTrans_app_one, mkNatTrans_app_zero, to_isReflexivePair, whiskerRightMkNatTrans, reflexivePair_hasColimit_of_hasCoequalizer, reflexivePair_map_left, reflexivePair_map_reflexion, reflexivePair_map_right, reflexivePair_obj_one, reflexivePair_obj_zero, ι_colimitOfIsReflexivePairIsoCoequalizer_hom, ι_colimitOfIsReflexivePairIsoCoequalizer_hom_assoc, ι_reflexiveCoequalizerIsoCoequalizer_hom, ι_reflexiveCoequalizerIsoCoequalizer_hom_assoc, π_colimitOfIsReflexivePairIsoCoequalizer_inv, π_colimitOfIsReflexivePairIsoCoequalizer_inv_assoc, π_reflexiveCoequalizerIsoCoequalizer_inv, π_reflexiveCoequalizerIsoCoequalizer_inv_assoc, instIsReflexivePairMapAppCounitObj, left_comp_retraction, left_comp_retraction_assoc, right_comp_retraction, right_comp_retraction_assoc, section_comp_left, section_comp_left_assoc, section_comp_right, section_comp_right_assoc
77
Total109

CategoryTheory

Definitions

NameCategoryTheorems
IsCoreflexivePair 📖CompData
5 mathmath: Comonad.instIsCoreflexivePairCoalgebraTopMapBottomMap, IsCoreflexivePair.mk', IsCoreflexivePair.swap, Comonad.ComonadicityInternal.main_pair_coreflexive, LiftRightAdjoint.instIsCoreflexivePairMapAppUnitOtherMap
IsReflexivePair 📖CompData
8 mathmath: IsKernelPair.isReflexivePair, Limits.reflexivePair.to_isReflexivePair, IsReflexivePair.mk', IsReflexivePair.swap, LiftLeftAdjoint.instIsReflexivePairMapAppCounitOtherMap, Monad.MonadicityInternal.main_pair_reflexive, instIsReflexivePairMapAppCounitObj, Monad.instIsReflexivePairAlgebraTopMapBottomMap
commonRetraction 📖CompOp
4 mathmath: right_comp_retraction, left_comp_retraction, right_comp_retraction_assoc, left_comp_retraction_assoc
commonSection 📖CompOp
4 mathmath: section_comp_left_assoc, section_comp_right, section_comp_left, section_comp_right_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
instIsReflexivePairMapAppCounitObj 📖mathematicalIsReflexivePair
Functor.obj
Functor.comp
Functor.id
Functor.map
NatTrans.app
Adjunction.counit
IsReflexivePair.mk'
Functor.map_comp
Adjunction.right_triangle_components
Functor.map_id
Adjunction.left_triangle_components
left_comp_retraction 📖mathematicalCategoryStruct.comp
Category.toCategoryStruct
commonRetraction
CategoryStruct.id
IsCoreflexivePair.common_retraction
left_comp_retraction_assoc 📖mathematicalCategoryStruct.comp
Category.toCategoryStruct
commonRetraction
Category.assoc
Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
left_comp_retraction
right_comp_retraction 📖mathematicalCategoryStruct.comp
Category.toCategoryStruct
commonRetraction
CategoryStruct.id
IsCoreflexivePair.common_retraction
right_comp_retraction_assoc 📖mathematicalCategoryStruct.comp
Category.toCategoryStruct
commonRetraction
Category.assoc
Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
right_comp_retraction
section_comp_left 📖mathematicalCategoryStruct.comp
Category.toCategoryStruct
commonSection
CategoryStruct.id
IsReflexivePair.common_section
section_comp_left_assoc 📖mathematicalCategoryStruct.comp
Category.toCategoryStruct
commonSection
Category.assoc
Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
section_comp_left
section_comp_right 📖mathematicalCategoryStruct.comp
Category.toCategoryStruct
commonSection
CategoryStruct.id
IsReflexivePair.common_section
section_comp_right_assoc 📖mathematicalCategoryStruct.comp
Category.toCategoryStruct
commonSection
Category.assoc
Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
section_comp_right

CategoryTheory.IsCoreflexivePair

Theorems

NameKindAssumesProvesValidatesDepends On
common_retraction 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.id
common_retraction'
common_retraction' 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.id
mk' 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.id
CategoryTheory.IsCoreflexivePair
swap 📖mathematicalCategoryTheory.IsCoreflexivePairmk'
CategoryTheory.right_comp_retraction
CategoryTheory.left_comp_retraction

CategoryTheory.IsKernelPair

Theorems

NameKindAssumesProvesValidatesDepends On
isReflexivePair 📖mathematicalCategoryTheory.IsKernelPairCategoryTheory.IsReflexivePairCategoryTheory.IsReflexivePair.mk'

CategoryTheory.IsReflexivePair

Theorems

NameKindAssumesProvesValidatesDepends On
common_section 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.id
common_section'
common_section' 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.id
mk' 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.id
CategoryTheory.IsReflexivePair
swap 📖mathematicalCategoryTheory.IsReflexivePairmk'
CategoryTheory.section_comp_right
CategoryTheory.section_comp_left

CategoryTheory.Limits

Definitions

NameCategoryTheorems
HasCoreflexiveEqualizers 📖CompData
1 mathmath: hasCoreflexiveEqualizers_of_hasEqualizers
HasReflexiveCoequalizers 📖CompData
2 mathmath: hasReflexiveCoequalizers_iff, hasReflexiveCoequalizers_of_hasCoequalizers
ReflexiveCofork 📖CompOp
4 mathmath: reflexiveCoforkEquivCofork_functor_obj_pt, reflexiveCoforkEquivCofork_functor_obj_π, reflexiveCoforkEquivCofork_inverse_obj_pt, reflexiveCoforkEquivCofork_inverse_obj_π
WalkingReflexivePair 📖CompData
46 mathmath: reflexivePair.diagramIsoReflexivePair_hom_app, ReflexiveCofork.app_one_eq_π, reflexivePair.to_isReflexivePair, WalkingReflexivePair.reflexion_comp_left, reflexivePair_obj_one, WalkingReflexivePair.leftCompReflexion_eq, WalkingParallelPair.inclusionWalkingReflexivePair_map, π_reflexiveCoequalizerIsoCoequalizer_inv_assoc, hasReflexiveCoequalizer_iff_hasCoequalizer, ofIsReflexivePair_hasColimit_of_hasCoequalizer, reflexivePair.compRightIso_hom_app, WalkingReflexivePair.map_reflexion_comp_map_left, WalkingParallelPair.inclusionWalkingReflexivePair_obj, WalkingReflexivePair.Hom.id_eq, ReflexiveCofork.condition, WalkingReflexivePair.reflexion_comp_right, WalkingReflexivePair.reflexion_comp_left_assoc, reflexiveCoforkEquivCofork_functor_obj_pt, reflexivePair_map_left, WalkingReflexivePair.reflexion_comp_right_assoc, reflexivePair_map_right, reflexiveCoforkEquivCofork_functor_obj_π, reflexiveCoforkEquivCofork_inverse_obj_pt, reflexivePair.diagramIsoReflexivePair_inv_app, ι_colimitOfIsReflexivePairIsoCoequalizer_hom, hasReflexiveCoequalizers_iff, WalkingReflexivePair.rightCompReflexion_eq, reflexivePair_obj_zero, π_colimitOfIsReflexivePairIsoCoequalizer_inv, π_reflexiveCoequalizerIsoCoequalizer_inv, ι_reflexiveCoequalizerIsoCoequalizer_hom, reflexiveCoforkEquivCofork_inverse_obj_π, WalkingParallelPair.instIsConnectedStructuredArrowWalkingReflexivePairInclusionWalkingReflexivePair, reflexivePair_map_reflexion, reflexivePair.compRightIso_inv_app, WalkingParallelPair.inclusionWalkingReflexivePair_final, ofIsReflexivePair_map_left, π_colimitOfIsReflexivePairIsoCoequalizer_inv_assoc, WalkingReflexivePair.map_reflexion_comp_map_left_assoc, ι_reflexiveCoequalizerIsoCoequalizer_hom_assoc, WalkingParallelPair.instNonemptyStructuredArrowWalkingReflexivePairInclusionWalkingReflexivePair, ofIsReflexivePair_map_right, WalkingReflexivePair.map_reflexion_comp_map_right, reflexivePair_hasColimit_of_hasCoequalizer, ι_colimitOfIsReflexivePairIsoCoequalizer_hom_assoc, WalkingReflexivePair.map_reflexion_comp_map_right_assoc
colimitOfIsReflexivePairIsoCoequalizer 📖CompOp
4 mathmath: ι_colimitOfIsReflexivePairIsoCoequalizer_hom, π_colimitOfIsReflexivePairIsoCoequalizer_inv, π_colimitOfIsReflexivePairIsoCoequalizer_inv_assoc, ι_colimitOfIsReflexivePairIsoCoequalizer_hom_assoc
inclusionWalkingReflexivePairOfIsReflexivePairIso 📖CompOp
instDecidableEqWalkingReflexivePair 📖CompOp
instInhabitedWalkingReflexivePair 📖CompOp
ofIsReflexivePair 📖CompOp
7 mathmath: ofIsReflexivePair_hasColimit_of_hasCoequalizer, ι_colimitOfIsReflexivePairIsoCoequalizer_hom, π_colimitOfIsReflexivePairIsoCoequalizer_inv, ofIsReflexivePair_map_left, π_colimitOfIsReflexivePairIsoCoequalizer_inv_assoc, ofIsReflexivePair_map_right, ι_colimitOfIsReflexivePairIsoCoequalizer_hom_assoc
reflexiveCoequalizerIsoCoequalizer 📖CompOp
4 mathmath: π_reflexiveCoequalizerIsoCoequalizer_inv_assoc, π_reflexiveCoequalizerIsoCoequalizer_inv, ι_reflexiveCoequalizerIsoCoequalizer_hom, ι_reflexiveCoequalizerIsoCoequalizer_hom_assoc
reflexiveCoforkEquivCofork 📖CompOp
4 mathmath: reflexiveCoforkEquivCofork_functor_obj_pt, reflexiveCoforkEquivCofork_functor_obj_π, reflexiveCoforkEquivCofork_inverse_obj_pt, reflexiveCoforkEquivCofork_inverse_obj_π
reflexiveCoforkEquivCoforkObjIso 📖CompOp
reflexivePair 📖CompOp
9 mathmath: reflexivePair.diagramIsoReflexivePair_hom_app, reflexivePair_obj_one, reflexivePair.compRightIso_hom_app, reflexivePair_map_left, reflexivePair_map_right, reflexivePair.diagramIsoReflexivePair_inv_app, reflexivePair_obj_zero, reflexivePair_map_reflexion, reflexivePair.compRightIso_inv_app

Theorems

NameKindAssumesProvesValidatesDepends On
hasCoequalizer_of_common_section 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.id
HasCoequalizerHasReflexiveCoequalizers.has_coeq
CategoryTheory.IsReflexivePair.mk'
hasCoreflexiveEqualizers_of_hasEqualizers 📖mathematicalHasCoreflexiveEqualizershasLimitOfHasLimitsOfShape
hasEqualizer_of_common_retraction 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.id
HasEqualizerHasCoreflexiveEqualizers.has_eq
CategoryTheory.IsCoreflexivePair.mk'
hasReflexiveCoequalizer_iff_hasCoequalizer 📖mathematicalHasColimit
WalkingReflexivePair
WalkingReflexivePair.category
HasCoequalizer
CategoryTheory.Functor.obj
WalkingReflexivePair.one
WalkingReflexivePair.zero
CategoryTheory.Functor.map
WalkingReflexivePair.Hom.left
WalkingReflexivePair.Hom.right
CategoryTheory.Equivalence.hasInitial_iff
hasReflexiveCoequalizers_iff 📖mathematicalHasColimitsOfShape
WalkingReflexivePair
WalkingReflexivePair.category
HasReflexiveCoequalizers
CategoryTheory.section_comp_left
CategoryTheory.section_comp_right
hasReflexiveCoequalizer_iff_hasCoequalizer
hasColimitOfHasColimitsOfShape
reflexivePair_hasColimit_of_hasCoequalizer
HasReflexiveCoequalizers.has_coeq
reflexivePair.to_isReflexivePair
hasReflexiveCoequalizers_of_hasCoequalizers 📖mathematicalHasReflexiveCoequalizershasColimitOfHasColimitsOfShape
ofIsReflexivePair_hasColimit_of_hasCoequalizer 📖mathematicalHasColimit
WalkingReflexivePair
WalkingReflexivePair.category
ofIsReflexivePair
hasReflexiveCoequalizer_iff_hasCoequalizer
ofIsReflexivePair_map_left 📖mathematicalCategoryTheory.Functor.map
WalkingReflexivePair
WalkingReflexivePair.category
ofIsReflexivePair
WalkingReflexivePair.one
WalkingReflexivePair.zero
WalkingReflexivePair.Hom.left
ofIsReflexivePair_map_right 📖mathematicalCategoryTheory.Functor.map
WalkingReflexivePair
WalkingReflexivePair.category
ofIsReflexivePair
WalkingReflexivePair.one
WalkingReflexivePair.zero
WalkingReflexivePair.Hom.right
reflexiveCoforkEquivCofork_functor_obj_pt 📖mathematicalCocone.pt
WalkingParallelPair
walkingParallelPairHomCategory
parallelPair
CategoryTheory.Functor.obj
WalkingReflexivePair
WalkingReflexivePair.category
WalkingReflexivePair.one
WalkingReflexivePair.zero
CategoryTheory.Functor.map
WalkingReflexivePair.Hom.left
WalkingReflexivePair.Hom.right
Cocone
Cocone.category
Cofork
CategoryTheory.Equivalence.functor
ReflexiveCofork
reflexiveCoforkEquivCofork
reflexiveCoforkEquivCofork_functor_obj_π 📖mathematicalCofork.π
CategoryTheory.Functor.obj
WalkingReflexivePair
WalkingReflexivePair.category
WalkingReflexivePair.one
WalkingReflexivePair.zero
CategoryTheory.Functor.map
WalkingReflexivePair.Hom.left
WalkingReflexivePair.Hom.right
ReflexiveCofork
Cocone.category
Cofork
WalkingParallelPair
walkingParallelPairHomCategory
parallelPair
CategoryTheory.Equivalence.functor
reflexiveCoforkEquivCofork
ReflexiveCofork.π
ReflexiveCofork.π.eq_1
Cofork.π.eq_1
CategoryTheory.Category.id_comp
reflexiveCoforkEquivCofork_inverse_obj_pt 📖mathematicalCocone.pt
WalkingReflexivePair
WalkingReflexivePair.category
CategoryTheory.Functor.obj
Cofork
WalkingReflexivePair.one
WalkingReflexivePair.zero
CategoryTheory.Functor.map
WalkingReflexivePair.Hom.left
WalkingReflexivePair.Hom.right
Cocone.category
WalkingParallelPair
walkingParallelPairHomCategory
parallelPair
Cocone
CategoryTheory.Equivalence.inverse
ReflexiveCofork
reflexiveCoforkEquivCofork
reflexiveCoforkEquivCofork_inverse_obj_π 📖mathematicalReflexiveCofork.π
CategoryTheory.Functor.obj
Cofork
WalkingReflexivePair
WalkingReflexivePair.category
WalkingReflexivePair.one
WalkingReflexivePair.zero
CategoryTheory.Functor.map
WalkingReflexivePair.Hom.left
WalkingReflexivePair.Hom.right
Cocone.category
WalkingParallelPair
walkingParallelPairHomCategory
parallelPair
ReflexiveCofork
CategoryTheory.Equivalence.inverse
reflexiveCoforkEquivCofork
Cofork.π
WalkingParallelPair.inclusionWalkingReflexivePair_final
CategoryTheory.Functor.Final.extendCocone_obj_ι_app'
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
reflexivePair_hasColimit_of_hasCoequalizer 📖mathematicalHasColimit
WalkingReflexivePair
WalkingReflexivePair.category
hasReflexiveCoequalizer_iff_hasCoequalizer
reflexivePair_map_left 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.map
WalkingReflexivePair
WalkingReflexivePair.category
reflexivePair
WalkingReflexivePair.one
WalkingReflexivePair.zero
WalkingReflexivePair.Hom.right
reflexivePair_map_reflexion 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.map
WalkingReflexivePair
WalkingReflexivePair.category
reflexivePair
WalkingReflexivePair.zero
WalkingReflexivePair.one
WalkingReflexivePair.Hom.reflexion
reflexivePair_map_right 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.map
WalkingReflexivePair
WalkingReflexivePair.category
reflexivePair
WalkingReflexivePair.one
WalkingReflexivePair.zero
WalkingReflexivePair.Hom.left
reflexivePair_obj_one 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.obj
WalkingReflexivePair
WalkingReflexivePair.category
reflexivePair
WalkingReflexivePair.one
reflexivePair_obj_zero 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.obj
WalkingReflexivePair
WalkingReflexivePair.category
reflexivePair
WalkingReflexivePair.zero
ι_colimitOfIsReflexivePairIsoCoequalizer_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
WalkingReflexivePair
WalkingReflexivePair.category
ofIsReflexivePair
WalkingReflexivePair.zero
colimit
ofIsReflexivePair_hasColimit_of_hasCoequalizer
coequalizer
colimit.ι
CategoryTheory.Iso.hom
colimitOfIsReflexivePairIsoCoequalizer
coequalizer.π
ι_reflexiveCoequalizerIsoCoequalizer_hom
ι_colimitOfIsReflexivePairIsoCoequalizer_hom_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
WalkingReflexivePair
WalkingReflexivePair.category
ofIsReflexivePair
WalkingReflexivePair.zero
colimit
ofIsReflexivePair_hasColimit_of_hasCoequalizer
colimit.ι
coequalizer
CategoryTheory.Iso.hom
colimitOfIsReflexivePairIsoCoequalizer
coequalizer.π
ofIsReflexivePair_hasColimit_of_hasCoequalizer
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι_colimitOfIsReflexivePairIsoCoequalizer_hom
ι_reflexiveCoequalizerIsoCoequalizer_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
WalkingReflexivePair
WalkingReflexivePair.category
WalkingReflexivePair.zero
colimit
reflexivePair_hasColimit_of_hasCoequalizer
coequalizer
WalkingReflexivePair.one
CategoryTheory.Functor.map
WalkingReflexivePair.Hom.left
WalkingReflexivePair.Hom.right
colimit.ι
CategoryTheory.Iso.hom
reflexiveCoequalizerIsoCoequalizer
coequalizer.π
IsColimit.comp_coconePointUniqueUpToIso_hom
reflexivePair_hasColimit_of_hasCoequalizer
ι_reflexiveCoequalizerIsoCoequalizer_hom_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
WalkingReflexivePair
WalkingReflexivePair.category
WalkingReflexivePair.zero
colimit
reflexivePair_hasColimit_of_hasCoequalizer
colimit.ι
coequalizer
WalkingReflexivePair.one
CategoryTheory.Functor.map
WalkingReflexivePair.Hom.left
WalkingReflexivePair.Hom.right
CategoryTheory.Iso.hom
reflexiveCoequalizerIsoCoequalizer
coequalizer.π
reflexivePair_hasColimit_of_hasCoequalizer
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι_reflexiveCoequalizerIsoCoequalizer_hom
π_colimitOfIsReflexivePairIsoCoequalizer_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
coequalizer
colimit
WalkingReflexivePair
WalkingReflexivePair.category
ofIsReflexivePair
ofIsReflexivePair_hasColimit_of_hasCoequalizer
coequalizer.π
CategoryTheory.Iso.inv
colimitOfIsReflexivePairIsoCoequalizer
colimit.ι
WalkingReflexivePair.zero
π_reflexiveCoequalizerIsoCoequalizer_inv
π_colimitOfIsReflexivePairIsoCoequalizer_inv_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
coequalizer
coequalizer.π
colimit
WalkingReflexivePair
WalkingReflexivePair.category
ofIsReflexivePair
ofIsReflexivePair_hasColimit_of_hasCoequalizer
CategoryTheory.Iso.inv
colimitOfIsReflexivePairIsoCoequalizer
colimit.ι
WalkingReflexivePair.zero
ofIsReflexivePair_hasColimit_of_hasCoequalizer
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
π_colimitOfIsReflexivePairIsoCoequalizer_inv
π_reflexiveCoequalizerIsoCoequalizer_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
WalkingReflexivePair
WalkingReflexivePair.category
WalkingReflexivePair.zero
coequalizer
WalkingReflexivePair.one
CategoryTheory.Functor.map
WalkingReflexivePair.Hom.left
WalkingReflexivePair.Hom.right
colimit
reflexivePair_hasColimit_of_hasCoequalizer
coequalizer.π
CategoryTheory.Iso.inv
reflexiveCoequalizerIsoCoequalizer
colimit.ι
reflexivePair_hasColimit_of_hasCoequalizer
reflexiveCoequalizerIsoCoequalizer.eq_1
colimit.comp_coconePointUniqueUpToIso_inv
π_reflexiveCoequalizerIsoCoequalizer_inv_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
WalkingReflexivePair
WalkingReflexivePair.category
WalkingReflexivePair.zero
coequalizer
WalkingReflexivePair.one
CategoryTheory.Functor.map
WalkingReflexivePair.Hom.left
WalkingReflexivePair.Hom.right
coequalizer.π
colimit
reflexivePair_hasColimit_of_hasCoequalizer
CategoryTheory.Iso.inv
reflexiveCoequalizerIsoCoequalizer
colimit.ι
reflexivePair_hasColimit_of_hasCoequalizer
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
π_reflexiveCoequalizerIsoCoequalizer_inv

CategoryTheory.Limits.HasCoreflexiveEqualizers

Theorems

NameKindAssumesProvesValidatesDepends On
has_eq 📖mathematicalCategoryTheory.Limits.HasEqualizer

CategoryTheory.Limits.HasReflexiveCoequalizers

Theorems

NameKindAssumesProvesValidatesDepends On
has_coeq 📖mathematicalCategoryTheory.Limits.HasCoequalizer

CategoryTheory.Limits.ReflexiveCofork

Definitions

NameCategoryTheorems
isColimitEquiv 📖CompOp
mk 📖CompOp
toCofork 📖CompOp
π 📖CompOp
5 mathmath: app_one_eq_π, condition, CategoryTheory.Limits.reflexiveCoforkEquivCofork_functor_obj_π, CategoryTheory.Limits.reflexiveCoforkEquivCofork_inverse_obj_π, mk_π

Theorems

NameKindAssumesProvesValidatesDepends On
app_one_eq_π 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Limits.WalkingReflexivePair
CategoryTheory.Limits.WalkingReflexivePair.category
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.Cocone.ι
CategoryTheory.Limits.WalkingReflexivePair.zero
π
condition 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingReflexivePair
CategoryTheory.Limits.WalkingReflexivePair.category
CategoryTheory.Limits.WalkingReflexivePair.one
CategoryTheory.Limits.WalkingReflexivePair.zero
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Functor.map
CategoryTheory.Limits.WalkingReflexivePair.Hom.left
π
CategoryTheory.Limits.WalkingReflexivePair.Hom.right
CategoryTheory.Limits.Cocone.w
mk_pt 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingReflexivePair
CategoryTheory.Limits.WalkingReflexivePair.category
CategoryTheory.Limits.WalkingReflexivePair.one
CategoryTheory.Limits.WalkingReflexivePair.zero
CategoryTheory.Functor.map
CategoryTheory.Limits.WalkingReflexivePair.Hom.left
CategoryTheory.Limits.WalkingReflexivePair.Hom.right
CategoryTheory.Limits.Cocone.pt
mk_π 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingReflexivePair
CategoryTheory.Limits.WalkingReflexivePair.category
CategoryTheory.Limits.WalkingReflexivePair.one
CategoryTheory.Limits.WalkingReflexivePair.zero
CategoryTheory.Functor.map
CategoryTheory.Limits.WalkingReflexivePair.Hom.left
CategoryTheory.Limits.WalkingReflexivePair.Hom.right
π

CategoryTheory.Limits.WalkingParallelPair

Definitions

NameCategoryTheorems
inclusionWalkingReflexivePair 📖CompOp
5 mathmath: inclusionWalkingReflexivePair_map, inclusionWalkingReflexivePair_obj, instIsConnectedStructuredArrowWalkingReflexivePairInclusionWalkingReflexivePair, inclusionWalkingReflexivePair_final, instNonemptyStructuredArrowWalkingReflexivePairInclusionWalkingReflexivePair

Theorems

NameKindAssumesProvesValidatesDepends On
inclusionWalkingReflexivePair_final 📖mathematicalCategoryTheory.Functor.Final
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.WalkingReflexivePair
CategoryTheory.Limits.WalkingReflexivePair.category
inclusionWalkingReflexivePair
instIsConnectedStructuredArrowWalkingReflexivePairInclusionWalkingReflexivePair
inclusionWalkingReflexivePair_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.WalkingReflexivePair
CategoryTheory.Limits.WalkingReflexivePair.category
inclusionWalkingReflexivePair
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.WalkingReflexivePair.zero
CategoryTheory.Limits.WalkingReflexivePair.one
CategoryTheory.Limits.WalkingReflexivePair.Hom.left
CategoryTheory.Limits.WalkingReflexivePair.Hom.right
CategoryTheory.CategoryStruct.id
inclusionWalkingReflexivePair_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.WalkingReflexivePair
CategoryTheory.Limits.WalkingReflexivePair.category
inclusionWalkingReflexivePair
CategoryTheory.Limits.WalkingReflexivePair.zero
CategoryTheory.Limits.WalkingReflexivePair.one
instIsConnectedStructuredArrowWalkingReflexivePairInclusionWalkingReflexivePair 📖mathematicalCategoryTheory.IsConnected
CategoryTheory.StructuredArrow
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.WalkingReflexivePair
CategoryTheory.Limits.WalkingReflexivePair.category
inclusionWalkingReflexivePair
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.IsConnected.of_induct
instNonemptyStructuredArrowWalkingReflexivePairInclusionWalkingReflexivePair 📖mathematicalCategoryTheory.StructuredArrow
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.WalkingReflexivePair
CategoryTheory.Limits.WalkingReflexivePair.category
inclusionWalkingReflexivePair

CategoryTheory.Limits.WalkingReflexivePair

Definitions

NameCategoryTheorems
category 📖CompOp
46 mathmath: CategoryTheory.Limits.reflexivePair.diagramIsoReflexivePair_hom_app, CategoryTheory.Limits.ReflexiveCofork.app_one_eq_π, CategoryTheory.Limits.reflexivePair.to_isReflexivePair, reflexion_comp_left, CategoryTheory.Limits.reflexivePair_obj_one, leftCompReflexion_eq, CategoryTheory.Limits.WalkingParallelPair.inclusionWalkingReflexivePair_map, CategoryTheory.Limits.π_reflexiveCoequalizerIsoCoequalizer_inv_assoc, CategoryTheory.Limits.hasReflexiveCoequalizer_iff_hasCoequalizer, CategoryTheory.Limits.ofIsReflexivePair_hasColimit_of_hasCoequalizer, CategoryTheory.Limits.reflexivePair.compRightIso_hom_app, map_reflexion_comp_map_left, CategoryTheory.Limits.WalkingParallelPair.inclusionWalkingReflexivePair_obj, Hom.id_eq, CategoryTheory.Limits.ReflexiveCofork.condition, reflexion_comp_right, reflexion_comp_left_assoc, CategoryTheory.Limits.reflexiveCoforkEquivCofork_functor_obj_pt, CategoryTheory.Limits.reflexivePair_map_left, reflexion_comp_right_assoc, CategoryTheory.Limits.reflexivePair_map_right, CategoryTheory.Limits.reflexiveCoforkEquivCofork_functor_obj_π, CategoryTheory.Limits.reflexiveCoforkEquivCofork_inverse_obj_pt, CategoryTheory.Limits.reflexivePair.diagramIsoReflexivePair_inv_app, CategoryTheory.Limits.ι_colimitOfIsReflexivePairIsoCoequalizer_hom, CategoryTheory.Limits.hasReflexiveCoequalizers_iff, rightCompReflexion_eq, CategoryTheory.Limits.reflexivePair_obj_zero, CategoryTheory.Limits.π_colimitOfIsReflexivePairIsoCoequalizer_inv, CategoryTheory.Limits.π_reflexiveCoequalizerIsoCoequalizer_inv, CategoryTheory.Limits.ι_reflexiveCoequalizerIsoCoequalizer_hom, CategoryTheory.Limits.reflexiveCoforkEquivCofork_inverse_obj_π, CategoryTheory.Limits.WalkingParallelPair.instIsConnectedStructuredArrowWalkingReflexivePairInclusionWalkingReflexivePair, CategoryTheory.Limits.reflexivePair_map_reflexion, CategoryTheory.Limits.reflexivePair.compRightIso_inv_app, CategoryTheory.Limits.WalkingParallelPair.inclusionWalkingReflexivePair_final, CategoryTheory.Limits.ofIsReflexivePair_map_left, CategoryTheory.Limits.π_colimitOfIsReflexivePairIsoCoequalizer_inv_assoc, map_reflexion_comp_map_left_assoc, CategoryTheory.Limits.ι_reflexiveCoequalizerIsoCoequalizer_hom_assoc, CategoryTheory.Limits.WalkingParallelPair.instNonemptyStructuredArrowWalkingReflexivePairInclusionWalkingReflexivePair, CategoryTheory.Limits.ofIsReflexivePair_map_right, map_reflexion_comp_map_right, CategoryTheory.Limits.reflexivePair_hasColimit_of_hasCoequalizer, CategoryTheory.Limits.ι_colimitOfIsReflexivePairIsoCoequalizer_hom_assoc, map_reflexion_comp_map_right_assoc
instDecidableEqHom 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
leftCompReflexion_eq 📖mathematicalHom.leftCompReflexion
CategoryTheory.CategoryStruct.comp
CategoryTheory.Limits.WalkingReflexivePair
CategoryTheory.Category.toCategoryStruct
category
one
zero
Hom.left
Hom.reflexion
map_reflexion_comp_map_left 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingReflexivePair
category
zero
one
CategoryTheory.Functor.map
Hom.reflexion
Hom.left
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.map_comp
reflexion_comp_left
CategoryTheory.Functor.map_id
map_reflexion_comp_map_left_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingReflexivePair
category
zero
one
CategoryTheory.Functor.map
Hom.reflexion
Hom.left
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
map_reflexion_comp_map_left
map_reflexion_comp_map_right 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingReflexivePair
category
zero
one
CategoryTheory.Functor.map
Hom.reflexion
Hom.right
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.map_comp
reflexion_comp_right
CategoryTheory.Functor.map_id
map_reflexion_comp_map_right_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingReflexivePair
category
zero
one
CategoryTheory.Functor.map
Hom.reflexion
Hom.right
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
map_reflexion_comp_map_right
reflexion_comp_left 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Limits.WalkingReflexivePair
CategoryTheory.Category.toCategoryStruct
category
zero
one
Hom.reflexion
Hom.left
CategoryTheory.CategoryStruct.id
reflexion_comp_left_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Limits.WalkingReflexivePair
CategoryTheory.Category.toCategoryStruct
category
zero
one
Hom.reflexion
Hom.left
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
reflexion_comp_left
reflexion_comp_right 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Limits.WalkingReflexivePair
CategoryTheory.Category.toCategoryStruct
category
zero
one
Hom.reflexion
Hom.right
CategoryTheory.CategoryStruct.id
reflexion_comp_right_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Limits.WalkingReflexivePair
CategoryTheory.Category.toCategoryStruct
category
zero
one
Hom.reflexion
Hom.right
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
reflexion_comp_right
rightCompReflexion_eq 📖mathematicalHom.rightCompReflexion
CategoryTheory.CategoryStruct.comp
CategoryTheory.Limits.WalkingReflexivePair
CategoryTheory.Category.toCategoryStruct
category
one
zero
Hom.right
Hom.reflexion

CategoryTheory.Limits.WalkingReflexivePair.Hom

Definitions

NameCategoryTheorems
comp 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
id_eq 📖mathematicalid
CategoryTheory.CategoryStruct.id
CategoryTheory.Limits.WalkingReflexivePair
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.WalkingReflexivePair.category

CategoryTheory.Limits.WalkingReflexivePair.instDecidableEqHom

Definitions

NameCategoryTheorems
decEq 📖CompOp

CategoryTheory.Limits.instInhabitedWalkingReflexivePair

Definitions

NameCategoryTheorems
default 📖CompOp

CategoryTheory.Limits.reflexivePair

Definitions

NameCategoryTheorems
compRightIso 📖CompOp
2 mathmath: compRightIso_hom_app, compRightIso_inv_app
diagramIsoReflexivePair 📖CompOp
2 mathmath: diagramIsoReflexivePair_hom_app, diagramIsoReflexivePair_inv_app
mkNatIso 📖CompOp
2 mathmath: mkNatIso_hom_app, mkNatIso_inv_app
mkNatTrans 📖CompOp
3 mathmath: mkNatTrans_app_zero, mkNatTrans_app_one, whiskerRightMkNatTrans

Theorems

NameKindAssumesProvesValidatesDepends On
compRightIso_hom_app 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.id
CategoryTheory.NatTrans.app
CategoryTheory.Limits.WalkingReflexivePair
CategoryTheory.Limits.WalkingReflexivePair.category
CategoryTheory.Functor.comp
CategoryTheory.Limits.reflexivePair
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
compRightIso
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
compRightIso_inv_app 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.id
CategoryTheory.NatTrans.app
CategoryTheory.Limits.WalkingReflexivePair
CategoryTheory.Limits.WalkingReflexivePair.category
CategoryTheory.Limits.reflexivePair
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.comp
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
compRightIso
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
diagramIsoReflexivePair_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Limits.WalkingReflexivePair
CategoryTheory.Limits.WalkingReflexivePair.category
CategoryTheory.Limits.reflexivePair
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingReflexivePair.one
CategoryTheory.Limits.WalkingReflexivePair.zero
CategoryTheory.Functor.map
CategoryTheory.Limits.WalkingReflexivePair.Hom.left
CategoryTheory.Limits.WalkingReflexivePair.Hom.right
CategoryTheory.Limits.WalkingReflexivePair.Hom.reflexion
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
diagramIsoReflexivePair
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.id
diagramIsoReflexivePair_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Limits.WalkingReflexivePair
CategoryTheory.Limits.WalkingReflexivePair.category
CategoryTheory.Limits.reflexivePair
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingReflexivePair.one
CategoryTheory.Limits.WalkingReflexivePair.zero
CategoryTheory.Functor.map
CategoryTheory.Limits.WalkingReflexivePair.Hom.left
CategoryTheory.Limits.WalkingReflexivePair.Hom.right
CategoryTheory.Limits.WalkingReflexivePair.Hom.reflexion
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
diagramIsoReflexivePair
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.id
mkNatIso_hom_app 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingReflexivePair
CategoryTheory.Limits.WalkingReflexivePair.category
CategoryTheory.Limits.WalkingReflexivePair.one
CategoryTheory.Limits.WalkingReflexivePair.zero
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
CategoryTheory.Limits.WalkingReflexivePair.Hom.left
CategoryTheory.Iso.hom
CategoryTheory.Limits.WalkingReflexivePair.Hom.right
CategoryTheory.Limits.WalkingReflexivePair.Hom.reflexion
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
mkNatIso
mkNatIso_inv_app 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingReflexivePair
CategoryTheory.Limits.WalkingReflexivePair.category
CategoryTheory.Limits.WalkingReflexivePair.one
CategoryTheory.Limits.WalkingReflexivePair.zero
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
CategoryTheory.Limits.WalkingReflexivePair.Hom.left
CategoryTheory.Iso.hom
CategoryTheory.Limits.WalkingReflexivePair.Hom.right
CategoryTheory.Limits.WalkingReflexivePair.Hom.reflexion
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
mkNatIso
mkNatTrans_app_one 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingReflexivePair
CategoryTheory.Limits.WalkingReflexivePair.category
CategoryTheory.Limits.WalkingReflexivePair.one
CategoryTheory.Limits.WalkingReflexivePair.zero
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
CategoryTheory.Limits.WalkingReflexivePair.Hom.left
CategoryTheory.Limits.WalkingReflexivePair.Hom.right
CategoryTheory.Limits.WalkingReflexivePair.Hom.reflexion
CategoryTheory.NatTrans.app
mkNatTrans
mkNatTrans_app_zero 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingReflexivePair
CategoryTheory.Limits.WalkingReflexivePair.category
CategoryTheory.Limits.WalkingReflexivePair.one
CategoryTheory.Limits.WalkingReflexivePair.zero
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
CategoryTheory.Limits.WalkingReflexivePair.Hom.left
CategoryTheory.Limits.WalkingReflexivePair.Hom.right
CategoryTheory.Limits.WalkingReflexivePair.Hom.reflexion
CategoryTheory.NatTrans.app
mkNatTrans
to_isReflexivePair 📖mathematicalCategoryTheory.IsReflexivePair
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingReflexivePair
CategoryTheory.Limits.WalkingReflexivePair.category
CategoryTheory.Limits.WalkingReflexivePair.one
CategoryTheory.Limits.WalkingReflexivePair.zero
CategoryTheory.Functor.map
CategoryTheory.Limits.WalkingReflexivePair.Hom.left
CategoryTheory.Limits.WalkingReflexivePair.Hom.right
CategoryTheory.Limits.WalkingReflexivePair.map_reflexion_comp_map_left
CategoryTheory.Limits.WalkingReflexivePair.map_reflexion_comp_map_right
whiskerRightMkNatTrans 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingReflexivePair
CategoryTheory.Limits.WalkingReflexivePair.category
CategoryTheory.Limits.WalkingReflexivePair.one
CategoryTheory.Limits.WalkingReflexivePair.zero
CategoryTheory.Functor.map
CategoryTheory.Limits.WalkingReflexivePair.Hom.left
CategoryTheory.Limits.WalkingReflexivePair.Hom.right
CategoryTheory.Limits.WalkingReflexivePair.Hom.reflexion
CategoryTheory.Functor.whiskerRight
mkNatTrans
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.ext'

(root)

Definitions

NameCategoryTheorems
Reflexive 📖MathDef
14 mathmath: Equivalence.reflexive, Sym2.diagSet_subset_fromRel, Std.Refl.reflexive, IsRefl.reflexive, Sym2.reflexive_iff_diagSet_subset_fromRel, Relation.reflexive_reflTransGen, reflexive_iff_subrelation_eq, CategoryTheory.Abelian.pseudoEqual_refl, AddSemiconjBy.reflexive, SemiconjBy.reflexive, reflexive_manyOneReducible, Relation.reflexive_reflGen, reflexive_oneOneReducible, FirstOrder.Language.Relations.realize_reflexive

---

← Back to Index